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Abstract

NP = PCP(log n, 1) and related results crucially de-
pend upon the close connection betsveen the probability with
which a function passes a low degree test and the distance

of this function to the nearest degree d polynomial. In
this paper we study a test proposed by Rubinfeld and Su-
dan [29]. The strongest previously known connection for

this test states that a function passes the test with probability
6 for some d > 7/8 iff the function has agreement N 6 with a
polynomial of degree d. We present a new, and surprisingly
strong,analysiswhich shows thatthepreceding statementis
true for 6<<0.5. The analysis uses a version of Hilbe?l ir-
reducibility, a tool used in the factoring of multivariate poly-
nomials.

As a consequence we obtain an alternate construction for

the following proof system: A constant prover l-round proof
system for NP languages in which the verifier uses O(log n)
random bits, receives answers of size O(log n) bits, and has

an error probability of at most 2– 10g*-‘’. Such a proof sys-
tem, which implies the NP-hardness of approximating Set
Cover to within fl(log n) factors, has already been obtained
by Raz and Safra [28]. Our result was completed after we
heard of their claim.

A second consequence of our analysis is a self

testerlcorrector for any buggy program that (supposedly)
computes a polynomial over a finite field. If the program is

correct only on 6 fraction of inputs where 15<<0.5, then the
tester/corrector determines J and generates 0(~) random-
ized programs, such that one of the programs is correct on

every input, with high probability.
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1 Introduction

The use of algebraic techniques has recently led to new

(probabilistic) characterizations of traditional complexity
classes. These characterizations involve an interaction be-
tween an untrustworthy prover (or many provers) and a
polynomial-time verifier. In MIP= NEXPTIME [7], and

NP = PCP(log n, 1) [6, 5] the verifier has to probabilisti-
cally verify the satisfiability of a boolean formula by read-

ing very few bits in a “proof string” presented by a prover.
In IP=PSPACE [24, 31] the verifier has to probabilistically
verify tautologyhood of a quantified boolean formulae by
interacting with a prover. All these results fundamentally
rely on the same idea: the verifier first anthmetizes (or al-

gebraizes) the boolean formula, which involves viewing a
boolean assignment not as a sequence of bits but as values
of a polynomial [24]. From then on, verifying satisfiability

or tautologyhood involves veri~ing — using some efficient
algebraic procedures — specific properties of a polynomial
that has been provided by the prover.

In this paper we present an improved analysis of the
low degree test, an algebraic procedure used in the result

NP=PCP(log n, 1). The new analysis is known to lead to
new characterizations of NP in terms of PCP, which in turn
lead to improved results about the hardness of approxima-
tion. Recall that NP=PCP(log n, 1) implies the hardness

of computing approximate solutions to many optimization
problems such as CLIQUE [13, 6], CHROMATIC NUMBER
and SET COVER [25], AND MAX-3 SAT [5]. For most of

these problems it implies NP-hardness, but for some —most
notably the problem of approximating SET COVER within a
factor O(log n) and an entire set of problems in [4] — it is

only known to imply quasi-NP-harrkess (a quasi-NP-hard
problem is one that has a polynomial-time algorithm only if
NP ~ lime(npO1y 10g[nJ)).

Plugging our improved analysis of the low degree test into
known constructions leads to very efficient constant-prover
l-rtwnd proof system for M? Such systems imply the NP-
hardness of approximating Set Cover to within a factor of
O(ln n) (see the reduction of [25], adapted for more than
2 provers in [10]). Raz and Safra [28] had before us con-
sh-ucted such systems; so our construction can be viewed as
an alternative proof of their result.

In our proof system, a probabilistic polynomial time ver-

ifier checks that a given string is in the language by us-
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ing O(log n) random bits, and one round of interaction
with a constant number of provers during which it receives

O(log n) bit long answers from the provers. If the input is in
the language, the provers can answer in a way that makes the
verifier accept with probability 1. If the input is not in the

language, then regardless of the prover’s answers the ver-

ifier accepts with probability at most 2– *“g(*–’)’, for any
e > 0. The number of provers in our construction grows as
0(1/c). If we are willing to increase the error probability to

2- log’”” then the number of provers is 5. The number of
provers can probably be reduced further using a technique of
Tardos [35], but that still does not lead to a 2-prover proof

system. Getting a 2-prover proof system with O(log n) ran-
domness and answer size but subconstant error probability
remains an open question.

Now we briefly describe low degree tests; see Section 2
for more details. Given an m-variate function f : W + F
over a finite field F, the test wishes to determine whether or

not there exists a degree d polynomial that agrees with ~ in J
fraction of points in V. (The function is presented by value,
and the test has random access into this table of values. Both

d and p are inputs to the test.) The low degree testis allowed
to be probabilistic and it has to read as few values of j as

possible.
We are interested in a test described in [29] that works

roughly as follows: Pick a random “line” in F“’and verify

that the restriction of ~ to this line agrees significantly with
some univariate degree d polynomial. If this is the case, ac-
cept. This test is similar in flavor to all other known low
degree tests, such as the original test in [7] and later ones
in [8, 13, 18]. (Many of those tests check the degree of the
polynomial in each variable, whereas the test we described
checks the total degree.)

Let 6 denote the probability with which ~ passes the low-

degree test. Existing analyses of all low degree tests cannot
say anytling meaningful about ~ if d < 1/2; in fact the anal-
yses of [13, 18, 29,6] require 6>1 – 0(1/d). A crucial in-
grcxhent of NP=PCP(log n, 1) was an analysis (actually just
a combination of the analyses of [6, 29]) of the above test
that worked for 6>1 – ~ for some fixed e >0. This analysis
showed that if a function j passes the test with probability
d >1 – ~, then there exists a degree d polynomial that has
agreement N 8 with ~. (The value of c for which this is true
was later improved to 1/8 [17].)

In this paper we present an analysis (see Theorem 4) that
continues to say something meaningful about .f even when
6 is fairly close to O. We show that if 6> (rnd)c/ IFI’ for

some fixed c, e >0, then there exists a degree d polynomial
that agrees with f in = 6 fraction of the inputs. We remark
that a similar statement had earlier been proved for really

large fields IFI > 2°fm+d+1/JJ [2, 33]. (However, that field
size is too large for most applications.)

