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Abstract. Publicly accessible databases are an indispensable resource for retrieving up-to-date
information. But they also pose a significant risk to the privacy of the user, since a curious database
operator can follow the user’s queries and infer what the user is after. Indeed, in cases where the
users’ intentions are to be kept secret, users are often cautious about accessing the database. It can be
shown that when accessing a single database, to completely guarantee the privacy of the user, the
whole database should be down-loaded; namely n bits should be communicated (where n is the
number of bits in the database).

In this work, we investigate whether by replicating the database, more efficient solutions to the
private retrieval problem can be obtained. We describe schemes that enable a user to access k
replicated copies of a database (k $ 2) and privately retrieve information stored in the database. This
means that each individual server (holding a replicated copy of the database) gets no information on
the identity of the item retrieved by the user. Our schemes use the replication to gain substantial
saving. In particular, we present a two-server scheme with communication complexity O(n1/3).
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Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed databases; D.4.6 [Operating Systems]; Security and Protection—Information flow
control; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—retrieval
models; K.4.1 [Computers and Society]: Public Policy Issues—privacy

General Terms: Security

1. Introduction

Consider a user that makes a query to a database. A lot of research was devoted
to methods that protect the database against a “curious” user. For example, there
are methods that enable a user to ask queries to a statistical database in a way
that prevents him from reconstructing the value of particular entities.1

It may seem surprising at first glance that there are no methods to protect the
privacy of the user. For example, an investor that queries the stock-market
database for the value of a certain stock may wish to keep private the identity of
the stock he is interested in. However, it is not difficult to prove (see Section 5.1)
that if the user wants to keep its privacy (in the information theoretic sense),
then essentially the only thing he can do is to ask for a copy of the whole
database. Clearly, this is too much communication overhead, which makes it
practically unacceptable.

The rapid development of distributed databases (see Ceri and Pelagatti [1984])
and fast communication networks results in many scenarios in which the same
database is replicated at several sites. This raises hope to get around the
difficulty of achieving privacy in the single server scenario. It may be possible to
make queries to several servers such that from the answers the desired informa-
tion can be obtained, while each server (by observing only the query sent to him)
gets no information on the identity of the item the user is interested in.

Before going any further let us make the problem more concrete. We view the
database as a binary string x 5 x1

. . . xn of length n. Identical copies of this
string are stored by k $ 2 servers. The user has some index i, and he is interested
in obtaining the value of the bit xi. To achieve this goal, the user queries each of
the servers and gets replies from which the desired bit xi can be computed. The
query to each server is distributed independently of i and therefore each server
gains no information about i. A scheme with these properties is called a Private
Information Retrieval (PIR) scheme.

We present various PIR schemes with significantly smaller communication
complexity than the obvious n-bit solution (i.e., asking for a copy of x).
In particular, we obtain a two-server scheme with communication complexity
O(n1/3). Our schemes are based on exclusive-or (linear summations, or sum)
queries; this type of queries is very common and is actually implemented in
several “real-world” databases (see Chin [1986], Dobkin et al. [1979], and
Ullman [1982]).

1.1. OMITTED FROM THIS VERSION. Our original work [Chor et al. 1995]
contained a full description of

1 See, for example, Adam and Wortmann [1989], Chin [1986], Denning [1982], Dobkin et al. [1979],
Tendick and Matloff [1994], and Ullman [1982, Section 10.5].
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—Schemes for a constant number, k, of servers with communication complexity
O(n1/k).

—A scheme for 1/3 log2 n 1 1 servers with total communication complexity
1/3(1 1 o(1)) z log2

2 n z log2 log2(2n).

These constructions are based on polynomial interpolation. They are similar to
(but more efficient than) schemes presented in Beaver and Feigenbaum [1990]
and Beaver et al. [1991] for the related (but different) context of instance hiding
(see discussion below). Furthermore, these schemes have been subsumed by
subsequent work of Ambainis [1997]. Following a recommendation by an anony-
mous referee, the description of these schemes was omitted from the current
version.

Also omitted with the abovementioned schemes are their modifications to a
setting in which privacy is maintained with respect to coalitions of t . 1 servers.
In particular, for integer function t and integer constant c . 1, a t(n)-private
information retrieval scheme for c z t(n) servers, with communication complexity
O(t(n) z =c n), was given.

1.2. RELATED WORK. For the case k 5 2 (i.e., two servers), the question
whether replication of databases can help was explicitly asked, but not answered,
by Fortnow and Szegedy [1992]. A first indication that something better than the
user asking for a copy of x can be done is given by a result of Pudlák and Rödl
[1993]. With a complexity-theory motivation in mind they studied the following
question. There are three players: player S1 that holds a string x and an index j,
player S2 that holds the same string x and an index ,, and player U that knows
both j and ,. The goal is for S1 and S2 to send a single message each to U so that
he will be able to compute the bit xj1, mod n. Pudlák and Rödl show that this can
be done using o(n) bits (more precisely, O(n log log n/log n)). Using their
protocol, a two-server PIR scheme can be constructed as follows: The user
chooses uniformly at random a pair of indices j, , such that j 1 , 5 i mod n.
He sends j to the first server and , to the second, and the three of them execute
the protocol in Pudlák and Rödl [1993]. This yields a two-server PIR with
communication complexity o(n).

