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Abstract

We show that any 1-round 2-server Private Information Retrieval Protocol where the answers
are 1-bit long must ask questions that are at least n− 2 bits long, which is nearly equal to the
known n−1 upper bound. This improves upon the approximately 0.25n lower bound of Kerenidis
and de Wolf while avoiding their use of quantum techniques.

1 Introduction

Following prior papers on Private Information Retrieval Protocols ([1, 3, 4, 8]) we model a database
as an n-bit string x = x1 . . . xn. Suppose that the user wants to know xi but does not want the
database to obtain any information about i. We do not impose any computational limits on the
database, though some researchers have considered such limits [3, 8]. If there is only one copy of
the database then the only way to ensure privacy is to request the entire string x, which is n bits
long. If there are k ≥ 2 copies of the database that do not communicate with each other then the
number of bits can be reduced. We refer to a copy of the database as a server.

Many upper bounds have been obtained. These include

1. If there are two servers then O(n1/3) bits of communication suffice [4].

2. If there are k servers then O(n1/(2k−1)) bits of communication suffice [1, 2].

3. If there are k servers then nO(log log k/k log k) bits of communication suffice [2].

Lower bounds on Private Information Retrieval Protocols have been hard to obtain. Lower
bounds are only known for 2-server protocols with one round and restrictions on the number of
bits returned by the servers. Even then, prior to Kerenidis and de Wolf [7] all lower bounds had
restrictions on the type of answers the servers could return.

We assume throughout the paper that the queries sent to each server are the same length.
Consider the case that the answers from the database are linear, i.e., they are an XOR of some
subset of the bits of the database. Goldreich, Karloff, Schulman, and Trevisan [6] show that Ω( n

2a )
bits must be sent to each server where a is the number of bits each server could send back to the
user. The lower bound also holds for randomized protocols with a small probability of error. The
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multiplicative constant depends on the probability of error. In the special case of a = 1 where
the user simply XORs the bits he gets, Chor, Kushilevitz, Goldreich and Sudan [4] show that any
protocol would require n − 1 bits sent to each server. They also give a matching upper bound in
this model.

In the case that answers are not restricted to be linear, nontrivial lower bounds have only
recently been discovered. Kerenidis and de Wolf [7] show that at least Ω(n/26a) bits must be sent
to each server. In the case a = 1 they show that at least (1 − H(11/14))n − 4 ∼ 0.25n bits are
required. Their proof first converts a 2-server randomized protocol to a 1-server quantum protocol
and then they show lower bounds on the quantum protocol. Hence there lower bounds hold for
randomized protocols that allow a small probability of error.

In this paper we obtain a lower bound of n− 2 with the assumption that the answers are 1-bit
long, nearly matching the n− 1 upper bound of Chor, Kushilevitz, Goldreich and Sudan [4].

We avoid the quantum techniques used by Kerenidis and de Wolf. Rather our proof builds
on classical tools developed by Yao [9] and Fortnow and Szegedy [5] for studying locally-random
reductions, a complexity-theoretic tool for information hiding that predates private information
retrieval.

2 The Lower Bound

In this section we formally define the model and state and prove our main result.

Definition 2.1 A 2-server 1-round r-random bit PIR for databases of size n with m-bit queries
and a-bit answers is a tuple (q1, q2, ANS1, ANS2, φ) such that the following hold.

1. qj : [n] × {0, 1}r → {0, 1}m. This is the query sent to server j The distribution of qj(i, ρ) is
independent of i (this ensures privacy).

2. ANSj : {0, 1}n × {0, 1}m → {0, 1}a. This is the response server j gives if the database is
x ∈ {0, 1}n and he sees answer µ ∈ {0, 1}m.

3. φ : [n]×{0, 1}r×{0, 1}a×{0, 1}a → {0, 1}. This is how the user puts together the information
he has received. If he wants to know xi and the random string is ρ ∈ {0, 1}r, and he gets
back a-bit strings b1 and b2 then the user computes xi = φ(i, ρ, b1, b2).