We also prove a related result, Theorem 3, which is more

useful for constructing efficient PCP-style verifiers. It says

that every function f that passes the low degree test with
probability d has an associated small set of polynomials

P1, P2,... such that the test fails with high probability if
it encounters a point where ~ does not agree with one of the
Pi’s. This result is useful because all known verifiers work

by checking the properties of some function f provided by
the prover. If f is a polynomial, the verifier is extremely
unlikely to produce an erroneous answer . Errors creep in
only when f is not a polynomial but has significant agree-
ment with some set of polynomials gl, gz, . . .. In this case,
if the verifier has the bad luck to examine f at a point where
f doesn’t agree with any of gl, gz,..., then it could accept
erroneously. Our corollary provides the means to combat
such errors, since any such gl, gz, . . . turn out to be exactly
the set of polynomials P1, P2,..., mentioned in Theorem 3.
The verifier therefore subjects f to a low degree test at any
point where f doesn’t agree agree with any of P1, P2,.. .,
the test fails with high probability, thus averting an erroneous

accept. A formal proof of this “folklore result” is included
in the full paper, and some pointers appear in Section 4.

Applicationto programtesting/correcting. Suppose we
are given a potentially buggy program that purportedly com-
putes a (unknown) m-variate polynomial over a finite field
F. Program testing/correcting [1 1] deals with the following
problems: (i) testing: determine 6, the fraction of points at
which this program is correct and (ii) correction: for each in-

put, correct the output of the program in case it is incorrect.
It was open how to do testing if J < 1/2; our lowdegree
test (specifically, a version slightly different from the one
described in the next section in that it doesn’t use a d-oracle)
closes this open problem when IFI’ > poly(md). As for

correction, note that its meaning is unclear when 6< 1/2,
since as many as O (1/d) polynomials could have agreement
J with the program. Two notions of correction are possi-

ble, as noted in [1]. The weaker one is that for each input,
the corrector outputs 0(1/6) values, one of which is cor-
rect. Such a corrector is known [32]. The stronger notion is
that the corrector create 0(~) programs (polynomials) such
that w.h.p. one of them is correct. Finding such a corrector
was an open problem. Our analysis leads to such a corrector.
Details of the proof are omitted from this abstract, but they

are obvious from reading our proofs (specifically, by noting
their “algorithmic” nature).

Past work on constant-prover proof systems. The first

construction of a nontrivial constant prover 1-round proof
system for NP appeared in [23]; others appeared in [16, 10,

34, 14, 27]. These systems could not reduce the error proba-
bility to below a constant while using O(log n) random bits
(the best construction needs O(k log n) random bits to make

the error probability 2-~; see [27]). It was also known [15]
that some obvious ideas (such as “recycling randomness”)
cannot let us get around thk. Earlier this year Raz and

Safra [28] found a construction of a proof system achiev-
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ing subconstant error. Our result, though obtained indepen-
dently, was completed a couple of months after we had heard
of the existence of their result (the missing part at the time
was our proof of the bivariate case of Theorem 1), Upon
seeing their manuscript in September 1996, it was clear —

although their earlier announcement didn’t suggest this —
that they also rely on a low degree test, albeit a new one and
with a very different correctness proof than ours.

Paper organization. We state and explain our main theo-
rem (Theorem 1) and its corollaries (Theorems 3 and 4) in
Section 2. We prove the theorem in Section 3. This proof re-
sembles proofs of earlier results [29, 5, 3, 17], in that it has
two parts. First in Section 3.1 we prove the theorem when

m is constant (specifically, m = 2,3); this uses rdgebraic
arguments inspired by Sudan’s [32] work on reconstructing
polynomials from very noisy data and Kaltofen’s work on
“Effective Hilbert Irreducibility” [20, 21, 22]. Then in Sec-

tion 3.2 we “bootstrap” to allow larger m. This part uses
probabilistic arguments and relies upon the cases m = 2,3
(including Theorems 3 and 4 for the cases m = 2, 3). It is
inspired by the “symmetry-based” approach of Arora [3].

2 The Low-degree Test

Let F be a finite field and m, d be integers. An m-
variate polynomial over F is a sum of terms of the form

ax~l $? . . . z~m, where a E F. The set of such polynomi-
als forms an integral domain, denoted F[zl,. ... GJ. We
wiIl often view such a polynomial as a function from V
to F. The degree of the polynomial is its total degree (thus
jl +...

+ jm is the degree of the above monomial). We will
usually reserve the symbol q for IFI, the cardinality of F.

The distance between two functions ~, g : V + F, de-
noted A(j, g), is the fraction of points in Fm they differ on.
The agreement between the functions is 1 – A(f, g).

The low-degree test is given a function ~ : Fm + F.

Using randomness, it cheeks that ~ looks “locally” like a
degree-d polynomial. Magically, it can infer from this that
j has significant agreement with a degree-d polynomial. To
be more formal we need to define a line in F’”.

A line in V is a set of q points with a parametric repre-

sentation of the form
{(ul+tvl,uz +tvz,...,u~ +tvm):t~F}
for some (Ul, . . .. Urn). (Vi, Vm),Vm) E P. Werefer to the

point (ul+avl, uz+avz,.. .,um+avm)a sthepointt=a
of the line.

Note that replacing (Vi, ..., vm) by c . (VI, ..., vm) for

any c E F \ {O} does not change the line. Our convention is
to fix one of the representations as canonical.

Definition Letl = {(ul+tvl,..., um+tvm):t EF}
be a line, ~ : ~ + F be a function and g(t) be a univariate
polynomial. Then g describes ~ at the point t = a of 1 if

g(a) = f(ul +avl, uz +avz, . ... um +avm).

Note that if f : F’” ~ F is a degree d polynomial, then on
every line the restriction of ~ to that line is described by a
univariate degree-d polynomial in the line parameter t. The
converse can also be shown to be true: if on every line in
F’”, the values off are described by a univariate degree-d

polynomial and F is sufficiently large (q ~ (d+ 1)(3),
where p is the characteristic of the field [17]), then ~ must
be a degree-d polynomial.

The low degree test is presented with f : V + F, and

an integer d. It is also presented a table that is meant to be a
“proof’ that ~ is a degree d polynomial. This table contains,

for each line in F’”, a univariate degree d polynomial that

supposedly describes the restriction of ~ to that line. We will
use the term d-oracle for any table that contains, for each

line in F“’, a univariate degree d polynomial. (The number
of variables m can be infe&d from &e context.)