Independently of our work, Babai et al. [1995] studied the following problem,
related to the one studied in Pudlák and Rödl [1993] (where, again, the
motivation comes from complexity theory). There are k 1 1 players S1, . . . , Sk

and U. The player U holds k indices i1, . . . , ik (each is an , bit string). Each
player Sj holds an n 5 2, bit string x (common to all of them) and all the indices
but i j. The goal is for each Sj to send a single message to U so that U will know
the value of the bit xi1Qi2Q. . .Qik

, where Q here denotes bitwise exclusive-or. A
protocol for this problem can be transformed into a private information retrieval
scheme with an additional cost of k(k 2 1)log2 n bits as follows: The user
chooses uniformly at random k indices (log2 n bit strings) i1, . . . , ik such that
i1 Q . . . Q ik 5 i. He then sends to the jth server all the indices but i j, and the
servers execute the protocol. Babai et al. [1995] obtain the following results: for
2 # k , log2 n players the total communication is O(knH2(1/(k11))) (where
H2[ is the Binary Entropy function), and for k $ log2 n the total communica-
tion is 2 log2 n. For example, for k 5 2 their protocol (and hence the private
information retrieval scheme) uses O(nH2(1/3)) ' O(n0.92) bits. For k 5 c log2

967Private Information Retrieval



n, the communication is polylogarithmic (note however, that the transformation
into a private information retrieval scheme will cost additional c2 log2

3 n bits in
this case). To conclude, using the results of Babai et al. [1995], one can get much
better private information retrieval schemes than those that can be obtained
using Pudlák and Rödl [1993], but still not as good as the schemes constructed in
our paper.

In Rivest et al. [1978], Abadi et al. [1989], Rivest (private communication),
Beaver and Feigenbaum [1990], and Beaver et al. [1991], the instance hiding
problem is introduced and studied. In this problem, a computationally bounded
player U that holds an input (instance) i wishes to compute a known function f
on input i. The function f may be hard to compute, so U can query k
computationally unbounded oracles to achieve this task (each oracle can com-
pute f( j) for any j). Still, the player wants to keep its input i hidden from the
oracles. In a sense, this problem can be viewed as if the oracles have a string
f(1) f(2) . . . f(n) and U wants to obtain the ith bit of this string, which is the
value f(i), while keeping i private. In this sense, the instance hiding model is
related to the model of private information retrieval. Some of the techniques
used in Beaver and Feigenbaum [1990] and Beaver et al. [1991] are relevant to
our problem, especially the use of low degree polynomials, introduced by Beaver
and Feigenbaum [1990], and further developed by Beaver et al. [1991]. We
remark that the results of Beaver and Feigenbaum [1990] and Beaver et al.
[1991] cannot be directly applied to the important case of two servers. For
details, see Chor et al. [1995].

It should be emphasized that despite these similarities, there are substantial
differences between the models and between the quality of the results. In our
model the value n is considered a feasible quantity, while in the instance hiding
model n is exponential in the length of the instance, so it is an infeasible
quantity. Consequently, the instance-hiding model is aimed towards poly( ui u)-
time computations for U, allowing only solutions in which the communication
between the user and the servers is poly-logarithmic in n. In contrast, the main
thrust of our work is the case with small number, k, of servers (specifically, a
constant like 2). We do allow the user to perform ne time computation (where
e . 0 is a constant), and in particular send and receive messages longer than
polylog(n).

1.3. SUBSEQUENT WORK. Following the conference presentation of this work,
Ambainis [1997] constructed more efficient Private Information Retrieval (PIR)
schemes for k . 2 servers. His k-server scheme achieves communication
complexity O(n1/(2k21)). The construction is recursive: A k 1 1-server scheme is
built from a given k-server scheme (with certain properties). The basis of the
recursion (i.e., k 5 2) is our two-servers scheme.

Ostrovsky and Shoup [1997] have extended the PIR scope, and invented
schemes for private information storage. These are schemes which, in the same
distributed scenario as PIR, enable users both to read and to write into the
database in a private manner (where privacy in this case is only with respect to
the servers and not against other users). Interestingly, Ostrovsky and Shoup
achieve this with an addition of one server and a polylogarithmic communication
overhead (compared to the retrieval only schemes). They use and adapt tech-
niques of Oblivious RAM [Goldreich and Ostrovsky 1996], and inherit some

968 B. CHOR ET AL.



properties of this construction. In particular, the protocols are multi-round and
the data is stored in coded form (in particular, different servers do not hold
replications of the same data). We stress that Ostrovsky and Shoup [1997] is the
only work to date that utilizes multi-round protocols.

Chor and Gilboa [1997] have relaxed the privacy requirement by considering
computationally-bounded servers. This weaker but natural notion of privacy
opens the door to improvements in communication complexity over what is
known for information theoretic privacy. In particular, assuming the existence of
one-way functions, they present a two-server computational PIR scheme whose
communication complexity is O(ne), for every e . 0.

Kushilevitz and Ostrovsky [1997] observed that the linear lower bound on
communication complexity (see Section 5.1) ceases to hold for computational
privacy. Indeed, assuming the intractability of the Quadratic Residuosity prob-
lem, they presented a single-server computational PIR scheme whose communi-
cation complexity is O(ne), for every e . 0.

Gertner et al. [1998] have extended the privacy requirement so that the
database’s privacy is protected too. Specifically, they consider information
retrieval protocols where the only information about the database contents
revealed in one invocation is a single physical bit. They present general transfor-
mations of PIR schemes satisfying certain properties into PIR schemes that
guarantee the database privacy as well, with a logarithmic overhead in the
communication complexity. These transformations are applicable to all known
k-server PIR schemes, for k $ 2.

1.4. ORGANIZATION. In Section 2, we introduce the model and discuss its
attributes. In Section 3, we present the main results of this paper—a number of
PIR schemes. Section 4 extends the problem to the case where we are interested
in retrieving a block of bits (and not only a single bit). Section 5 provides some
simple lower bounds for private retrieval schemes with a single server and for
schemes with more servers but very restricted types of queries.

2. Model, Definitions, and Discussion

In this section, we define a special case of private information retrieval schemes,
where the interaction is carried out in one round. We also discuss the motivation
underlying the definition and possible extensions thereof.

