
Single-Database Private Information Retrieval
with Constant Communication Rate

Craig Gentry and Zulfikar Ramzan

DoCoMo Communications Laboratories USA, Inc.
{cgentry, ramzan}@docomolabs-usa.com

Abstract. We present a single-database private information retrieval
(PIR) scheme with communication complexity O(k+d), where k ≥ log n
is a security parameter that depends on the database size n and d is the
bit-length of the retrieved database block. This communication complex-
ity is better asymptotically than previous single-database PIR schemes.
The scheme also gives improved performance for practical parameter set-
tings whether the user is retrieving a single bit or very large blocks. For
large blocks, our scheme achieves a constant “rate” (e.g., 0.2), even when
the user-side communication is very low (e.g., two 1024-bit numbers).
Our scheme and security analysis is presented using general groups with
hidden smooth subgroups; the scheme can be instantiated using compos-
ite moduli, in which case the security of our scheme is based on a simple
variant of the “Φ-hiding” assumption by Cachin, Micali and Stadler [2].

1 Introduction

Problem Statement and Background. Private Information Retrieval (PIR)
schemes allow a user to retrieve the ith bit of an n-bit database, without revealing
to the database the value of i. The “trivial” solution is for the user to retrieve the
entire database, but this approach may incur enormous communication costs. A
good PIR scheme, on the other hand, should have considerably lower (certainly
sub-linear) communication complexity. Private Block Retrieval (PBR) is a nat-
ural and more practical extension of PIR in which, instead of retrieving only a
single bit, the user retrieves a d-bit block that begins at index i.

PIR and PBR have been studied extensively; here, we only mention the work
most relevant to us. The notion of PIR was introduced by Chor et al. [5], who
focused on the information-theoretic case, where one requires that the user’s
query give absolutely no information about i. They proved that if only a single
database is used, then n bits must be communicated. On the other hand, if the
database is replicated in k servers, and if the user is allowed to give a separate
query to each server, one can construct a PIR scheme with k user queries each
being O(n1/k)-bits and k single-bit server responses.1 However, to ensure user
privacy in the multi-server setting, the servers must be trusted not to collude.

1 Currently, the lowest asymptotic total communication complexity for information-
theoretic PIR is O(nlog log k/k log k) [1].

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 803–815, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

804 C. Gentry and Z. Ramzan

Chor et al. also introduced PBR. They showed that any PIR scheme with
αk(n)-bit queries and βk(n)-bit responses can be converted into a PBR scheme
for d-bit blocks with αk(n)-bit queries and dβk(n)-bit responses. This means
that, for a constant k ≥ 2 of servers, the above information-theoretic PIR
scheme can be converted into a PBR scheme with an asymptotically constant
“rate” of 1/k – i.e., the ratio of bits retrieved (i.e., d) versus total communi-
cation complexity (i.e., kd + O(n1/k)) tends towards 1/k as n and d increase
appropriately. Increasing the rate to 1 in the information-theoretic setting seems
difficult.

Chor and Gilboa studied the problem of whether one could achieve better
communication complexity for multi-server PIR by using computational assump-
tions [4]. Subsequently, Kushilevitz and Ostrovsky showed that one can achieve
single database PIR under the Quadratic Residuosity assumption with commu-
nication 2O

√
log n log lm , where lm is the bit length of a composite modulus m.

Like all current single-database PIR schemes, the server needs Ω(n) computa-
tion to generate a query response. Since the number field sieve [10] can factor an
lm-bit composite number in time 2O(1)l1/3

m (log lm)2/3
(and hence solve quadratic

residuosity), and since it seems reasonable that the server should need at least as
much computation to break user privacy as to generate a response, one should
set lm = Ω(log3−o(1) n) to ensure adequate security.

Cachin, Micali, and Stadler [2] constructed the first single-database PIR
scheme with poly-logarithmic communication complexity (about O(log8 n) for
their suggested parameters), addressing an open problem left by Kushilevitz
and Ostrovsky. The security of their scheme (CMS) is based on the “Φ-hiding”
assumption – roughly, that is hard to distinguish which of two primes divides
φ(m) for composite modulus m. Essentially, the scheme works as follows. Each
index j ∈ [1, n] is mapped to a distinct prime pj . To recover bit bi from database
B = b1 · · · bn, the user sends a composite (hard-to-factor) modulus m such that
pi divides φ(m) and a generator x ∈ Z

∗
m with order divisible by pi. The server

sends back r = xP (modm) for P =
∏

j p
bj

j . The user concludes that bi = 1
if r is a p-residue modulo m; otherwise, bi = 0. The communication complex-
ity of (this simplified version of) CMS is 3lm to recover 1 database bit. Again,
lm = Ω(log3−o(1) n) for adequate security, though [2] recommends an even larger
value of lm (O(log8 n)).