The Low Degree Test:

Pick a random line 1 in Fm and read the univariate
polynomial, say pi(t), which the given d-oracle con-

tains for this line. Randomly pick a point z on line 1
and check whether pi correctly describes f at z. If so,
ACCEPT, else REJECT.

We denote by dd(~, B) the probability that the low degree
test accepts a function j and a d-oracle B. We will prove the

following result about the low degree test.

Theorem 1 (Main) There are positive integers co, c1, CZ,
and C3 such that the following are true. Let f : F’” + F
be any function and d >0 be any intege~

1. For any d > 0, if f hus agreement 6 with some de-
gree d polynomial, then there is a d-oracle B such thut
dd(j, B) ~ &

2. If 6 > 0 satisfies q > @(dm/c$)cl and there is a d-

oracle B such that&( f, B) ~ b, then f has agreement

at least 6CS/c2 with some degree d polynomial.

We remark that the first half of this theorem is tivial, since

we can just take the degree d polynomial that has agreement
J with ~, and construct the d-oracle by using the polyno-
mial’s restriction to the line in question. We will prove only
the more nontrivial second half. As mentioned earlier, previ-
ous results show that the statement in the second half is true
for some 0.5<6<1. This paper shows that the statement is

true for d <<0.5, and in fact ford as small as dm(@/g)lic’,
which is tiny if q is (@dm)2cl.

2.1 ‘IWOStronger Forms of Theorem 1

Theorem 1 has two stronger forms, one of which will be
useful in constructing proof systems. We state the stronger
forms here.

We will need the (well-known) fact that there are not “too
many” polynomials that have significant agreement with a
given function.
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Proposition 2 Letf :P + F be any function. Suppose

integer d > 0 and fraction p sati.@ p > 2 G. Then there

are at most 2/p degree d polynomials that have agreement
at least p with f.

•1

The first strong form says that “almost all” of the success
probability of the low degree test happens at points where j

agrees with (one of) a small set of polynomials.

Theorem 3 Suppose m is an integer such that the state-
ment of Theorem 1 is true for all m-variate functions. Let
f : F’” ~ F be any jimction and d > 0 be any inte-

ger Let CO,CI, C2 and C3 refer to the same integers that

appeared in Theorem 1 and let ~ > 0 be any fraction sat-
isfying q > @(d/e) cl. Let PI, Pz, ..., pk be all the degree
d polynomials that have agreement at least e“ /cz with f.

Then with probability at least 1 – e one of the following two
events happens during the low degree test on f {irrespective
of the contents of the d-oracle):

1. The test outputs REJECT

2. The test picks a point z E P such that f (z) = P~(x)
forsomei=l,..., k.

Proofi Suppose the probability mentioned in the theorem
statement is less than 1 – t. We derive a contradiction.

Let S ~ F’” be the set of points at which f does not agree
with anyof Pi,..., Pk. Then f Is, the restridion of f tos,

is a function that passes the low degree test with probability
at least e. L.@us extend fl.s to a function g : F“’ + F by
randomly picking values for g at points in V \ S. Since g

passes the low-degree test with probability at least ~, Theo-
rem 1 implies that there is a degree d polynomial P that has

agreement ~cs/c2 with g. This agreement must largely be

on points in S, since the restriction of g to F’” \ S is a ran-
dom function. (Note: A simple calculation using Chemoff

bounds shows that a random function has agreement approx-
imately I/q with every degree-d polynomial.) Hence we
conclude that polynomial P has agreement approximately
Ecs/cs with f Is. Since none of P1, ..., l’k a-s with f on

S, this polynomial must be be different from each Pi. But
this contradicts the hypothesis that {PI,..., l’k } is an ex-
haustive Iisting of the degree d polynomials that have agree-

ment at least .SC3/cz with f. •l

The second strong form says, heuristically speaking, that
if q > poly( ~, ~, rnd), then every function that passes the
low degree test with probability p has agreement at least p –
6 with some degree d polynomial. (Note:Theorem 1 only
guaranteed an agreement p’s /c2).

Theorem 4 Suppose m is an integer such that the statement

of Theorem 1 is true for al! m-variate jhnctions. Let f :
F -+ F be anyjimction and d >0 be any integec Suppose
there is a d-oracle such that Pr[low degree test accepts] ~

p. Let c >0 be any fraction satisfying

64. 4C3 4dm
+co(---)?q > ~c3+3pc3-1

where Q, c1, C2,C3 refer to the same integers that appeared

in Theorem 1.
Then there is a degree d polynomial that has agreement

p – e with f.

Prod Suppose we pick a line 6 randomly from ~. An
simple averaging argument shows that with probability at

least .s/2, we pick a line on which the success probability
of the low degree testis at least p – 6/2. In other words,

[

Pr some univ. deg. d poly. gl describes f 1~; (1)
1 on p – 6/2 fraction of points of i

Let 61 = ep and let P1,..., pk be all the degree d poly-
nomials that have agreement at least ~ ( ~)cs with ~. Let

PI,. . . , Pk be their agreements with f. We wish to show that
pi ~ p – c for some i. Let us therefore assume that each

pi < p – e and show that the probability mentioned in As-
sertion (1) is less than e/2, thus deriving a contradiction to
Assertion (l).

Where could the univariate degree d polynomial men-
tioned in Assertion (1) come from? There are two cases.
Case (i): gl is the restriction of one of the Pi’S to the line

1. Case (ii): gl is some other polynomial. Note that if case
(ii) happens, then 1 is a line on which the low degree test is
succeeding with probability p – c/2, and furthermore this
success happens on on points where f doesn’t equal any
of Pl, P2, ..., Pk. By Theorem 3, at most q /4 of the suc-

cess probability of the low degree test comes from the points
where f doesn’t equal any of PI, P2, ..., Pk!. By an averag-

ing argument it follows that

Now we show that Pr[ [Case (i) happens] < ~/4, thus lead-

ing to the desired contrtilction.
Fori=l,2,..., k, let vi be the fraction of points on 1 at

which polynomial Pi agrees with f. The following bound

on ~i follows from a simple application of Chebychev’s in-
equality (proof omitted from this abstract):

Since we assumed that each ~i < p – G we now conclude

that

~r[3 i s.t. -yi > p – c/2] s $ x k.