2.1. DEFINITIONS. Following the discussion in the introduction, we consider a
randomized strategy for the user, which on input an index i [ [n] D

5 {1, . . . , n}
and random input r (of length ,rnd), produces k queries (of length ,q each),
Q1(i, r), . . . , Qk(i, r), one per server. The servers respond according to
strategies A1, . . . , Ak, with replies (of length ,a) that depend on the contents of
the database, denoted x, and the corresponding query. The user reconstructs the
desired bit xi from these k replies, together with i and r. The privacy requirement
is that each individual query is distributed independently of i and thus the server
gains no information about the identity of the desired item.

Definition 2.1.1. (Private Information Retrieval— one-round schemes): A k-
server Private Information Retrieval (PIR) scheme for database length n consists of

—k query functions, Q1, . . . , Qk: [n] 3 {0, 1}, rnd ° {0, 1},q;
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—k answer functions, A1, . . . , Ak: {0, 1}n 3 {0, 1},q ° {0, 1},a;
—a reconstruction function, R: [n] 3 {0, 1}, rnd 3 ({0, 1},a)k ° {0, 1}.

These functions should satisfy

Correctness: For every x [ {0, 1}n, i [ [n], and r [ {0, 1}, rnd

R~i, r, A1~ x, Q1~i, r!! , . . . , Ak~ x, Qk~i, r!!! 5 xi .

Privacy: For every i, j [ [n], s [ [k], and q [ {0, 1},q,

Pr~Qs~i, r! 5 q! 5 Pr~Qs~ j, r! 5 q!

where the probabilities are taken over uniformly chosen r [ {0, 1}, rnd.

This definition can be extended to multi-round protocols, but since all our
schemes are just one-round schemes, such an extension is not needed in the
present work. Actually, in our schemes all servers have the same answer function
(i.e., A1 5 . . . 5 Ak), and the k query functions are very similar.

2.2. DISCUSSION. We now spell out some of the attributes of the above
definition.

Perfect Privacy. The privacy requirement stated as equality of the two proba-
bility distributions is an information theoretic notion. It means that even a
(possibly malicious) computationally-unbounded server cannot get any indication
on the identity of the desired item. Relaxations such as requiring statistical
proximity or even just computational indistinguishability may suffice in certain
contexts (cf., Chor and Gilboa [1997]).

Memoryless Protocol. Both the user and server strategies are history indepen-
dent. Thus, correctness and privacy are maintained even when different users
(some of them possibly malicious) execute the protocols sequentially and/or
concurrently.

Deterministic Server Strategies. Randomized server strategies do not offer any
advantage over deterministic ones in our context (where the concerns are
correctness and privacy of the user). However, randomized server strategies are
essential for database privacy as considered in Gertner et al. [1997].

Noncollusion. We assume that the servers do not collude in trying to violate
the user’s privacy. This does not necessarily mean that they are forbidden from
communicating. Such communication may be necessary for other reasons such as
updating the contents of the database. We view the servers as providers of
private access to the database. A detected violation of the privacy guarantees will
result in severe damage to the server. It is as if a bank were caught in fraud.
Thus, collusion is way too risky from the server’s point of view. In the rare case
where the user values its potential loss as more substantial than the server’s risk,
the user should not use a PIR scheme in which privacy depends on a noncollu-
sion assumption. The single-server computational PIR scheme of Kushilevitz and
Ostrovsky [1997] addresses this concern.

Coalitions. Information-theoretic PIR schemes that tolerate collusions of up
to a certain number of servers provide an alternative answer to the above
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concerns. Specifically, the privacy requirement in Definition 2.1.1 can be gener-
alized to coalitions of up to t , k servers by requiring that, for every s1, . . . ,
st [ [k], the joint distribution of (Qs1

(i, r), . . . , Qst
(i, r)), where r is uniformly

distributed over r [ {0, 1},rnd, is independent of i. Such schemes have been
presented in Chor et al. [1995] (see Section 1.1).

2.3. EXTENSIONS

PIR of Blocks. In a more realistic model of private information retrieval, the
data is organized in records (or blocks) rather than single bits. Clearly, a block
may be retrieved by retrieving each of its bits, but significant saving is possible by
taking advantage of the block structure (i.e., the fact that we only need to hide
the identity of the block). Such schemes are presented in Section 4.

Search by Keywords. Throughout this work, we assume that the user knows
the physical location of the information that it is interested in. A more realistic
model allows the user to retrieve information based on keywords. Such schemes
are presented in Chor et al. [1997].

2.4. COMPLEXITY MEASURES. The main complexity measures we are inter-
ested in is the number of servers, k, and the communication complexity of the
protocols, considered as a function of n and k. In addition, we require that all
computations (of the user and the servers) be polynomial-time in n. Actually, in
all our schemes, the server’s action can be implemented in time linear in n, and
the user’s actions can be implemented in time linear in the communication
complexity (which is typically sublinear in n).

In some applications, the (servers’) computational overhead may be considered
too high. In such cases, tradeoffs between privacy and computational overhead
may be considered. Specifically, the database may be partitioned (possibly at
random) into several portions. The user wishing to retrieve an item will disclose
the identity of the relevant portion, and invoke the PIR scheme to obtain the
specific item from this portion. Clearly, the identity of the item within the
portion will remain unknown to each individual server; yet the server’s computa-
tion will now be linear in the portion length.

3. Single Bit PIR Schemes

All PIR schemes presented in this section are of the “linear summation” type. In
these schemes, the user sends queries in the form of sequences of subsets
S1, . . . , St # {1, . . . , n}, and each server replies with a corresponding
sequence of bits, Q j[S1

xj, . . . , Q j[St
xj. We start by describing a very simple

2-server scheme, which is the basis of all the schemes in this section. In Section
3.2, we generalize the scheme to 2d servers, and in Section 3.3, we present an
additional idea that allows to reduce the number of servers to about 2d/d while
maintaining about the same communication costs. Section 3.4 contains a generic
transformation which may be applied to reduce the communication complexity of
schemes in which the user’s queries are longer than the servers’ responses. This
transformation is applicable to the schemes of Sections 3.1 and 3.2; however, the
custom-made transformation in Section 3.3 yields superior results.