Recently, Lipmaa [11] gave a PBR scheme with stated Θ(lm · log2 n+d · log n)
communication complexity for d-bit blocks, where again lm = Ω(log3−o(1) n).
Thus, Lipmaa’s scheme has a better “rate” – namely 1/(log n) – than CMS
for large blocks. In fact, as we describe in the full version of this paper, one
can apply Chor et al.’s [5] abovementioned conversion from PIR to PBR to
Lipmaa’s scheme to get a PBR scheme with rate arbitrarily close to 1. However,
for Lipmaa’s scheme to achieve a good rate in practice, n and d must be quite
large (on the order of gigabits and megabits, respectively) before they begin to
offset the large one-time cost represented by the lm · log2 n term.

Our Results. We present a single-database PBR scheme that has, to the
best of our knowledge, the lowest asymptotic communication complexity of

Single-Database Private Information Retrieval 805

Θ(k + d). The scheme is somewhat similar to CMS [2], but the scheme is de-
scribed (and its security proven) with respect to general groups that have “hid-
den subgroups” of smooth order. Our scheme also transforms the CMS tech-
nique to maximize the number of database bits the user can recover from a
short server response. The essential technique is to associate each block of bits
with a distinct small prime (or power of a small prime), rather than allocat-
ing a (largish) prime to each bit. The database’s response protocol uses the
Chinese Remainder Theorem to encode each database chunk modulo its asso-
ciated prime power. To decode, the user computes a discrete logarithm, but in
a subgroup whose order is smooth – i.e., a product of small primes. We can
carry out this step efficiently in a (somewhat surprising) constructive applica-
tion of the Pohlig-Hellman method [14]. In the full version of the paper, we
show that our scheme is secure against generic attacks even when k = O(log n)
and when the rate of the scheme approaches 1. We provide an oblivious trans-
fer scheme with similar performance characteristics by using the Naor-Pinkas
transformation[13].

We describe an instantiation of our scheme that, like CMS, uses a (e.g.,
1024-bit) composite modulus m. In CMS as described above, a user sends a
2lm-bit query and gets back a lm-bit response that allows the user to retrieve
a single bit; in our scheme, with the same communication complexity, the user
can recover c · lm bits for c < 1/4; this is a fairly high constant “rate” – i.e.,
the communication of the PBR scheme is only a small constant times more
than the communication needed to transmit the block with no privacy at all.
This instantiation has the best known asymptotic communication complexity
Θ(log3−o(1) n, d) in terms of n and d among single-database PIR schemes and
has the lowest complexity for most practical parameters (until it is overtaken
by the modified version of Lipmaa’s scheme with rate approaching 1). However,
this instantiation does not perform as well as our scheme could perform accord-
ing to the generic group model, since it is vulnerable to the number field sieve
unless k = Ω(log3−o(1) n) and to Coppersmith’s attack [6, 7] when c ≥ 1/4. We
speculate on approaches to instantiating the scheme that may achieve better
performance.

2 Preliminaries

In the sequel, n denotes the database size in bits. If S is a set of elements, and D

is a sampleable probability distribution on S, we let s
D←− S denote the process

of picking an element s from S according to distribution D. Throughout, π will
denote a prime power. We say that an integer m Φ-hides π if π divides φ(m).

If A is an algorithm, we let A(·, . . . , ·) denote that A may take one or more
inputs. By Pr[y ← A(x) : b(y)], we denote the probability that b(y) is true after
y was generated by A on input x. By A(B)(·), we denote an algorithm that can
make oracle queries to B. For a, b ∈ Z with a ≤ b, let [a, b] denote the set of
integers between a and b inclusive. Let [b] denote [1, b].

Now, we define polylogarithmic private information retrieval as in [2].

806 C. Gentry and Z. Ramzan

Definition 1 (Polylogarithmic CPIR). Let Q(·, ·, ·), D(·, ·, ·) and R(·, ·, ·, ·, ·)
be polynomial-time algorithms. We say that (Q,D,R) is a fully polylogarithmic
CPIR scheme if there exists constants a, b, c, d > 0 such that:

– (Correctness) ∀n ∈ N, ∀B ∈ {0, 1}n, ∀i ∈ [1, n], and ∀k′ ∈ N,

Pr[(q, s)
R←− Q(n, i, 1k′

); r
R←− D(B, q, 1k′

) : R(n, i, (q, s), r, 1k′
) = Bi] > 1 − 2−ak′

.

– (User Privacy) ∀n ∈ N, ∀i, j ∈ [1, n], ∀k′ ∈ N such that 2k′
> nb, and

∀2ck′
-gate circuits A,∣∣∣Pr[(q, s)

R←− Q(n, i, 1k′
) : A(n, q, 1k′

) = 1] − Pr[(q, s)
R←− Q(n, j, 1k′

) : A(n, q, 1k)

= 1]
∣∣∣ < 2−dk′

.