A simple inclusion-exclusion based counting argument
shows that k < 2c2/(cl /4)c9. Hence

~[3 i Sot.7* > p – 6/2] ~
8pc2

Esq(el /4)’3
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Note that the probability on the LHS is an upperbound on

the Prt [Case (i) happens], and that the RHS is less than
.5/4 for the range in which our parameters lie. Thus

Prf [Case (i) happens] < c/4. ❑

3 Proof of Correctness of Low-degree Test

In this section we prove Theorem 1. For ease of exposition
we first restate Theorem 1. From now on we will reserve the
symbol f for a function from F’” to F which is the subject of
the low degree test.

Definition 2 The line polynomialfor f on line 1for degree

d, denoted f’{(l), is the univariate degree d polynomial (in
the line parameter t) that describes ~ on more points of 1than
any other degree d polynomial. (We arbimuily break ties
among different polynomials that describe ~ equally well on
the line.) The d-success-rate off on line 1, denoted pi(1), is
defined as

p;(1) = fractionof points on 1 where P:(1) describes f.

The d-success-rate off at point x E F“ is the fraction of
lines through x whose line polynomial describes ~ at z.

The d-success rate off is the average of its d-success rates

on all lines. (Note: By symmetry this is also equal to its

average d-success rate at all points.) El

Note that the probability that a function f : F2 ~ F passes
the low degree test is maximised when the accom anying d-

?oracle contains, for each line 1, the polynomial pd (1). Hence
it suffices to prove the following.

Theorem 5 (Restatement of Theorem 1 part 2) There are
integers m, c1 such that the following is true. If f : P + F

is any function whose d-success rate is at least d and q >
1 ‘m C1 then there exists a degree d polynomial that has~(~) ~

agreement at least dcg/cz with f.

3.1 The Bivariate Case

In this section we prove Theorem 5 for m = 2. Let ~ :
F2 ~ F be a function with success-rate at least 6. Our proof

goes in two steps.

(Step 1). Show that there is a polynomial Q c F[z, z, V]
of “not too large degree” and a “reasonably large” set of
points S ~ F2 such that for every (a, b) c S, the follow-
ing are true:

Q(f (~, ~)>~>b) = 0 (3)

d-success rate off at (a, b) is “non-negligible.” (4)

(Step 2). Show that any Q that satisfies the conditions in
Step 1 has a factor z – g(x, y), such that g E F[x, y] is a
degree d polynomial and for “many” (a, b) E S,

(z - g(z,y)) = o at (z, z,y) = (f(a, b), a, b). (5)

By the end of Step 2, we have concluded that j has sig-

nificant agreement with the degree d bivariate polynomial g.
Step 2 uses Theorem 6 which is a version of a family of re-
sults known as Hilbert irreducibility theorems, They study

the preservation of the irreducibility of a multivariate poly-
nomial, when values of most variables are substituted with
constants or linear forms in one or two new variables. We
will need a version which leaves one variable unsubstituted

and all other variables get substituted with a linear form in
one new variable. This specific substitution has been stud-

ied by Kaltofen [21], who bounds the probability with which
the polynomial may factor after the substitution, if the sub-
stitution is performed “randomly”. The bound presented in
[21] is too weak for our purposes. Fortunately, in a later

work Kaltofen [22] presents improved bounds. The bounds
in [22] are presented for a different substitution, but the anal-
ysis easily extends to the substitution studied in [21]. We

summarize this theorem below.

Theorem 6 ([20]) Let Q E Hz, yl, YZ,..., y~] be a degree

1 polynomial that is absolutely irreducible and rnonic in z.
Then thefiactionof (al, az,. . . ,a~, bl, bz,. . . . ~b)~F2m

for which the polynomial Q(z, alt + bl, . . . . a~t + b~) in z
and t has a factor of the form z –p(t) is at most 1 – 0(13/q).

Step 1 is motivated by Sudan’s [32] technique for recon-

structing univariate polynomials from very noisy data. Su-
dan makes the following observation.

Proposition 7 Let (al, yl),..., (an, y~) be any set of n
pairs jhm F2, and d., dz be any positive integers sati@-
ing dzdz > n. Then there exists a bivariate polynomial
I’ E Hz, z] with deg.(r) ~ d= and deg. (17) ~ dz, satisfy-
ing

r(yi, ai)=O fori=l,..., n (6)

Proofi If we let Vaj be the coefficient of z:x~ in r, then the

constraints in (6) define the following homogeneous linear

system with (1 + d=) (1 + dv ) unknowns and n constraints.
(Note that al,... ,an, yl,
1 n,

. . . . y~ are “constants.”) For k =
,. ...

Since (1+ dZ) (1 + dv), the number of variables, exceeds n,

the number of constraints, a nontrivial solution exists. ❑

Then Sudan uses the following lemma from Ar et al. [1].

Lemma8 tit(al, yl),..., (an, y.) c F2 be any sequence
such that for some p >0,

there is a degree d polynomial h ● F[x] s. t.
h(ai) = yi for pn values of i. }

(7)

Let r E flz, x] be any polynomial sati&ing (6). If
degz(r) + d odegz(I’) < pn, then (z – h(x)) I J7.
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Proofi The polynomial I’(h(z), z) has degree at most

deg. (r) + d . deg.(r) and has at least pn roots. So if
deg. (J7) + d. deg. (I’) < pn, this polynomial must be iden-

tically O. ❑

We need the following generalization of the ideas de-
scribed above.

Lemma 9 Let S1, SZ ~ F be any subsets of F and 1 = IS11.
Let j : S1 x S2 + F be anyjimction and for each a, b c F,
let C. E ~y], Rb E ~x] be degree d polynomials. Suppose
there is afiaction p > 2d/& such that for all b ● S2, there
twist at least pl values of a G S~ s. t.

f(a, b) = Co(b) = R~(a).

Then there is a polynomial Q E F[z, x, y] sati@ing

degz(Q) s ~, deg=(Q) S &, degv(Q) S d13i2 such
that

Va E S1, Q(C7a(y), a,y) = O and (8)

Vb E 5’2, (Z – &(2?)) lQ(z, z,b) (9)

Prod LetF[v] {z, z] be the ring of polynomials in the formal
variables z and z whose coefficients are from F[y].

We use the same idea as in [32], but work over the ring
F[y] instead of over F. Consider the following sequence

of ISI[ pairs from F x F[v]: ((a, Ca(y)) : a E S1).
Note that there exists a polynomial Q E F[y][z, z] with
degz(Q), &gZ(Q) < W such that

Q(C.(l/), a) = O Vu E S1 (lo)

The reason is that if we let Qij E F[v] be the coefficient of
zlxi in Q, then the constraints in ( 10) define a homogeneous
system of linear equations over F[y] with (1+ deg.(Q)) (1 +

c-leg,(Q)) >1 unknowns and 1constraints.