Notation. We use the following notations throughout the paper:
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—8—a (generic) user.

—6591, . . . , 659k—the servers.

—x 5 x1
. . . xn—a string in {0, 1}n, known to each server, representing the

database.

—i—the index in x in which 8 is interested.

—[m] D
5 {1, 2, . . . , m}.

For a set S and an element a, let

S % a D
5 H S ø $a% if a [y S,

S\$a% if a [ S.

3.1. A BASIC TWO-SERVER SCHEME. We start by describing a very simple PIR
scheme that allows 8 to privately obtain the bit xi by receiving a single bit from
each of two servers. The user uniformly selects a random set S # [n] (i.e., each
index j [ [n] is selected with probability 1/2). The user sends S to 6591 and
S Q i to 6592. Each server, upon receipt of the message I # [n], replies with a
single bit which is the exclusive-or of the bits with indices in I (i.e., 6591 replies
with Q j[Sxj whereas 6592 replies with Q j[SQixj). The user exclusive-ors the
answers it has received, thus retrieving the desired bit xi. Clearly, none of the
servers has obtained any information regarding which index was desired by the
user (as each of the servers obtains a uniformly distributed subset of [n]).

Although the above scheme is less obvious than a solution in which one server
sends all n bits to the user, it is not superior as far as the total amount of
communication goes. Indeed each server sent only a single bit, but the messages
sent by the user (specifying arbitrary subsets of [n]) are n bits long. Yet, this
simple scheme serves as a basis for more efficient ones.

3.2. A MULTI-SERVER SCHEME. In this subsection, we present a scheme for
any number k $ 2 of servers. The scheme presented here, is combined with the
covering codes method that we present in the next subsection to yield improved
results.

The scheme presented in this subsection allows the user to obtain the desired
bit by asking queries to k 5 2d servers, for any d $ 1, and requires total
communication of 2d z (d z n1/d 1 1). The key idea is to associate [n] with the
d-dimensional cube [,]d and generalize the simple scheme of Section 3.1, which
may be viewed as the 1-dimensional case (i.e., d 5 1). In the generalization,
each of the 2d servers is queried for the exclusive-or of the bits in a uniformly
distributed (generalized) subcube. As in the basic scheme, the different subcubes
are related, and this allows to retrieve the desired bit. The saving in communica-
tion comes from the fact that subcubes can be described more succinctly than
general subsets.

We assume, without loss of generality that n 5 ,d. We embed x in a
d-dimensional cube, associating each position j [ [n] with a d-tuple ( j1, . . . , jd)
[ [,]d, in a natural manner. In particular, the index i of the desired bit is
associated with a d-tuple (i1, . . . , id) [ [,]d. It will also be convenient to
associate the k 5 2d servers with strings in {0, 1}d. The scheme works as
follows.
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(1) 8 chooses uniformly and independently d random subsets S1
0, S2

0, . . . , Sd
0 #

[,]. Based on these subsets it defines another d subsets of [,] by S1
1 5 S1

0 Q

i1, S2
1 5 S2

0 Q i2, . . . , Sd
1 5 Sd

0 Q id. These 2d subsets are paired in a
natural way; namely, (S1

0, S1
1), . . . , (Sd

0, Sd
1). To each of the k 5 2d servers

8 sends a single subset per each pair, corresponding to the name of the
server. Namely, for every a 5 s1

. . . sd [ {0, 1}d, the user sends the
subsets S1

s1, S2
s2, . . . , Sd

sd to 659a.
(2) Upon receiving the d subsets S1

s1, S2
s2, . . . , Sd

sd, the corresponding server
(i.e., 659s1. . .sd

) replies with the exclusive-or of the bits in the subcube
defined by these subsets. Namely, 659s1. . .sd

replies with the bit

%

j1[S1
s1 , . . . , jd[Sd

sd

x j1 , . . . , jd
.

(3) The user exclusive-ors the k 5 2d bits it has received.

The correctness of the above scheme can be proved in several ways. For
example, this can be done by induction on d. Alternatively, one may consider the
contribution of each bit xj1

, . . . , jd of the database to the sum computed by the
user (in Step 3). This contribution depends on the number of subcubes (corre-
sponding to the queries directed to the 2d servers) that contain the position ( j1,
. . . , jd). It is not hard to see that (i1, . . . , id) is the only position that is
contained in an odd number of subcubes. Actually position (i1, . . . , id) appears
in a single subcube. This is because, for every t [ [d], the value i t appears in
exactly one of the sets St

0, St
1. Each of the other positions ( j1, . . . , jd) (i.e.,

those Þ (i1, . . . , id)) appears in an even number of subcubes: Suppose j t Þ i t,
then for every s1, . . . , sd,

~ j1 , . . . , jd! [ S1
s1 3 · · · 3 St21

s t21 3 St
0 3 St11

s t11 3 · · · 3 Sd
sd

if and only if

~ j1 , . . . , jd! [ S1
s1 3 · · · 3 St21

s t21 3 St
1 3 St11

s t11 3 · · · 3 Sd
sd.

Therefore, in the sum modulo 2 computed by the user (in Step 3), the
contribution of these positions is cancelled and the only value that remains is
that of position (i1, . . . , id).