Here a, b, c, d are the fundamental constants of the CPIR scheme; B is the con-
tents of the database, D is the database’s response algorithm; Q is the user’s
query-generating algorithm; R is the user’s response reconstruction algorithm;
q is the user’s actual query; s is the user’s secret (associated with q); r is the
database’s response; and k′ is a security parameter.

Notice that we have mentioned two security parameters – namely, k′ > b log n
above, and k in the Introduction (which may be, e.g., the bit-length of a com-
posite modulus). The two parameters are related by k = O(f(k′)) for some
polynomial f . For example, for the modulus-based instantiation, we may have
k = max{1024, Ck′3} for some constant C to ensure that no (2ck′

= poly(n))-
gate circuits A (e.g., a circuit running NFS) can break user privacy with proba-
bility 1/poly(n). Against generic attacks, k = k′ suffices to ensure user privacy.
In short, the security parameter k′ is useful because it ensures (above) that no
algorithms A that are polynomial in n can break user privacy, while allowing
us to separately define the security parameter k in the “common parlance” of
a particular instantiation. (For example, for cryptosystems related to factoring,
the security parameter k is typically defined as the modulus bit-length, even
though such schemes have only exp(O(1)k1/3(log k)2/3) security against NFS.)

3 Our General Private Block Retrieval Scheme

We now describe our PIR scheme using general groups with hidden smooth-
order subgroups; afterwards, once the essential strategy of our scheme has been
laid out, we will describe the computational assumption on which user privacy
is based (which, by then, will seem relatively natural).

First, we give a high-level description of the scheme. The scheme has some
public parameters known to all users, including the database size n, an integer
parameter �, a set of t = �n/�� (small) distinct prime numbers {p1, . . . , pt}, and a
set S = {π1, . . . , πt} of prime powers πi = pci

i , where ci = ��/ log2 pi� (i.e., so that
pci

i ≥ 2�). The server partitions the database B into t blocks B = C1‖C2‖ · · · ‖Ct

of size at most �. In our scheme, the user will retrieve the entire �-bit block that

Single-Database Private Information Retrieval 807

contains its desired bit. Each block Ci is associated to a prime power πi. Using
the Chinese Remainder Theorem, the server can express the entire database B
as an integer e that satisfies e ≡ Ci(modπi), where the �-bit block Ci is treated
as an integer satisfying 0 ≤ Ci < 2� ≤ πi. Notice that to retrieve Ci, it suffices
to retrieve e(modπi).

Roughly speaking, to query the value of e(modπi), the user generates an
appropriate cyclic group G = 〈g〉 with order |G| = qπi for some suitable integer
q. It sends (G, g) to the server and keeps q private. Notice that G contains a
subgroup H of order πi, and that h = gq is a generator of H. (For technical
reasons, in the actual scheme below, 〈g〉 may be a proper subgroup of G.)

The server responds with ge = ge ∈ G. The user then obtains e(modπi) by
setting he = gq

e ∈ H and performing a (tractable) discrete logarithm compu-
tation: logh he ≡ e(modπi). This discrete logarithm computation, which occurs
entirely in the subgroup H of order pci

i , can actually be quite efficient if pi is
small. Correctness is demonstrated below. Now, we give a more precise descrip-
tion of the general scheme.

For some parameter choices, the user can select G such that |G| is divisible by
multiple πi’s. In this case, the user can recover multiple �-bit blocks (note that
this does not contradict the security requirements for PIR schemes). However,
for simplicity, we focus on the single-block case.

Specification of the Scheme. Let B be an n-bit database. Let f1(x, y) and
f2(x, y) be functions. Let k′ = Θ(log n) and k = f2(k′, log n) be security pa-
rameters. Set � = �f1(k, log n)
 and t = �n/��. For primes P = {p1, . . . , pt},
set πi = pci

i for ci = ��/(log2 pi)�, and S = {πi}. Let Gi be the set of cyclic
groups whose order is a number in [2k, 2k+1] that is divisible by πi. Let Di be
a distribution under which elements of Gi can be efficiently sampled. We as-
sume that for G

Di←− Gi, each g ∈ G has a unique “normal” representation. (We
will discuss the security considerations involved in choosing k′, f1, f2 and {Di}
later.)
Query Generation: Given input (n, f1, f2,S, {Di}, 1k′

), the user determines
the index i of its desired block, and generates a query for block Ci as follows:

1. Generate G
Di←− Gi and a uniformly random “quasi-generator” g of G – i.e.,

g is a random element of G such that GCD(|G : 〈g〉|,∏t
j=1 pj) = 1;