Since the number of unknowns exceeds the number of con-
straints, a nontrivial solution exista.

Now we claim that we can find a nontrivial solution Q
that in addition is in F[y][z, z] and satisfies degV(Q) s

d13i2. The reason is that Q is obtained by Cramer’s Rule

on a system of 1 constraints, which calls for inverting an
(1 - 1) x (1 - 1) matrix. Inverting an (1 - 1) x (1 -1)
matrix involves evaluating polynomials of degree 1 – 1 in
the matrix entries. In this case the matrix entries are degree
d~ polynomials in F[y], so matrix inversion produces only
polynomials of degree d13i2 in y. Hence &gV(Q) S d13i2.

Finally, the fact that Q satisfies condition (9) follows im-
mediately from Lemma 8 and the condition p > 2d/~ z

(d+ 1)/ti. ❑

The following lemma finishes Step 1 of our proof.

Lemma 10 Letf :F2 ~ F have d-success rate at least 6,

let t = max{4 log q/63, (%)2}. If q > 100t2, then there is

a polynomial Q E Hz, x, y] of total degree at most 2t312d
and a set of points S ~ F2 containing at least # /256 frac-

tion of the points such that

~. Q(f(a,b),~,b) = o V(a, b) E S.

2. The d-success rate off at each point in S is at least
f5/2

Proofi This proof uses averaging. The main idea is to ro-
tate the coordinate system so that with respect to the new
x and y axes, the conditions of Lemma 9 are satisfied for
p = @/256. The existence of polynomial Q is then implied
by the conclusion of that lemma. Note that a rotation of co-
ordinates does not affect the total degree of a polynomial,
and we are interested only in the total degree of Q.

Below, when we say “a line in the direction h;’ we mean
a line of the form {(u + t. h) : t E F}. Note that for each
point x c F2 and direction h, there is exactly one line in

direction h that passes through x.
We say that a point z E F2 is good for a pair of directions

(hi, hz) if the line polynomials P~(lI ) and P~(lz) correctly
describe fat x, where 11,12 are the lines that pass through x
and lie in directions hl and h2 respectively.

Let G ~ F2 denote the set of points at which the success
rate of f is at least J/2. Since the overall success rate is

at least J, averaging shows that at least 6/2 fraction of the
pointa are in G.

Claim 1: There exist two directions hl, hz and a set of
points H ~ G with size IHI ~ r531~2 /8 such that every
point in H is goodfor (hl, h2.).

Proof of Claim 1: Omitted; involves picking two ran-
dom directions hl, h2 and computing the expectation. •l

Let hl, hz, H be as in Claim 1. Rotate the coordinates so
that hl becomes the z-axis and hz becomes they-axis. From
now on, coordinates are stated in this new system. We use
columns and rows to refer to lines parallel to the v and x axes
respectively.

For a, b ● F let Rb and Co denote the line polynomials

in the row {(z, b) : x E F} and the column {(a, y) : y c F}
respectively. By the defining property of H, if (a, b) 6 H,

then C.(b) = &(a) = ~(a, b).
Letv = r53/16. Averaging shows that at least ~ of the

rows have at least ~ fraction of their points in H. LetSz ~ F

be the set of all such rows. Let t = 4 log q/~. We claim that
there exists a set S1 consisting of i! vertical lines such that
Vb ● Sz

3’yt/2 values of a E SI s.t. C.(b) = Rb(a) = f (a, b).
(11)

The existence of S1 is proved by the probabilistic method.
Pick a set of S1 randomly by picking t lines with repetition,
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and show that w.h.p. the resulting set satisfies, for all b G S2,
Ill n (Sl x {b})l ~ yt/2. (Even though we picked lines
with repetition, the probability that any two are the same is

at most t2/q, which is < 1/100. Hence w.h.p. the set S1 has
no repeated lines.)

Let b E S2. The expected fraction of points in S1 x {b}
that lie in H is at least ~. Hence by the Chemoff bound,

R[pl n (Sl x {b})[ < ~t/2] s ezp(–$)

= ezp(–210gq) < +.

Thus the probability is at leaat 1 – ISZ[ /2q – 1/100 z .49

that the randomly chosen set SI satisfies condition (1 1).
Thus we have proven the existence of S1, S2 Q F such

that they satisfy the hypothesis of Lemma 9 with p = T/2

and 1 = t. (Notice that by the definition of t, we have
that p z 2d/~.) Let Q 6 F[z, z, g] be the polyno-
mial whose existence is guaranteed by Lemma 9. Then
degz(Q), deg,(Q) s W and degv(Q) < dt312, and total
degree of Q is 2fi + dt312< 2dt312.)

To finish we need to define the set S mentioned in the

lemma. Let

S={(a, b)~F2:b GSzand(a, b)~H}.

Since each row b2 c Sz has at least ~ fraction of its points
in H and IS21 > ~ IFI, we have

Now let (a, b) E S. Since b E S2, the property of Q implies
(z – l?~(z)) I Q(z, z,b) and so Q(R~(z), z,b) = O. Since

(a, b) E H, the property of H implies f(a, b) = Co(b) =

Rb(a). Hence Q(f(a, b), a, b) = O. Thus the lemma has
been proved. ❑

Now we move to Step 2 of our argument.

Lemma 11 Let j : F2 + F be a function, and Q E

fl.r, X,IJ] be a polynomial of total degree D and S c F2

be a set of points of size at least Y - IF[2 such thut: (i)
V(a, b) E S, Q(f(a, b), a, b) = O. (ii) The d-sucess-rate
off at every point in S is at least ~.

If IFI > 4D5/72, then there is a degree D bivariute poly-
nomial g c F[x, g] that has agreement at least 74 /8D with

f and such that z – g(z, y) is a factor of Q.
Proofi The main idea is to use Lemma 8 to show that the
restriction of Q on “many” lines has a linear factor that de-

scribes ~ on “many” points of that line. Then we will use
Theorem 6 on “effective Hilbert irreducibility” to conclude

that Q itself must have a linear factor that describes ~ in
“many” points.