The privacy of the above scheme follows by observing that not only each of the
subsets S1

0, S2
0, . . . , Sd

0 is a random subset of [,] but also each of the subsets S1
1,

S2
1, . . . , Sd

1 (since each St
1 is obtained by flipping the membership of one

element in the random set St
0). Therefore, from the point of view of each server,

it receives a sequence of d uniformly and independently chosen subsets of [,].
Thus, the queries to each server are distributed in the same way, for each
possible value of i 5 (i1, . . . , id).

The communication involved in the above scheme consists of sending a
sequence of d subsets in [,] to each server, and receiving a single bit back. Hence
the total communication complexity is k z (d z , 1 1) 5 2d z (d z =n 1 1). We
note that the communication in the present scheme is not “balanced”—The user
sends d z n1/d bits to each server, and receives a single bit from each in response.
Interestingly, the improvement in Section 3.3 results by balancing the communi-
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cation (in a way specific to the above scheme). A generic balancing technique is
presented in Section 3.4.

3.3. THE COVERING CODES SCHEME. In this section, we describe a method
based on covering codes. This method (essentially) maintains the total commu-
nication complexity of the schemes described in the previous subsection but
reduces the number of participating servers. It is especially useful when the
number of servers (i.e., k) is small (e.g., k 5 2 and k 5 4).

We start with an example. For d 5 3, the scheme of the previous section
consists of a user and 2d 5 8 servers whose names are associated with the binary
strings of length d 5 3. The user sends a subcube defined by the sets (S1

s1, S2
s2,

S3
s3) to 659s1s2s3

which replies with the exclusive-or of the bits residing in
this subcube. Thus, =3 n bits are sent from the user to each server, which replies
with a single bit. The key idea in the improvement is that 659000, which gets the
query (S1

0, S2
0, S3

0), can produce a relatively short string which contains the
answer to the query (S1

0, S2
0, S3

1), sent to 659001. Specifically, it knows S1
0 and

S2
0 and it also knows that S3

1 is of the form S3
0 Q j, for some j [ {1, 2, . . . , =3 n}.

Thus, 659000 can emulate 659001 by sending the =3 n bits corresponding to the =3 n
possible queries which could have been sent to 659001. In the same fashion,
659000 can also emulate both 659010 and 659100. Thus, by letting 659000
emulate 659100, 659010, and 659001, and letting 659111 emulate 659011,
659101, and 659110, we get a scheme for two servers with total communication
complexity O(=3 n). We note that it is too expensive to let 659000 emulate 659011
as this will require considering all (=3 n)2 possibilities for (S2

1, S3
1).

In general, the above “emulation” method depends on the ability to cover the
strings in {0, 1}d by few d-bit long string, where each string may cover itself and
all strings at Hamming distance 1 from it. In other words, we consider the
problem of covering {0, 1}d by balls of radius 1 (in the Hamming geometry).
This is a well-known problem in coding theory. A covering code, Cd, with radius 1
for {0, 1}d is a collection Cd 5 {c1, c2, . . . , ck} # {0, 1}d, such that the balls
of radius 1 around the codewords cover the space; namely,

$0, 1%d # ø cj[Cd
B~cj , 1! ,

where B(c, 1) is the set of all d-bit long strings which differ from c in at most
one position.

Given a (radius 1) covering code, Cd 5 {c1, c2, . . . , ck} (for {0, 1}d), we
use the emulation method to derive a k-database protocol of communication
complexity O(d z k z n1/d). The user, being interested in position i 5 (i1, . . . ,
id), picks uniformly S1

0, S2
0, . . . , Sd

0 # [n1/d], and sets S1
1 5 S1

0 Q i1, S2
1 5 S2

0 Q

i2, . . . , Sd
1 5 Sd

0 Q id. The user sends to 659c (c [ Cd) the subcube
corresponding to codeword c (i.e., (S1

s1, . . . , Sd
sd) where c 5 s1

. . . sd). Each
server 659c replies by emulating itself (i.e., one bit) and the servers corre-
sponding to the words covered by the codeword c (i.e., n1/d bits per each such
server). All these answers allow the user to compute the answer it would have
received in the protocol for 2d servers, and consequently retrieve the desired bit.
The privacy of the original 2d-server scheme is clearly preserved (since the
queries to each 659c are chosen in the same way as in the 2d-server scheme; it
is only the answer function that is different). As for the communication
complexity of the new protocol, we note that d z n1/d bits are sent from 8 to each
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server and that the total number of bits sent back is k 1 (2d 2 k) z n1/d (note
that only the emulation of servers corresponding to non-codewords requires n1/d

bits and that it suffices to emulate/cover each such server once2). Thus, the total
communication equals (kd 1 2d 2 k) z n1/d 1 k, and we get

THEOREM 3.3.1. Let d and k be integers so that there is a k-word covering code
(of radius 1) for {0, 1}d. Then there exists a private information retrieval schemes for
k servers, each holding n bits of data, so that the communication complexity of the
scheme is k 1 (2d 1 (d 2 1) z k) z n1/d.

Clearly, k in the above theorem need not be greater than 2d. On the other
hand, since every radius 1 ball contains exactly d 1 1 points in {0, 1}d, the
number of codewords k satisfies k $ 2d/(d 1 1) (this is the volume bound, cf.,
Gallager [1968]). This lower bound is not always attainable. The construction
given above, for d 5 3, uses the fact that {(0, 0, 0), (1, 1, 1)} is a covering code
with radius 1 of {0, 1}3. For d 5 4 there exist covering codes with four
codewords (e.g., {(0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 0, 0), (0, 1, 1, 1)}) but not with
fewer codewords (due to the volume bound). In Table I, we list the best-known
covering codes for d up to 8, the corresponding volume bounds, and the
communication complexity of the resulting protocol (i.e., (2d 1 (d 2 1)k) z
n1/d, ignoring the additive term of k). We note that all these covering codes are
optimal (minimum size) [Honkala 1991]. For d 5 3 and d 5 7, these are
Hamming Codes that are perfect codes (all balls are disjoint).