2. Output query (G, g); keep q = |〈g〉|/πi private; store h = gq for future use.

Database Response Generation: Given the input (B, f1, f2,S, G, g, 1k′
), the

server responds to the user’s query as follows:

1. Express each �-bit database block Cj (after appending zeros to Ct if needed)
as a number in [0, 2� − 1] in the obvious fashion;

2. Set e to be the smallest positive integer such that e ≡ Cj (mod πj) for all j;
3. Output the response ge = ge ∈ G.

Note that steps 1 and 2 are independent of the query, and can be precomputed.
Response Retrieval: Given the input (πi, ge, G, q, h, 1k′

), the user retrieves
block Ci as follows:

808 C. Gentry and Z. Ramzan

1. Compute he = gq
e ;

2. Compute Ci as the discrete logarithm logh he within the subgroup H ⊂ G
of order πi = pci

i using Pohlig-Hellman.

Notice that we need pi to be small (unlike CMS) for the discrete logarithm
computation using Pohlig-Hellman to be efficient. Fortunately, as we show below,
the Prime Number Theorem will help us ensure that max{pi} is small, and that
response retrieval is efficient.

Correctness of Response Retrieval. Let eπi
∈ [0, πi − 1] satisfy eπi

≡
e(modπi); observe that eπi

is equal to Ci. So, it suffices to show that eπi
is the

discrete logarithm of he with respect to base h. Write e = eπi
+ πi ·E, for some

E ∈ Z. Now:

he = g|〈g〉|/πi
e = ge|〈g〉|/πi = geπi

|〈g〉|/πi = heπi .

Remark 1. The above scheme has some similarities to CMS, particularly if one
instantiates the group G using a composite modulus m. However, for recover-
ing blocks of data (a more realistic scenario anyway), our scheme is much more
communication efficient; the server’s (log m)-bit response uses the Chinese Re-
mainder Theorem to give the user � bits instead of 1 bit. Later, we will see that
� can equal (log m)/C for reasonably small constant C.

Choosing the Set P Wisely. Recall that P = {p1, . . . , pt} is the set of primes
that the scheme uses; let pt be the largest. As mentioned above, pt must be
reasonably small to ensure efficient response retrieval. Also, since we must have
log |G| ≥ max{πi} ≥ pt, the size of pt also affects communication complexity.
The following result of Rosser and Schoenfeld related to the Prime Number
Theorem [15] gives an upper bound on pt.

Theorem 1 (Rosser and Schoenfeld). For t > 20, let P = {p1, . . . , pt} be
the first t primes, with pt the largest. Then, pt < t(ln t + ln ln t − 1/2).

For technical reasons in the security proof, we need p1 ≥ 2t. Nonetheless, in
terms of n and �, we easily get that pt < 16(n/�) log2(n/�) suffices. For the
performance analysis below, we assume for convenience that � is chosen so that
2� ≥ pt.

Computational Complexity. The dominant component of the querier’s com-
putation is in computing the discrete logarithm of he for base h. This step
involves solving ci discrete logarithm sub-problems in groups of order pi for
pci

i ∈ [2�, 2�pt]. Assuming that each sub-problem involves
√

pi group operations
– e.g., using baby-step giant-step – the entire discrete logarithm problem requires
about ci

√
pi group operations. Considering the curve yx = 2�pt for y ≤ pt, we see

that x
√

y = (
√

y/ log y)(x log y) = (
√

y/ log y)(log(2�pt)) takes its maximum at
y = pt. As a very rough upper bound,

√
pt/ log pt < 2

√
n/� and log(2�pt) < 2�,

so the querier’s computation is no more than 4
√

n� group operations, where �
must be less than log |G| (which will be polylogarithmic in n). This does not seem

Single-Database Private Information Retrieval 809

unreasonable given that the database’s computation in single-database PIR is
unavoidably linear in n (since otherwise the database has not included every
database bit in the computation, which would imply that it knows at least one
bit that the user did not request).

The dominant component of the database’s computation is in computing
ge mod m. This requires (roughly) log e group operations. Since e is a number
modulo

∏t
i=1 πi, we have log e ≤ ∑t

i=1 log πi. Since, pi ≤ 2� for all i, πi = pci
i <

22� for all ci = ��/(log pi)�. Thus, we have
∑t

i=1 log πi < 2�t = 2��n/�� – i.e.,
the database needs Θ(n) group operations, which is about the best we can hope
for in single-database PIR.