We say a point (a, b) E F2 is nice for a line 1 in F2 if (i)

Q(f(a, b), a, b) = Oand (ii) P:(l), the line polynomial of 1,
describes j at (a, b).

Claim 1: When a line 1 is picked randomly, the expected
fraction of points on it that are nice for it is at least T2.
Proofi Imagine picking a point (a, b) randomly and then

randomly picking a line 1 that passes through it. The proba-
bility that the point is nice for 1 is at least ~ . Y = Y2. The

claim now follows by linearity of expectations. ❑

Let Q1,... , Q~ c F[z, Z, y] be all the distinct factors
(over the algebraic closure of field F) of Q that involve z.
(Note that k < D.)

Claim 2: One of the Q;’s is of the form z – r(x, y) where
r E F[z, y].
Proofi For a line 1 let us denote the restriction of Q to 1 by

Qll E F[z, t], where t is the line parameter. We define Qill
analogously for i = 1, ... k.

Assume for contradiction’s sake that no Qi has the form
z – r(z, y) for some r ● ~[z, y]. Since each Qi is absolutely

irreducible, Theorem 6 implies that the fraction of lines 1
such that thgrestriction Q~li has a factor of the type z – p(t)
where p ● F[t], is at most 0(D3/ IFI). Hence the fraction
of lines on which either of Q1 11,. . . Q~ II has a factor of the
type z – p(t) is at most 0(kD3/ IFI). By our assumption on
the values of IFl, ~, and D, this fraction is at most T2/4. We

show next that this fraction is actually at least 72/2, which
is a contradiction.

From the statement of Claim 1 and simple averaging we
know that on at least 72/2 fraction of the lines, at least T2/2
fraction of the points are nice for them. Let 1 be such a line.
We show that Qll(zj t) has a factor of the form z - p(t) for

some p E F[t]. Let h E F[t] be the line polynomial for 1

(i.e., h = P#(i)). Then Qll(h(t), t) has T2 IFI /2 roots and

degree only Dd, where Qll(z, t)is the restriction of Q to 1.
But Dd <72 IFI /2, so Qll(h(t), t) must be identically O.

Hence z – h(t) \ Qll(z, t). •l

The following claim finishes the proof of the lemma. Note

that the polynomial gin the statement of the claim takes its
coefficients from F instead of from the closure field ~.
Claim 3: One of the Qi’s is of the form z – g(z, y) where

g E F[z, g] is a degree d polynomial that has agreement at
least y2/2D with f.
Proofi(of Claim 3) Assume that 1 ~ 1 factors of Q are of

the form described in Claim 2, and assume w.1.o.g. that they
are Ql, . . ..Q1. Fori = 1,...,1, SUpp03e Qi(z,~,~) =
z – pi (z, y) where pi c ~[z, y]. From the proof of Clfi

2 we know that for at least 72/2 – 0(D3k/ IFI) fraction of

the lines, the following is true (i) the line polynomial P:(i)
of the line is the restriction of one of the pi’s to the line,
(ii) f{(l) describes ~ on at least 72/2 fraction of points on
1. For simplicity, we use --y2/4 as a lowerbound on T2/2 -

0(D3k/ IFI).
Thus there must exist some i E [1,1] such that Qi explains

1/1 fraction of such lines. We claim that this Qi is the factor
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we are looking for (i.e., g = Pi). Note that by choice of

i, polynomial pi has agreement ~ - ~ . ~, with .f. This

agreement is at least ~.

Note that thus far we only know that g E ~[z, y] and has

degree at most D. Now we claim that g actually (i) is a
degree d polynomial and (ii) has all its coefficients in F. The

reason we claim (ii) is that that the restriction of g on at least

1 ~ fraction of lines is in F[t] and ~ > D/ IFI. The reasoni“4
that g has degree at most d instead of D is that its restriction

to at least ~ ffaction of the lines is a degree d polynomial

and $> D/lFl. ❑

❑

Thus we have proved the bivariate case of Theorem 1.

Theorem 12 LetF = GF(q) and f : F2 + F be a func-
tion that has d-success rate at least & If q/(log q)s >
210580/657, then there is a bivariate degree d polynomial
g that has agreement at least 633/(255d4 log q) with f.

Proof: FOI1OWSfrom Lemmas 10 and 11. •l

3.2 The Bootstrapping

Section 3.1 showed the correctness of Theorem 1 for the
case of m = 2. An easy generalization of the proof (whose

details we omit here) carries over for larger m, except the
“constants” c1, C2 and C3 then depend on m. In order to

avoid any dependence on m, some other idea is needed. We
describe thk now.

Tiis section assumes the truth of Theorem 1 (as well as
Theorems 3 and 4) for m = 2,3, and proves Theorem 1
for general m. The proof relies on symmetry-based argu-
ments similar to those in [3]. These use the notion of a k-
dimensional subspaces of W.

Definition 3 Let m, k c ~+ and k < m. A k-dimensional
subspace of F= is a set of points with a parametrization of
the form

{m+tl”m +t2”~+- ”-+tk”w: tl, t2,..., tk EF},

forsome ul, uz, . . ..~E1l’’. ll
——

Thus a line is a I-dmensional subspace, for example. We
will refer to a 2-dimensional subspace as a plane and a 3-
dimensiomd subspace as a cube. A function defined on a k-

dimensional subspaee of V is called a degree d polynomial
if the function can be expressed as a degree d polynomial in
the parameters tl,....tk.

Note that each set of k + 1 dktinct points in ~ deter-
mines a unique k-dimensional subspace. Likewise, a line
and a point outside it determine a unique plane, two lines

that are not in the same plane determine a unique cube, and
so on. We use the term pkme(l, z) to denote the unique
plane containing a line 1 and a point x etc.

Our argument will rely on symmetry, such as the follow-
ing facts: (i) all points in F’” are part of exactly the same

number of k-dimensional subspaces (ii) All lines in Fm are
part of exactly the same number of k-dimensional subspaces,
etc. We give an illustrative example of a symmetry-based

calculation.

Example 1 Suppose ~ : Fm + F is any function whose
d-success-rate is exactly ~. For any planes let t,be the av-

erage d-success-rate of ~ among lines ins. Then symmetry
implies that Es [tS], the average of ts among all planes, is

exactly /3. The reason is that Es t8counts every line in Fm
an equal number of times.

The following two lemmas rm both conseqeunces of
symmetry-based arguments that we will need. Both can be
shown using straightforward application of Chebychev’s in-
equality. We omit the proofs here.