As one can see from this table, the improvement derived by the emulation
method (over the simpler method of Section 3.2 which requires 2d servers) is
quite meaningful for small values of d. Covering codes with larger radii (say 2 or
3) are also applicable in principle. For example, a k word radius 2 covering code
of {0, 1}d would yield communication complexity k z d z n1/d 1 k z (2

d) z n2/d.
Reviewing the parameters of the best codes [Honkala 1991], they turn out to be
inferior for our purposes than the radius 1 codes.

The results using the covering codes methods are most appealing for the cases
of 2 and 4 servers. These cases are summarized in the next corollary to Theorem
3.3.1.

COROLLARY 3.3.2. There are private information retrieval schemes for n bits
data, with the following parameters:

2 Formally, we consider a fixed exact cover of {0, 1}d by sets S(cj)s so that S(cj) # B(cj, 1), for
every j 5 1, . . . , k.

TABLE I. COVERING CODES AND PIR COMPLEXITY

Dimension
(i.e., d)

2d
# Codewords
(# Servers)

(i.e., k)

Volume
(Lower)
Bound

Total Communication

Asymptotic n 5 220 n 5 230 n 5 240

3 8 2 2 12n1/3 1,224 12,300 123,864
4 16 4 4 28n1/4 924 5,096 28,700
5 32 7 6 60n1/5 1,020 3,900 15,420
6 64 12 10 124n1/6 1,249 3,968 12,598
7 128 16 16 224n1/7 1,792 4,480 11,872
8 256 32 29 480n1/8 2,715 6,458 15,360
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—For two servers (i.e., k 5 2), the communication complexity is 12=3 n 1 2.

—For four servers (i.e., k 5 4), the communication complexity is 28=3 n 1 4.

As noted above, for d dimensional space the communication complexity of these
schemes is (2d 1 (d 2 1)k) z n1/d. As k $ 2d/(d 1 1), this is V(k log
kn1/(log k1log log k)).

Remark 3.3.3. Note that the user’s computation in the above PIR schemes
can be done in time linear in the communication complexity. In addition, for
each of the servers the computation time is only linear in n. To see this, note that
659c (for c [ Cd) needs to compute the exclusive-or of the bits residing in the
subcube corresponding to codeword c. In addition, for each of the words c9 in
Hamming distance 1 from c, the server 659c needs to compute the exclusive-or
of the bits in n1/d subcubes. However, by the structure of these subcubes each
such exclusive-or can be obtained from the bit computed for the subcube
corresponding to c and the examination of n(d21)/d bits. All together (d 1 1) z n
bits are xored during the server’s computation.

3.4. A GENERIC TRANSFORMATION. Consider an arbitrary PIR scheme in
which the communication is carried out in one round (i.e., the user simulta-
neously queries each server and receives answers from which it computes the
desired bit). Given such a scheme for databases containing n bits, one can derive
a scheme for databases containing m z n bits by repeating the scheme in parallel
as follows. The user views the m z n bits as an m-by-n matrix of bits. To retrieve
the ( j, i)-th bit in the matrix, 8 executes the n-bit scheme with i being the
desired bit (ignoring, for the time being, the value of j). That is, the user sends
the same query as it would have send in the n-bit scheme when being interested
in the ith bit. Now, each server sends m responses to the single query it has
received. These answers correspond to m different executions of the n-bit
scheme, each one with a different row (an n-bit string). Specifically, in the jth
execution ( j 5 1, . . . , m), the server computes its response with respect to the
jth row. Thus, the user privately retrieves the entire ith column of the matrix,
from which it finds the desired ( j, i)-th bit. Let us compare the communication
complexity of the original n bits scheme with the resulting m z n bits scheme. The
communication from the user to each server remains unchanged, while the
communication in the server-to-user direction increases by a factor of m.

In case the original PIR is such that the user sends longer messages than it
receives, the above transformation allows to reduce the total communication
complexity. Specifically, applying the above transformation to the Basic Scheme
(of Section 3.1), we obtain a 2-server PIR with communication complexity 2 z
(n 1 m) for a database of m z n bits. Thus,

COROLLARY 3.4.1. There is a 2-server private information retrieval scheme, for
n bits data, with communication complexity 4=n.

We comment that the above transformation has been applied in Chor et al.
[1995, Sec. 4] to improve the communication complexity of the k-server PIR
schemes (based on polynomial interpolation and omitted from this version) from
O(=

k21
n) to O(=k n).
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4. Private Block Retrieval

In this section, we consider a more realistic model of private information
retrieval in which the data is partitioned into blocks (or records) rather than
single bits. For simplicity, we assume that each block/record contains the same
number of bits, ,. We denote by 3(5k(n, ,) the problem of retrieving privately
an (,-bit long) information block from k servers, each holding the same n blocks
(notice that the overall contents is n z , bits). Previous sections have dealt with
3(5k(n, 1). Clearly 3(5k(n, ,) can be solved by , invocations of
3(5k(n, 1) (i.e., by considering in the jth invocation only the jth bit of each of
the n blocks), but there are much more efficient reductions of 3(5k( z, ,) to
3(5k( z, 1).

4.1. TRANSFORMATIONS. We start by noting that the generic transformation
of Section 3.4 actually provides such a reduction. Specifically,

PROPOSITION 4.1.1. Suppose that 3(5k(n, 1) can be solved by a one-round
protocol in which the user sends ak(n) bits to each server and receives bk(n) bits in
return ( from each server). Then, for every , . 1, 3(5k(n, ,) can be solved by a
one-round protocol in which the user sends ak(n) bits to each server and receives , z
bk(n) bits in return ( from each server).