Communication Complexity. Suppose that the group G and any element of
G can be described in lG = Ω(log |G|) bits. (For example, the group generated
by g modulo m for composite modulus m can be described in O(log φ(m)) bits.)
Then, the total communication complexity is 3lG. The size of lG depends, in
part, on security considerations pertaining to the particular instantiation of our
general scheme; so, we obviously cannot give a general upper bound for lG. Here,
we merely note that, in terms of the scheme’s correctness, the only constraint
on |G| is that it be divisible by (and, hence, at least as large as) πi. Above, we
saw that when 2� > pt, πi < 22� for all i. Thus, if we set � = �log pt�, then
max{log πi} < 2� < 4 log pt < 8 log n. Thus, the mechanics of the scheme do not
prevent log |G| = Θ(log n) or lG = Θ(log n).

We stress that lG may need to be larger to ensure user privacy. However, in
our analysis of the scheme’s security in the generic group model in Section 6,
we find that generic attacks do not prevent our scheme with lG = Θ(log n) from
having the security required by CMS’s definition of polylogarithmic PIR; any
attack that forces lG to be larger must exploit the encoding of the group or its
elements.

Private Block Retrieval. In our scheme, the user already recovers �-bit
blocks. This scheme can be converted, using the general transformation described
in [5], into a scheme that recovers d �-bit blocks with total communication com-
plexity (2+d)lG, as follows. The user generates a query (G, g) for the �-bit block
beginning with index i. To allow the user to retrieve the �-bit block with index
i + x� for x ∈ [0, d − 1], the server temporarily relabels the database, giving the
database bit with index j (for j ∈ [n]) the “temporary index” j − x�(modn);
it then responds to the user’s query (G, g) using the temporary indices, rather
than the actual ones. The “rate” of our scheme – i.e., the ratio of the num-
ber of bits that the user retrieves over the total communication complexity – is
d�/(d + 2)lG, which approaches �/lG as d increases. We will see that our general
scheme is secure against generic group attacks for �/lG arbitrarily close to 1.
When we instantiate the scheme using Φ-hiding and a composite modulus m in
the natural way, however, an attack by Coppersmith [7] forces �/lG < 1/4.

Oblivious Transfer. Naor and Pinkas [13] describe how to construct 1-out-
of-n OT scheme from a PIR scheme for n-bit databases and log n invocations
of a 1-out-of-2 OT scheme. Since the transformation is generic, we omit the

810 C. Gentry and Z. Ramzan

details, except to mention that 1-out-of-2 OT can be accomplished fairly effi-
ciently through the ElGamal encryption scheme. If k′′ is the bit-length of group
elements in the ElGamal group (e.g., k′′ = 160), the transformation only adds
6k′′(log n) bits to our PIR scheme, regardless of the block size d.

4 Our General Computational Assumption

In our PIR scheme, the server is given not only a description of G (and gen-
erator g), but also a promise that one of the prime powers in S – i.e., the
one associated to the user’s target block index i – actually divides |G|. For
our PIR scheme to be user-private, the server should be unable to distinguish
which of π0 or π1 divides |G| – or, equivalently, to distinguish whether the
“smooth” subgroup H hidden inside G has order π0 or π1. So, our computa-
tional assumption is roughly that, given (π0, π1, G) and the promise that πb

divides |G| for one b ∈ {0, 1}, it is computationally hard (if G is generated
appropriately) to distinguish the value of b, even if π0 and π1 are not “much
smaller” than |G|, and even if π0 and π1 are “special” integers such as pow-
ers of small primes. We formalize this assumption in terms of the following
problem.

Definition 2 (The Decision Subgroup Problem). Let � be an integer and
k a parameter. Let π0, π1 ∈ [2�, 22� − 1] be distinct integers. Let Gi be the set of
cyclic groups whose order is a number in [2k, 2k+1] that is divisible by πi. Let
Di be a distribution on Gi. We say that algorithm A has advantage ε against the
(�, k, π0, π1,D0,D1)-Decision Subgroup Problem if

∣∣∣∣Pr
[
b

R←− {0, 1}, Gb
Db←−− Gb : A(Gb, �, k, π0, π1, {Di}, {Gi}) = b

]
− 1

2

∣∣∣∣ ≥ ε.

A solves the problem if it guesses b correctly.

In our PIR scheme, we want the above problem to be hard for each pair πi0 , πi1 ∈
S, a set of prime powers. Thus, we state our computational assmption as
follows.

Definition 3 (The (Extended) Decision Subgroup Assumption). Let
f1(x, y) and f2(x, y) be functions. Let S be a set of t ≥ 2 powers of distinct
primes. The (f1, f2,S)-Extended Decision Subgroup Assumption is that there
exist constants b, c, d > 0 such that, for all n ∈ N and all k′ > b log n with
� = �f1(k′, log n)
 and k = f2(k′, log n), there exist efficiently sampleable dis-
tributions {Di : i ∈ [t]} such that, for all i0, i1 ∈ [t], all circuits A with
(2ck′

+ t · f2(k′, log n) · C{Di}) gates have advantage at most 2−dk′
against the

(�, k, πi0 , πi1 ,Di0 ,Di1)-Decision SubgroupProblem,where C{Di} is an upper bound
on the circuit complexity of a group multiplication in groups drawn according to
Di for i ∈ [t].