Lemma 13 (Well-distribution lemma for limes) Let S G
F’ be a set whose size is p. qm. For every K >0, at least
1 – ~ fraction of lines in F’” have between pq(l – ~)

and IW(l + *) pointsjhm S.

Lemma 14 (well-distribution lemma for cubes) For any
a > Oandm > 3, ifanyjittwtion f : Fm * Fhasd-
success-rate & then in a random cube C,

,Ukc
[

Average d-Success-rate off on 1 2

lines in C < (1 - a)d ~ *“

Now we try to define a function ~ that we hope is “ahnost”

a polynomial and has significant agreement with t.

Definition 4 (fl) For any line 1 we define a function ~ :
V + F as follows. Let P; (1) denote the univariate degree

d polynomial that best describes f’s restriction to 1(see Defi-
nition 2). Now consider every planes that contains L (Note:
since every point z @ 1 determines a unique plane with 1,
the set of planes containing 1form a partition of W.) Check
whether there is a bivariate polynomial, say g, that agrees

with F’{ (1) on line i and that has agreement at least 6/4 with

~ on planes. If so, for every pointy ~ s, we define fi(y) to
be the value takenAby g at y. If no such bivariate polynomial
exists, we define fl (y) arbitrarily in this plane.

Lemma 15 There are constants r,s > 1 such that the fol-

lowing is true for each m > 3. Letf : F“’ + F have
d-success-rate at least J, and q = IFI > ( -&)S. If a line 1 is
picked randomly then

El[d-success-rate of fl in ~] ~ 1 – ~ (12)

El [agreement between f and ~1 in P] ~ $ (13)

Before proving Lemma 15, we first point out how Theo-
rem 1 follows irrurw%ately.

Proofi(of Theorem 1; m > 3) We use the probabilistic
method: we pick a line 1 randomly and show that with
nonzero probability, we get a line such that the polynomial

closest to fl has agreement at least 6/24 with ~.
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Using an averaging argument along with statement (12)

we see that for any k >1,

Using averaging on ( 13) we see that

~r[agreement between j and ~J > ~] > ~.

We let k = 10/6, and conclude that with probability 15/8 –
6/25.6 the following two events happen (i) d-success-rate of

~J >1 – J/24 and (ii) the agreement between ~ and ~ is at
least 6/8.

In particular, there exists at least one line for which the

two events in the preceding paragraph happen. Let 10 be
such a line. The existing analysis of the low degree test [5]
implies that for each d < 1, every function with d-success-
rate at least 1 – 6/24 has agreement at least 1 – 6/12 with
some degree d polynomial. Let g be this polynomial for ~.
Since g and ~ have agreement at least 1 – J/12 and since jf,
and ~ have agreement at least d/8, we conclude that ~ and g
have agreement at least d/8 – 6/12 = d/24. ❑

Now we prove Lemma 15.

Prod (Lemma 15) By linearity of expectations it suffices

to show that if we pick a pair of lines (1, 1’) randomly in F’”,
then

E(l,t,) [d-success-rate of ~1on t’] z 1 – & (14)

E(i,i,) [agreement of i~ and ~ on ~’] >$. (15)

Let a = 1/32. The main idea why we can “bootstrap”
(i.e., reduce the m-variate case to the trivariate case) is that

the two expectations in statements (14) and (15) are essen-
tially unchanged (except for a “fudge” factor of 1- l/~,

which is negligible) if we change the method of picking
(1, i’) as follows: instead of picking a random pair of lines in
V, we pick a pair randomly from all noncoplanar pairs of
lines in afied cube c in which the averaged-success-rate of
~ is at least 6(1 – a). The reason why this doesn’t change

the expectation is that when we pick a random pair of lines in
P, then with probability 1 – q2/qm they are non-coplanar,
in which case they determine a unique cube. Furthermore,

this cube is randomly distributed among all cubes, so with a
further probability at least 1- & the d-success-rate of ~

in this cube is at least 6(1 —a) (Lemma 14). Thus, if we are
willing to ignore a factor (1 – ~ – ~) (which we are,

since this is > 1 – l//7j for a large enough q), itsuffices
to compute the expectations in (14) and (15) when (1, 1’) is

a random pair of non-coplanar lines in a cube c in which the
d-success-rate of ~ is at least c5(l – a). We restrict attention
to such (1, 1’).

By the trivariate case of Theorem 4, there is a degree d
trivariate polynomial that has agreement at least J(l – 2CZ)

with ~ on cube c. Let PI be one such polynomial and let

P2,... P~O be all the other degree d polynomials that have
agreement at least d( 1 – 6a) with j on cube c.

Let C2,C3be the constants of the same name that occured

in the statement of Theorem 3 for the case m = 3. Let e =
l/q@’ . Let Pko+l , . . . . pk be all the degree d polynomials

whose agreement with f on cube c is between Ccs/cz and

6(1 - 6cr). Proposition 2 shows that the set of polynomials
we have identified thus far is not too big: k ~ 8/6 and
k ~ 4c2/.&’. Furthermore, we know by the trivariate case

of Theorem 3 that if we restrict the low degree test on ~ to
those points of cube c where f doesn’t agree with any of
Pi,..., Pk, then the success probability is at mOSt 6. This
will be important.

We hoy to show ultimately that for “most” lines 1, the
function fl has high agrement with one of PI, PZ,.. ., Pko.

For any trivariate polynomial Q and line 1, let Qlt denote its

restriction to line 1. We likewise define the restriction Q IS
for a plane s. We say that line 1 is nice if the restrictions
P1ll, P211,..., pk II are all distinct and P: (1), the univariate

degree d polynomial that has the highest agreement with ~
Oni, i50neof Pllll PzlJ1. ... PkOlJ.

Let ~ = 4e/d = 4/6q@’s .

Claim 1: At least 1 – ~fraction of the lines 1 in cube c
are nice.

Proof of Claim 1: The fraction of lines J for which

Pill = Pj II for some i # j is at most (~) X ~, since for any

fixed i, j, the fraction of lines 1 for which Pill = Pj 11is at

most d/q. Since k ~ 4C2/~c9, we have

Now we estimate the fraction of lines for which Pi (1) is

notoneof Pill, Pall,..., PkOIi. Such a line must satisfy one

or more of the following properties.

1.

2.

3.