In Section 3.4, we emphasized the asymmetric effect that the above transfor-
mation has on the communication complexity—increasing the communication
from the servers to the user while maintaining the communication complexity in
the other direction. We now present an “asymmetric” transformation in the
opposite direction.

PROPOSITION 4.1.2. Suppose that 3(5k(n, 1) can be solved by a one-round
protocol in which the user sends ak(n) bits to each server and receives one bit in
return ( from each server). Furthermore, suppose that the user reconstructs the
desired information bit by computing (p51

k tp (modulo 2), where tp is the message
obtained from 659p. Then, for every m . 1, 3(5k(m z (n 2 1), 1) can be solved
by a one-round protocol in which the user sends m z ak(n) bits to each server and
receives one bit in return ( from each server).

We note that the schemes presented in Sections 3.1–3.2 (but not those derived
in Sections 3.3–3.4) meet the hypothesis of the proposition. Furthermore, the
proposition can be generalized to 3(5k( z, ,) schemes (in which each bit in the
block is computed as conditioned above).

PROOF. Partition the N D
5 m z (n 2 1) bits in the database, into m strings.

Each string holds n 2 1 original bits and is augmented by a dummy bit at the nth
position that is set to zero. Bit positions in [N] are represented as pairs in [m] 3
[n 2 1] in a natural manner. The user, wishing to retrieve i 5 [i1, i2] [ [m] 3
[n 2 1], employs the 3(5k(n, 1) scheme in parallel m times. In the jth
instance 8 behaves as when asking for position i2 if j 5 i1, and as asking for
position n (the dummy bit) otherwise. Each server adds together (modulo 2) the
answers it would have sent in each of the m invocations of 3(5k(n, 1) and
sends this sum as its only message. The user just adds all answers it has obtained
and this is the retrieved bit. We emphasize that each server sends only a single
bit rather than m such bits. The new scheme clearly satisfies the privacy
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requirement. Correctness follows from associativity of addition, and the fact that
the dummy position (i.e., position n) is set to 0. That is, let tp

j be the designated
answer of 659p in the jth invocation. The answer bit sent by 659p in the
above scheme is just ( j51

m tp
j . We also know (by the correctness of the

3(5k(n, 1) scheme) that (p tp
j equals xi if j 5 i1, and 0 otherwise. Thus,

O
p51

k O
j51

m

tp
j 5 O

j51

m O
p51

k

tp
j 5 xi ,

as needed. e

The requirements from the schemes in Proposition 4.1.2 seem quite restrictive.
One may want to consider the following more general scenario. Suppose that
3(5k(n, 1) can be solved by a one-round protocol in which the user sends
ak(n) bits to each server and receives bk(n) bits in return (from each server).
Furthermore, suppose that the user reconstructs the desired information bit by
computing g((p51

k fp(gp)), where gp is the message obtained from 659p, the
fps are arbitrary fixed functions mapping binary strings into elements of some
finite Abelian group (of cardinality at most 2bk(n)), summation is done over this
group and g is a homomorphism of the group onto Z2. Then we claim that, for
every m . 1, 3(5k(m z (n 2 1), 1) can be solved by a one-round protocol in
which the user sends m z ak(n) bits to each server and receives a single bit in
return (from each server). (We stress that both g and the fps may not depend on
the desired bit nor on the randomness used by 8.) To see this, simply observe
that any such 3(5k(n, 1) scheme can be transformed into a 3(5k(n, 1)
scheme of the form required by Proposition 4.1.2. This is done by letting each
server compute the value of g( fp(gp)) (a single bit) and sending it to the user.
Clearly, this does not violate the privacy of the scheme. Moreover, since g is a
homomorphism, it follows that

O
p51

k

g~ fp~gp!! 5 gS O
p51

k

fp~gp
j !D ,

and so by computing the sum of the answers the user retrieves the desired bit.
Combining the above two propositions, we obtain:

COROLLARY 4.1.3. Let 3(5k(n, 1) be as in Proposition 4.1.2 and ,, m . 1.
Then, 3(5k(m z (n 2 1), ,) can be solved by a one-round protocol in which the
user sends m z ak(n) bits to each server and receives , bits in return ( from each
server). In particular, 3(5k(n, ,) can be solved within , times the complexity of
3(5k([n/,] 1 1, 1).

The above should be contrasted with , times the complexity of 3(5k(n, 1),
obtained in the straightforward manner.

4.2. COROLLARIES. In some settings, the number of records is not substan-
tially bigger than the length of individual records. In these settings the overhead
introduced by private information retrieval is quite small, compared to non-
private information retrieval. We exemplify two such cases— one with n # ,, the
other with n # ,2/4. We exhibit simple linear schemes for these two cases, with
constant multiplicative overhead, using k 5 2 and k 5 4 servers, respectively.
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The first example, with n # ,, employs the basic two-servers scheme (of Section
3.1), and the total communication overhead is just a factor of 4.

COROLLARY 4.2.1. Let n # ,, then 3(52(n, ,) can be solved by a one-round
protocol of total communication complexity 4 z ,.

The above is to be compared to , 1 log n bits required in “nonprivate”
retrieval of an ,-bit long block (from a database holding n such blocks).

PROOF. We use the 3(52(n, 1) scheme (of Section 3.1) in which 8 sends
a2(n) 5 n bits to each server (indicating a subset of the bits in the database),
and receives b2(n) 5 1 bit from each (the exclusive-or of these bits). Using
Proposition 4.1.1, we get a 3(52(n, ,) scheme with total communication
2(a2(n) 1 ,b2(n)) 5 2n 1 2, # 4,. e

COROLLARY 4.2.2. Let n # ,2/4, then 3(54(n, ,) can be solved by a one-round
protocol of total communication complexity 8 z ,.