Single-Database Private Information Retrieval 811

5 Security Proof for Our PIR Scheme

We base the security of our scheme on the extended decision subgroup assump-
tion. The proof is done in the standard model.

Theorem 2. Suppose that a circuit A with 2ck′
gates can break user privacy

with advantage 2−dk′
. Then, there is an A′ with O(2ck′

+ t · f2(k′, log n) ·C{Di})
gates that solves the extended decision subgroup problem with advantage 1

52−dk′
.

Proof. Suppose that the privacy condition fails for (Q,D,R). Then for all b, c, d >
0, there exist n, k′ > b log n, B ∈ {0, 1}n, block indices i �= j, and a circuit A
with 2ck′

gates, such that |αi,0t − αj,0t | ≥ 2−dk′
, where:

αi,v � Pr[((G, g), q) ← Q(i, T) : A((G, g
∏ t

x=1 pvx
x), T) = 1],

αj,v � Pr[((G, g), q) ← Q(j, T) : A((G, g
∏ t

x=1 pvx
x), T) = 1],

where v is a t-element integer vector and 0t is the zero vector, and where we
define T = (n, f1, f2,S, {Di}, 1k′

) for convenience. We now define two probabil-
ities representing A’s output when g is chosen uniformly at random from G (as
opposed to being a random quasi-generator of G):

βi,v � Pr[G Di←− Gi; g
R←− G : A((G, g

∏ t
x=1 pvx

x), T) = 1],

βj,v � Pr[G
Dj←−− Gj ; g

R←− G : A((G, g
∏ t

x=1 pvx
x), T) = 1].

Let ex be the unit vector in dimension x. If pvx
x is greater than 2f2(k,log n)+1 (the

maximum possible group order), then αi,v = αi,v−ex
since the distributions of

the element given to A are identical. Let v0 be s.t. εαα = |αi,v0−αj,v0 | is maximal
and s.t. p

v0,x
x ≤ 2f2(k,log n)+1 for all x ∈ [t]. Set εββ � |βi,v0 − βj,v0 |. Then, A′

can solve the decision subgroup problem instance for prime powers πi, πj with
advantage εββ simply by generating random g ∈ G and passing (G, g

∏ t
x=1 p

v0,x
x)

to A, and then outputting “i” if A outputs 1 and outputting “j” otherwise.
Let w ≥ v denote ∀x ∈ [t], wx ≥ vx. We express βi,v in terms of {αi,w : w ≥ v}

by noting that choosing an element of G uniformly at random is equivalent to
choosing a uniformly random quasi-generator and then exponentiating it by∏t

x=1 pwx−vx
x with probability (

∏t
x=1

px−1
px

)/(
∏t

x=1 pwx−vx
x). We obtain:

βi,v =

(
t∏

x=1

px − 1
px

)⎛
⎝∑

w≥v

αi,w/(
t∏

x=1

pwx−vx
x)

⎞
⎠ .

Since p1 > 2t,
∑

w≥v0
αi,w/(

∏t
x=1 p

wx−v0,x
x) < εαα

∏t
x=1

px

px−1 < εααet/(p1−1) <

εαα
√

e. By the triangle inequality, |βi,v0−βj,v0 | ≥ (εαα−(
√

e−1)εαα)(
∏t

x=1
px−1

px
)

≥ εαα(2 − √
e)/(

√
e) > εαα/5. So, A has εββ ≥ εαα/5 ≥ (1/5)2−dk′

advantage
against the Decision Subgroup Problem for (πi, πj). The circuit complexity of
A′ is basically that of A, plus that needed to compute g

∏ t
x=1 p

v0,x
x . ��

812 C. Gentry and Z. Ramzan

6 Lessons from the Generic Group Model

To gain confidence in our computational assumption, we can consider the Deci-
sion Subgroup Problem’s vulnerability to generic attacks. The following theorem,
which is quite similar to a result by Damgard and Koprowski [8] on root extrac-
tion in generic groups, roughly states that, as long as the distributions D0 and D1

each tend to output a group whose order is divisible by a large evenly-distributed
prime, the Decision Subgroup Problem is hard against generic attacks. In other
words, the security of the Decisional Subgroup Problem against generic attacks
depends less on the value of |H| (the order of the subgroup hidden in G) than
it does on the distribution of |G : H|.
Theorem 3. Let A be a generic algorithm for solving the Decision Subgroup
Problem on (�, k, π0, π1,D0,D1) that makes at most m oracle queries. Let S be a
set of bit strings of cardinality at least 22�. For group Gi, let θ(Gi) be the largest
prime divisor of |Gi| that does not divide π0π1. Let α(Di) = maxq{Pr[θ(Gi) =