PI 11has agreement less than 6(1 – 4a) with f on line
1. By Lemma 13, the fraction of such lines is at most

K&d”

P1 [1 has agreement@ > 6(1 – 4a) with ~ on line 1

but one of P~O+lll,. ... pk 11has agreement more than
/3. By Lemma 13, the fraction of such lines is at most

& x (k – h), which is at most * since k <

4c2/@ < 4C#4.

Pill has agreement ~ ~ d(l – 4a) with f on
line 1 but some univariate polynomial that is not
P1lJ, P21J,..., l’k II has agreement more than ~ with f
on 1. Since the success probability of f on points where
it does not agree with Pill,. ... P~ll is at most q the
fraction of lines on which this success probability is
more than 6(1 – 4ct) is at most e/d(l – 4a) < 2~/J <
Z/~q~14CS.
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Hence the fraction of lines that are not nice is at most

The last term dominates when g is large enough, so this frac-
tion is at most 4/c$q114c$. ❑

We say that a plane s in c is well-behaved if (i) each of
P118, P2\s,..., f’k, 1, has agreement at least 6(1 – 8a) with

f ons (ii) Every bivariatepolynornial besides Ph.,..., Pk 1,

has have agreement less than 15(1– 8a) with ~ on planes.

Claim 2: At least 1– yfiaction ofplanes in c are weli-

behaved.
Proof of Claim 2: Each of PI,..., Pk, has agreement

at least 6(1 – 6a) with f on cube c. Picking a random
plane involves picking three points at random from the cube.

Hence we can use pairwise independence (i.e., Chebyshev’s
inequality) to conclude

[

~r agreement between Pi 1, and f

1

4

s ons is < 6(1 – 8a) ~ -“

Next, we bound the fraction of planess such that some bi-

variate polynomial different from Pl IS, ..., Pk [~ has agree-
ment at least 6(1 – 8ct) > 6/2 with ~ on planes. Note that
in such a plane the restriction of ~ to points where it doesn’t

agree with PI, ..., pk passes the low degree test with prob-
ability at least 6/2. But the case m = 3 of Theorem 3 and

symmetry implies that the average of this rate over the entire
cube is at most c. Hence the fraction of such planes is at
most 2c/6 <2 jc$q~lbcs.

Thus the fraction of planes that are not well-behaved is at
most 4/a26q2 + 2/r5qlf4cs, which for large enough q is at

most 4/ 6q1~4es. •l

Ciaim 3: For at least 1 – fifraction of lines in cube
G at least 1 – #j@action of the planes containing that line

are well-behaved.
Proof of Claim 3: Among all planes that contain any

line 1, let crl denote the fraction that are well-behaved. Then
by symmetry we know that El [al] is exactly the fraction of
well-behaved planes in cube c, which is at least 1 – ‘y by

Claim 2. Averaging implies that al ~ 1 – W for at least
1 – W fraction of i. •!

Now call a line 1 super if it is nice and if at least 1 –
W fraction of the planes containing 1 are well-behaved. By
Claims 1 and 3, at least 1 – T – W fraction of lines in cube
c are super.

Claim 4: If line 1 is super then for every line 1’ that is
non-coplanar with 1,

d-success-rate of ~ on 1’ ~ 1 – fi (16)

and for a random line 1’noncoplanar with 1,

El,
[

agreement between ~~
and f on cube c 1~r5(l-fi(l-8rY). (17)

Proof of Claim 4: Recall that the set of planes con-

taining 1 is a partition of cube c. Since 1 is nice, Pi(1) is
Pi II for some i E [1, ko]. In any planes containing 1, the bi-

variate polynomial used to define ~1 in that plane must agree

with Pi I~ on 1 and must have agreement at least 6/2 with
~ on s. Ifs is well-behaved for 1, then only Pal. qualifies.

Hence the agreement between ~ and f on this plane is at
least 6(1 - 8a). Summing over all planes containing 1, we

see that the agreement between ~Land ~ on the cube c is at
least (1 – W) . 6(1 – 8ct). Now the claim in (17) follows.

Now we prove the claim in (16). Consider any line 1’

non-coplanar with /. Every plane s containing 1 meets 1’
ig exactly one point, say z. If s is well-behaved, then

t~(z) = Pj(z), as already argued. Hence Pi 111,the restric-
tion of Pi to 1’, has agreement at least 1 – W with f on 1’.
•1

By examining Claim 4 we realize that the Lemma is more

f
or less proved, since at least 1 – T – -y fraction of lines
in c are super. We make q > (232/d )4C9, which makes
1 – W >1 – &’/5l2. Now the first expectation is J(l –

W)(1 – T – fi)(l – 8CY)which is at least 8/4. The second
expectation is (1 – fi)(l – y – @ >1 – ti2/256.

•1

4 Construction of constant prover protocols

The construction is in two steps. Step 1: Construct a
3 prover protocol in which the number of random bits is

O(log n) and the provers’ answer size is 210gP” for some

P < 1. Step 2: Use “verifier composition: a technique
from [6], to compose the verifier in Step 1 with itself. Doing
this enough times reduces the answer size to O(log n), while

keeping the number of provers at 0(1).
Both steps rely on a procedure of [5], which uses the low

degree test to reconstruct “many” values of a polynomial us-
ing 0(1) provers (this procedure is similar in spirit to many

others that preceded it in literature). This procedure is de-
scribed in Section 4.4 of [3]. The analysis given there relies
on the old result about the low degree test, and therefore only
shows that the procedure fails with probability less than 1/2.

Using our Theorem 3 in the analysis shows that the failure
probability of the procedure is below l/fi or so.

As a consequence of this procedure, Step 1 is easy:
Just repeat the ALIUSS protocol O((log n)p) times using
standard pseudorandomness techniques. Instead of mak-
ing queries to 0( (log n)~) independent provers, use the re-
construction procedure to “Aggregate Queries” (see Section
4.1.2 in [3]) and thus end up with 3 provers. Step 2 is also

standard and follows the general idea of [6] of making the
provers encode their answers using low degree polynomials.

We note that the simple ideas above yield a proof sys-

tem with error probability 2- *OgO”s-”. Reducing error to

2- I“gl-’ n requires other ideas.
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5 Conclusions

We do not know how to reduce the number of provers in

our constructions to 2. So long as we use the verifier compo-
sition idea of [6], 3 provers appears to be the best possible.

Reducing the number of provers to 2 would imply the NP-
hardness of approximation problems studied in [4].
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