Imagine that the user wants to find xi, has random string ρ, and has found out ANS1(x, q1(i, ρ)).
It is possible that ANS2(x, q2(i, ρ)) is not needed. This would happen if ANS2(x, q2(i, ρ)) =
0 and ANS2(x, q2(i, ρ)) = 1 yield the same value for xi. If this happens then we say that
i, ρ, ANS1(x, q1(i, ρ)) set xi. It is also possible that ANS2(x, q2(i, ρ)) is crucial. In this case, if
the user happened to know xi he could determine ANS2(x, q2(i, ρ)). In this case we say that
i, ρ, ANS1(x, q1(i, ρ)) and xi set ANS2(x, q2(i, ρ)). Either way is a win. The next definition and
lemma formalize this notion.

For the next definition and the two lemmas following it let (q1, q2, ANS1, ANS2, φ) be a 2-server
1-round r-random bit PIR for databases of size n with m-bit queries and 1-bit answers.

Definition 2.2 Let i ∈ [n], ρ ∈ {0, 1}r, and x ∈ {0, 1}n.

1. The values of i, ρ, ANS1(x, q1(i, ρ)) set xi if

φ(i, ρ, q1(i, ρ), q2(i, ρ), ANS1(x, q1(i, ρ)), 0) = φ(i, ρ, q1(i, ρ), q2(i, ρ), ANS1(x, q1(i, ρ)), 1).
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Note that if the user knows i, ρ, and ANS1(x, q1(i, ρ)) then he knows xi. This is a win. The
values of i, ρ, ANS2(x, q2(i, ρ)) set xi can be defined similarly.

2. We say the values of i, ρ, ANS1(x, q1(i, ρ)), and xi force ANS2(x, q2(i, ρ)) if

φ(i, ρ, q1(i, ρ), q2(i, ρ), ANS1(x, q1(i, ρ)), 0) 6= φ(i, ρ, q1(i, ρ), q2(i, ρ), ANS1(x, q1(i, ρ)), 1).

Note that if the user knows i, ρ, ANS1(x, q1(i, ρ)) and xi then he knows ANS2(x, q2(i, ρ)).
This is also a win. The values of i, ρ, ANS2(x, q2(i, ρ)), and xi force ANS1(x, q1(i, ρ)) are
defined similarly. This definition of force is the main place we use that we get back 1-bit
answers.

The following lemma follows from the Definition 2.2

Lemma 2.3 Let i ∈ [n], ρ ∈ {0, 1}r, and x ∈ {0, 1}n. Then both of the following hold:

1. Either i, ρ, ANS1(x, q1(i, ρ)) set xi or i, ρ, ANS1(x, q1(i, ρ)), and xi force ANS2(x, q2(i, ρ)).

2. Either i, ρ, ANS2(x, q2(i, ρ)) set xi or i, ρ, ANS2(x, q2(i, ρ)), and xi force ANS1(x, q1(i, ρ)).

Note 2.4 The only place we use that the answers are 1 bit long is in Lemma 2.3. Any attempt to
extend our proof to 2 or more bits will have to get around this obstacle.

Lemma 2.5 Let x ∈ {0, 1}n. Let S1, S2 be multisets of {0, 1}m. Assume that, for every q1 ∈ S1 we
know ANS1(x, q1); and, for every q2 ∈ S2 we know ANS2(x, q2). We call this “the information.”
Assume that xi0 is such that we cannot deduce xi0 from the information. Let T 1 and T 2 be the
following multisets.

T 1 = {q1(i0, ρ)) | q2(i0, ρ) ∈ S2}
T 2 = {q2(i0, ρ)) | q1(i0, ρ) ∈ S1}

Then

1. Assume xi0 and the information are known. For every q1 ∈ T1 we can deduce ANS1(x, q1);
and, for every q2 ∈ T2 we can deduce ANS2(x, q2).

2. |T 1| = |S2| and |T 2| = |S1|.