q | Gi
Di←−− Gi]}. Let β(Di,M) be the probability that θ(Gi) ≤ M for distri-

bution Di; let β(D,M) = max{β(D0,M), β(D1,M)}. Now, randomly choose
b

R←− {0, 1}, Gb
Db←−− Gb, and a random mapping σb : Gb → S. Then,∣∣∣∣Pr

[
A(O)(S, �, k, π0, π1,D0,D1) = b

]
− 1

2

∣∣∣∣ ≤ m2

(
mα(D) + β(D,M) +

1
M

)
/2,

where the probability is over the random bits of the oracle and A.

Proof. See full version of this paper.

Let’s choose parameters to give Theorem 3 meaning. Suppose 2k/max{πi} ≥
2k′

, and define Di to choose |Gi| as follows: choose a uniformly random prime q
from [2k′

, 2k′+1] \ P (where P is the set of primes dividing π0π1) and an integer
d from the set of integers in the interval [2k/qπi, 2k+1/qπi] whose prime divisors
are all less than q; set |Gi| = πiqd. Then, by the Prime Number Theorem,
α(D) ≈ 2−k′+log k′

ln 2. If we set M = 2k′
, then β(D,M) = 0. Once we insert

these values into Theorem 3, we find that a generic algorithm for solving the
Decision Subgroup Problem for such Di takes Ω(2(k′−log k′)/3) oracle queries.
Thus, when 2k/max{πi} ≥ 2k′

, the Extended Decision Subgroup Assumption is
absolutely true in the generic group model.

Now, let’s consider how well our scheme could perform, if generic attacks
were the only security concern. First, consider the rate of our scheme. If we
set k = �k′ + � + log pt�, then 2k/max{πi} ≥ 2k′

as required above, while the
rate f1(k′, log n)/f2(k′, log n) = k/� can be arbitrarily close to 1. Also, since k′ =
b log n, log pt = O(log n), and � can be chosen to be O(log n), k can also be purely
logarithmic in n. Thus, generic attacks do not prevent our scheme from achieving
an optimal rate (approaching 1) for blocks, and minimal communication O(log n)
for private bit retrieval.

Single-Database Private Information Retrieval 813

7 Instantiating Groups with Hidden Smooth Subgroups

Up to this point, we have discussed our PIR scheme and its performance and se-
curity properties in a general way, without discussing in detail how to instantiate
the group G securely. One way to instantiate G is using a composite modulus,
as in [2]. For example, to construct a modulus m that Φ-hides π, one may choose
a random “semi-safe” prime Q0 = 2q0π +1 for prime q0 and a random semi-safe
prime Q1 = 2dq1 + 1 for prime q1 and d chosen uniformly from a large inter-
val, and set m = Q0Q1. Then, m should have good uniformity properties, even
modulo the primes dividing π.

Cachin, Micali and Stadler [2] note that when a divisor π ≥ m1/4 of (Q0 − 1)
is known, however, it is easy to decide whether π divides φ(m); in particular,
given m = Q0Q1 and divisor π ≥ m1/4 of (Q0 − 1), one can factor m using
Coppersmith’s method [7], [6] – a lattice-based attack. An abundance of work
relating to Coppersmith’s method has appeared in the literature, the most recent
being May’s Eurocrypt 2005 paper [12], which provides a unifying framework for
most of the results. His Corollary 14 applies to the Φ-hiding situation; it states:

Corollary 14 (A. May). Let f(x) ∈ Z[X] be a polynomial of degree δ. Let m
be a composite number of unknown factorization with divisor Q0 ≥ mβ. Then,
we can find all points x0 ∈ Z satisfying f(x0) = Q0 in time polynomial in log m

and δ if |x0| ≤ mβ2
.

Setting β = 1/2 and f(x) = πx + 1, the algorithm will give us the divisor Q0 =
πc + 1 in polynomial time, since c ≈ Q0/π < m1/4 for π > m1/4. As May notes,
this |x0| ≤ m1/4 bound occurs frequently in the literature on Coppersmith’s
method. Since the algorithm works well (in polynomial time) when π > m1/4,
one might expect that the algorithm’s performance declines only gradually –
e.g., so that for π > m1/5, the algorithm (while not polynomial-time) would
be only slightly super-polynomial, perhaps because of the inefficiency of lattice
reduction. However, this is not true; when (log m)/(log π) is larger than 4, the
target vector (i.e., the one that would help us factor m) is not even the shortest
vector in the lattice; thus, even perfect lattice reduction algorithms would not,
by themselves, make the attack work.