PROOF. We use the 3(54(n, 1) scheme (of Section 3.2, d 5 2) in which 8
sends a4(n) 5 2=n bits to each server (indicating a “two dimensional subcube”
of the bits in the database), and receives b4(n) 5 1 bit from each (the
exclusive-or of these bits). Using Proposition 4.1.1, we get a 3(54(n, ,) scheme
with total communication 4(a4(n) 1 ,b4(n)) 5 8=n 1 4, # 8,. e

Of course, larger values of d may be used to yield constant overhead schemes
with n 5 O(,d) and k 5 2d servers. However, we believe the two schemes
presented above are the ones of interest for realistic size databases. For example,
the two server scheme is applicable to records of sizes 215 and 220 for databases
containing 230 and 240 bits, respectively. The four server scheme is applicable to
records of sizes 210 and 213 for databases containing 230 and 240 bits, respectively.

Note that unlike the 3(52(n, 1) scheme (of Section 3.1), the obvious
3(52(n, 1) (or actually 3(51(n, 1)) in which each database sends its contents
to the user who then reconstructs the desired bit, does not satisfy the hypothesis
of Proposition 4.1.1 (since the reconstruction depends on i).

5. Lower Bounds

The question of proving lower bounds on private information retrieval schemes
remains one of the most intriguing open problems of this paper. The only
obvious lower bound is log n bits which holds for any number of servers (this
follows from communication complexity considerations without using any privacy
argument). In Section 5.2, we prove lower bounds for schemes of very restricted
form. We start, however, with a simple lower bound on the communication
complexity in SINGLE-server (information theoretic) PIR schemes.

5.1. THE SINGLE SERVER CASE. We prove that if there is only one copy of the
database available then n bits must be exchanged and hence the trivial solution is
optimal in this case. The lower bound holds even if the communication between
the user and the database allows interaction (i.e., not only a single query and an
answer to it). The bound is clearly due to the (information-theoretic) privacy
constraint; otherwise, log2 n 1 1 bits are enough (8 sends i and gets back xi).
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We say that a communication C is possible for ( x, i) if when the database
content is x and the user is interested in the ith bit there is a positive probability
for C to be the communication. We say that a communication C is possible for i
if it is possible for some pair ( x, i). Now, fix a value i and assume towards a
contradiction that the number of possible communications for i is smaller than
2n. This implies that there exist x Þ y and C such that C is possible for both
( x, i) and ( y, i) (otherwise, if the sets of possible communications for ( x, i) on
the various xs are disjoint then there must be at least 2n such communications).
By the privacy requirement, for every j [ [n], C must also be possible for ( x, j),
(or else 659 distinguishes the item identities i from j on database contents x).
Similarly, C is possible for ( y, j), for every j [ [n]. Thus, in particular, C is
possible for both ( x, j) and ( y, j), where j is an index for which xj Þ yj. This
yields contradiction since on the same communication, C, the user must output
the same bit, and so this output cannot equal both xj and yj.

5.2. LINEAR SUMMATION QUERIES WITH A SINGLE-BIT ANSWERS. In an at-
tempt to develop lower bounds for the problem, we consider the very simple case
in which there are two servers and the user makes a single linear summation
query to each of them. In this simple case, we were able to show that privacy
requires the user to send long messages (i.e., of length linear in the length of the
database). This lower bound is very restricted with respect to what we want, but
on the other hand it provides yet another demonstration of the strength of the
privacy condition.

We consider the case of k 5 2 servers. We restrict our attention to schemes in
which each of the two servers is asked a query and answers with a single bit.
Moreover, we insist that the scheme is of the “linear summation” type. That is,
each query is just a name of a vector (set) q and the answer is Q i:qi

51 xi. The
user takes the two bits b1, b2 received from 6591, 6592 (respectively) and
computes b1 Q b2. Recall that in Section 3.1 we proved the existence of such a
scheme in which each of the queries sent by the user is n-bit long. We now show
that this is essentially optimal.

We say that a query, q, is possible for (i, 1) (respectively, (i, 2)) if on input i
there exists some sequence of coins which makes 8 send query q to 6591
(respectively, 6592).

CLAIM 5.2.1. Suppose that q is possible for (i, 1). Then each query at even
(respectively, odd) Hamming distance from q is possible for (i, 1) (respectively,
(i, 2)).

This claim implies that the set of possible queries for each server has
cardinality at least 2n21, requiring a query description length of at least n 2 1
bits, which establishes the lower bound.

PROOF. The proof is based on two observations.

(1) By the privacy of the scheme, we have that for every j, h [ [n], if the vector
v is possible for ( j, 1) then the vector v is also possible for (h, 1).
(Otherwise, 6591 distinguishes the item identities j from h.)

(2) Let eh denote the hth unit vector (i.e., eh 5 0h21 10n2h). Then, by
definition of the summation-type scheme, if, on input h, the user 8 makes
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query v to 6591 and query w to 6592 then it holds that v Q w 5 eh.
(Otherwise, we cannot have xh 5 (Q j9:vj951xj9) Q (Q j9:wj951xj9).)

Thus, if v is possible for ( j, 1) (respectively, ( j, 2)) then, for every h [ [n],
the vector v is possible for (h, 1) (respectively, (h, 2)) and therefore v Q eh is
possible for (h, 2) (respectively, (h, 1)) and also for ( j, 2) (respectively, ( j, 1)).
Thus, each query at Hamming distance 1 from v is possible for ( j, 2) (respec-
tively, ( j, 1)). The claim follows. e

We note that, in fact, the upper bound of Section 3.1 can be improved so that
n 2 1 bits (instead of n) are sent to each server. This is done by choosing a
random subset S of even cardinality with uniform distribution among these
subsets. Send S to 6591, and S Q i to 6592. The subset S Q i is uniformly
distributed among odd cardinality subsets. To specify even (or odd) sets, n 2 1
bits suffice.
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