3. |(S1 ∪ T 1) ∪ (S2 ∪ T 2)| = 2|S1 ∪ S2|. (These are multisets.)

Proof: Let q1(i0, ρ) ∈ T 1. By Lemma 2.3 either i0, ρ, ANS2(x, q2(i0, ρ)) set xi0 or i0, ρ, ANS2(x, q2(i0, ρ)),
and xi0 force ANS1(x, q1(i0, ρ)). Since q2(i0, ρ) ∈ S2 and we cannot deduce xi0 from the informa-
tion, the former cannot happen. Hence the later happens. Hence, knowing i0 and the information
we can deduce ANS1(x, q1(i0, ρ)). A similar proof holds for q2(i0, ρ) ∈ T 2.

For every element in the multiset S2 we put an element into T 1. Hence |T 1| = |S2|. Similar for
|T 2| = |S1|.

Theorem 2.6 Any 2-server 1-round r-random bit PIR for databases of size n with m-bit queries
and 1-bit answers must have m ≥ n− 2.
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Proof:
The following theorem was originally proven using Kolmogorov Complexity; however, we have

rephrased the proof in terms of simple combinatorics.
Let (q1, q2, ANS1, ANS2, φ) be a 2-server 1-round r-random bit PIR for databases of length n

with m-bit queries and a 1-bit answers.
Let M1 and M2 be the following multisets of {0, 1}m.

M1 = {q1(1, ρ) | ρ ∈ {0, 1}r}
M2 = {q2(1, ρ) | ρ ∈ {0, 1}r}

By privacy, for all i,

M1 = {q1(i, ρ) | ρ ∈ {0, 1}r}
M2 = {q2(i, ρ) | ρ ∈ {0, 1}r}

Fix ρ. For every i ∈ [n] there exists ρ′, ρ′′ such that q1(1, ρ) = q1(i, ρ′) and q2(1, ρ) = q2(i, ρ′′).
We exhibit an injection f : {0, 1}n → {0, 1}m+2, hence we obtain n ≤ m+2, so m ≥ n−2. The

proof that f is an injection will follow easily from the fact that from f(x) and the protocol you can
reconstruct x.

Since |M1| = 2r and the total number of distinct strings is at most 2m there must be a string
that occurs with multiplicity 2r−m. Let µ0 be that string. For notational convenience we assume

µ0 = q1(1, ρ1) = q1(1, ρ2) = · · · = q1(1, ρ2r−m).

We describe a process for generating a (short) string we call ADV ICE that will begin with
ANS1(x, µ0) but then have several bits of x. From ADV ICE we will be able to reconstruct the
entire string x.
Intuition: At the end of stage ` we will have a string ADV ICE`, multiset S1

` ⊆ M1, and multiset
S2

` ⊆ M2. For every q1 ∈ S1
` we will be able to recover ANS1(x, q1); and for every q2 ∈ S2

` we will
be able to recover ANS2(x, q2). These answers will enable us to recover some values of xi. If xi0

cannot be recovered then adding xi0 to the advice will double the number of strings in M1 ∪ M2

for which we know the answers and thus get |S1
`+1 ∪ S2

`+1| = 2|S1
` ∪ S2

` |.
We now give the formal construction.

1. Let ADV ICE0 = ANS1(x, µ0). Throughout the construction ADV ICE` ∈ {0, 1}∗ will be
ANS1(x, µ0) followed by a string of bits that represent particular xi values. We do not need
to put i’s into the advice as they will be recovered from the construction.

2. Let S1
0 be the multiset {q1(1, ρ1), q1(1, ρ2), . . . , q1(1, ρ2r−m)}. Let S2

0 = ∅.

3. Let I0 = ∅. Throughout the construction I` ⊆ [n] will be the set of indices i such that we can
deduce xi from knowing the answers to the queries in S1

` ∪ §2` .

4. Assume S1
` , S2

` have been constructed and I` 6= [n]. Let i0 be the least element of [n]− I`.