These considerations give us confidence that, as long as (log m)/(log π) > 4
(perhaps by a “comfortable” margin), then the Φ-hiding assumption, as out-
lined above, is hard. Thus, it seems plausible that the bit-length of m only
needs to be a constant factor greater than log π. This allows our PIR scheme
to achieve constant rate when instantiated with groups modulo composite num-
bers. A drawback of using composite moduli is that, as mentioned before, we need
log m = Ω(log3−o(1) n), due to the number field sieve [10]. This makes our PIR
scheme somewhat communication-inefficient for short block sizes d, even though
it is most efficient among the single-database PIR schemes that currently exist.

Of course, it would be preferable to instantiate our scheme using groups for
which the number field sieve is inapplicable if this could be done securely. For
example, one might try elliptic curve groups. However, algorithms exist to find
the orders of elliptic curves over finite fields; when we try using the compositum of

814 C. Gentry and Z. Ramzan

finite fields, we seem to be reverting back to a factorization problem. Class groups
are another interesting alternative, since currently the best known algorithms for
attacking class groups (e.g., determining their order) have quadratic-sieve-type
complexity. Unfortunately, in our scheme, the user generating the group must
know its order for response retrieval; currently, there are no efficient algorithms
that would allow the user to generate a class group with known partially-smooth
order, as required by our scheme.

8 Conclusion and Open Problems

We described single-database computational block retrieval schemes based on
the decision subgroup problem with communication complexity O(k +d), where
d is the size of the block to be retrieved and k is the security parameter. Asymp-
totically, this is about as good as one might expect since there is only an additive
communication overhead of the security parameter k. Indeed, our scheme has
better asymptotic performance compared to previous schemes.

We leave it as an open problem to construct an instantiation of our scheme
that achieves rate arbitrarily close to 1, while circumventing Coppersmith’s at-
tack. Clearly, based on our analysis of the Decision Subgroup Problem in the
generic group model, any attack that prevents the scheme from achieving rate
close to 1 must exploit the encoding of the elements.

Acknowledgments. We thank Phil Mackenzie, David Woodruff, Helger Lip-
maa, Yuval Ishai, and the anonymous referees for fruitful comments.

References

[1] A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond. Breaking the O(n1/(2k−1))
Barrier for Information-Theoretic Private Information Retrieval, FOCS 2002.

[2] C. Cachin, S. Micali, M. Stadler, Computational Private Information Retrieval
with Polylogarithmic Communication, Eurocrypt 1999.

[3] Y. Chang. Single-Database Private Information Retreival with Logarithmic Com-
munication, ACISP 2004.

[4] B. Chor and N. Gilboa, Comput. Private Information Retrieval, STOC 1997.

[5] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private Information Re-
trieval, Journal of the ACM, 45, 1998. Earlier version in FOCS 95.

[6] D. Coppersmith, Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known, Eurocrypt 1996.

[7] D. Coppersmith, Finding a Small Root of a Univ. Mod. Equation, Eurocrypt 1996.

[8] I. Damgard and M. Koprowski, Generic Lower Bounds for Root Extraction and
Signature Schems in General Groups, Eurocrypt 2002.

[9] E. Kushilevits and R. Ostrovsky, Replication is not needed: single database, com-
putationally private information Retrieval. FOCS 1997.

[10] A.K. Lenstra and H.W. Lenstra, Jr., (eds.), The Development of the Number Field
Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, 1995.

Single-Database Private Information Retrieval 815

[11] H. Lipmaa, An Oblivious Transfer Protocol with Log-Squared Communication.
Cryptology ePrint Archive, 2004/063.

[12] A. May, A Tool Kit for Finding Small Roots of Bivariate Polynomials over the
Integers, Eurocrypt 2005.

[13] M. Naor and B. Pinkas, Obl. Transfer and Polynomial Evaluation, STOC 1999.
[14] S.C. Pohlig and M. Hellman. An Improved Algorithm for Computing Logarithms

Over GF(p) and its Crypt. Significance, IEEE Trans. Inf. Th. IT-24 (1978).
[15] J.B. Rosser and L. Schoenfeld, Sharper Bounds for Chebyshev Functions θ(x) and

ψ(x), Math. Comput. 29, 243-269, 1975.
[16] J.P. Stern, A New and Efficient All or Nothing Disclosure of Secrets Protocol,

Asiacrypt 1998.

	Introduction
	Preliminaries
	Our General Private Block Retrieval Scheme
	Our General Computational Assumption
	Security Proof for Our PIR Scheme
	Lessons from the Generic Group Model
	Instantiating Groups with Hidden Smooth Subgroups
	Conclusion and Open Problems