(a)
ADV ICE`+1 = ADV ICE` · xi0 .

(b)

S1
`+1 = S1

` ∪ {q1(i0, ρ)) | q2(i0, ρ) ∈ S2
` }

S2
`+1 = S2

` ∪ {q2(i0, ρ)) | q1(i0, ρ) ∈ S1
` }

By Lemma 2.5 we have |S1
`+1 ∪ S2

`+1| = 2|S1
` ∪ S2

` |.
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(c)

I`+1 = I`∪
{j | (∃(q1(j, ρ)) ∈ S`+1)[j, ρ, ANS1(x, q1(j, ρ)), xj force ANS2(x, q2(j, ρ))}∪
{j | (∃(q2(j, ρ)) ∈ S`+1)[j, ρ, ANS2(x, q2(j, ρ)), xj force ANS1(x, q2(j, ρ))}.

5. If I` = [n] then terminate. If I` 6= [n] then set ` = ` + 1 and goto step 4.

Since |S1
0∪S2

0 | = 2r−m and this union doubles with every stage, we have |S1
` ∪S2

` | = 2r−m+`. Let
`′ be the final value of `. Since |M1∪M2| = 2r+1 and S1

` ∪S2
` ⊆ M1∪M2 we have r−m+ `′ ≤ r+1

so `′ ≤ m+1. Since ADV ICE began with one additional bit we have |ADV ICE| ≤ `′+1 ≤ m+2.
Let f(x) be ADV ICE followed by enough 0’s to pad it out to length m+2. This padding does not
affect the reconstruction of x from f(x) since the advice produced for different x’s is prefix free.

3 Upper Bounds

Chor, Kushilevitz, Goldreich and Sudan [4] give an upper bound if one bit queries are returned.

Theorem 3.1 For all n, there is a 2-server 1-round n-random bit PIR for databases of size n with
n− 1 bit queries and 1-bit answers.

By combining Theorem 3.1 with a general communication balancing technique (also from [4])
we obtain the following theorem. We include the proof for completeness.

Theorem 3.2 Fix n ∈ N. Let a be such that a < n. There exists a 2-server 1-round (dn/ae − 1)-
random bit PIR for databases of size n with (dn/ae − 1)-bit queries and a-bit answers.

Proof: Assume that a divides n. Otherwise we can add dummy bits to the database to make n
the next largest multiple of a. Let ` = n/a.

By Theorem 3.1 we have a 2-server 1-round `–random bit PIR for databases of size ` with `− 1
bit queries and 1-bit answers. We denote this PIR (q1, q2, ANS1, ANS2, φ).

Let x ∈ {0, 1}n. View x = x0x1 · · ·xn−1 as y0y1 · · · ya−1 where each yk is of length `. Generate
a random string ρ of size `.

Suppose the user wants to know xi where xi is the jth bit of yk.
The user sends to server one q1(j, ρ) and to server two q2(j, ρ).
Server one sends back

ANS1(y0, q1(j, ρ))ANS1(y1, q1(j, ρ)) · · ·ANS1(ya−1, q1(j, ρ)).

Server two sends back

ANS2(y0, q2(j, ρ))ANS2(y1, q2(j, ρ)) · · ·ANS2(ya−1, q2(j, ρ)).

The user now can compute xi = φ(j, ρ, ANS1(yk, qk(j, ρ)), ANS2(yk, qk(j, ρ))).

The user sends ` = n/a− 1 bits to each database and each server returns a bits.

Theorem 3.2 may be optimal for constant a but it is not optimal for nonconstant a: there is
a is a 2-server 1-round protocol where queries and answers are both length O(n1/3) [4]. The best
known lower bound for 2-server 1-round protocols with a-bit answers is Ω(n/26a) [7].
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4 Open Problem

We would like to find tight bounds on m for the case of 2-server 1-round protocols with m-bit
queries and a-bit answers. In particular, for constant a, is the upper bound in Theorem 3.2 tight?
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