
Public Key Encryption that Allows PIR Queries

Dan Boneh∗ Eyal Kushilevitz† Rafail Ostrovsky‡ William E. Skeith III§

February 23, 2006

Abstract

Consider the following problem: Alice wishes to maintain her email using a storage-provider Bob
(such as a Yahoo! or hotmail e-mail account). This storage-provider should provide for Alice the ability
to collect, retrieve, search and delete emails but, at the same time, should learn neither the content of mes-
sages sent from the senders to Alice (with Bob as an intermediary), nor the search criteria used by Alice.
A trivial solution is that messages will be sent to Bob in encrypted form and Alice, whenever she wants
to search for some message, will ask Bob to send her a copy of the entire database of encrypted emails.
This however is highly inefficient. We will be interested in solutions that are communication-efficient
and, at the same time, respect the privacy of Alice. In this paper, we show how to create a public-key en-
cryption scheme for Alice that allows PIR searching over encrypted documents. Our solution solves the
main open problem posed by Boneh, DiCreszenzo, Ostrovsky and Persiano on “Public-key Encryption
with Keyword Search”, providing the first scheme that does not reveal any partial information regard-
ing user’s search (including the access pattern) in the public-key setting and with small communication
complexity.

KEYWORDS: Searching on encrypted data, Database security, Public-key Encryption with special
properties, Private Information Retrieval.

∗Stanford Department of Computer Science. E-mail: dabo@theory.stanford.edu
†Department of Computer Science, Technion. E-mail: eyalk@cs.technion.ac.il. Partially supported by BSF grant 2002-354 and

by Israel Science Foundation grant 36/03.
‡Department of Computer Science, University of California, Los Angeles. E-mail: rafail@cs.ucla.edu. Supported in part by

Intel equipment grant, NSF Cybertrust grant No. 0430254, OKAWA research award, B. John Garrick Foundation and Xerox
Innovation group Award.

§Department of Mathematics, University of California, Los Angeles. E-mail: wskeith@math.ucla.edu, wskeith@ucla.edu.

1

1 Introduction

Problem Overview Consider the following problem: Alice wishes to maintain her email using a storage-
provider Bob (such as Yahoo! or hotmail e-mail account). She publishes a Public Key for a semantically-
secure Public-Key Encryption scheme, and asks all people to send their e-mails’ encrypted under her Public
Key to the intermediary Bob. Bob (i.e. the storage-provider) should allow Alice to collect, retrieve, search
and delete emails at her leisure. In known implementations of such services either the content of the emails
is known to the storage-provider Bob (and then the privacy of both Alice and the senders is lost) or the
senders can encrypt their messages to Alice, in which case privacy is maintained, but sophisticated services
(such as search by keyword) cannot be easily performed, and, more importantly leak information to Bob,
such as Alice’s access pattern. Of course, Alice can always ask Bob, the storage-provider, to send her a copy
of the entire database of emails. This however is highly inefficient in terms of communication.

In this paper, we will be interested in solutions that are communication-efficient and, at the same time,
respect the complete privacy of Alice. A seemingly related concept is that ofPrivate Information Retrieval
(PIR) (e.g., [10, 17, 7]). However, existing PIR solutions either allow only for retrieving a (plain or en-
crypted) record of the database by address, or allow for search by keyword [9, 17] in a non-encrypted data.
The challenge of creating a Public-Key Encryption that allows for keyword search, where keywords are
encrypted in a probabilistic manner, remained, till this paper, an open problem.

In the solution presented in this paper, Alice creates a public key that allows arbitrary senders to send
her encrypted e-mail messages. Each such messageM is accompanied by an “encoded” list of keywords
in response to whichM should be retrieved. These email messages are collected for Alice by Bob, along
with the “encoded” keywords. When Alice wishes to search in the database maintained by Bob for e-mail
messages containing certain keywords she is able to do so in a way that is communication-efficient and does
not allow Bob to learnanythingabout the messages that she wishes to read, download or erase. In particular,
Alice is not willing to reveal what particular messages she downloads from the mail database, from which
senders these emails are originating and/or what is the search criterion, including the access pattern.

Comparison with Related Work Recently, there was a lot of work onsearching on encrypted data
(see [4] and references therein). However, all previous solutions either revealed some partial information
about the data or about the search criterion, or work only inprivate-keysettings. In such settings, only
entities who have access to the private key can do useful operations; thus, it is inappropriate for our set-
ting, where both the storage-provider and the senders of e-mail messages for Alice have no information
on her private key. We emphasize that, in settings that include only a user Alice and a storage-provider,
the problem is already solved; for example, one can apply results of Goldreich and Ostrovsky [13], Song
, Wagner and Perrig [21], or Chang and Mitzenmacher [6]. However, the involvement of the senders who
are also allowed to encrypt data for Alice (but are not allowed to decrypt data encrypted by other senders)
requires using public-key encryption. In contrast to the above work, in this paper we show how to search,
in a communication-efficient manner, on encrypted data in apublic-key setting, where those who store data
(encrypted with a public key of Alice) do not need to know the private key under which this data is en-
crypted. The only previous result for such a scenario in the public-key setting, is due to Boneh et al. [4]
and Abddalla et al. [1]1 ; however, their solutionrevealspartial information; namely, the particular keyword
that Alice is searching for is given by her, in the clear, to Bob (in other words, only the content of the email
messages is kept private while the information that Alice is after is revealed). This, in particular, reveals
the access patternof the user. The biggest problem left in the papers was to create a scheme that hides
the access pattern as well. This is exactly what we achieve in this paper. That is, we show how to hideall
information in a semantically-secure way.

As mentioned, private information retrieval (PIR) is a related problem that is concerned with communication-
efficient retrieval ofpublic (i.e., plain) data. Extensions of the basic PIR primitive (such as [9, 17], men-
tioned above, and, more recently, [16, 12, 19]) allow more powerful keyword search but in all of them the
data remains un-encrypted. Therefore, none of those can directly be used to solve the current problem.

1In fact, [4, 1] deal with the same storage-provider setting we describe above.

2

Our Techniques We give a short overview of some of the tools that are used in our solution. The right
combination of these tools is what allows for our protocol to work.

As a starting point, we examineBloom filters. Bloom filters allow us to use space which is not propor-
tional to the number of all potential keywords (which is typically huge) but rather to the maximal number of
keywords which are in use at any given time (which is typically much smaller). That is, the general approach
of our protocols is that the senders will store in the database of the storage-provider some extra information
(in encrypted form) that will later allow the efficient search by Alice.Bloom filters, allow us to keep the
space that is used to store this extra information “small”. The approach is somewhat similar to Goh’s use
of Bloom filters [13], the important difference is that in our case we are looking for a Public-Key solution,
whereas Goh [13] uses the private-key solution. This makes our problem far more challenging, and our use
Bloom filter is somewhat different. Furthermore, we require the Bloom filters in our application to encode
significantly more information than just set membership. We must modify the standard definitions of Bloom
filters somewhat to accommodate the additional functionality.

Recall that use of Bloom filters requires the ability to flip bits in the array of extra information. How-
ever, the identity of the bits that are flipped should be kept secret from the storage-provider (as they give
information about the keywords). This brings us to the main technical challenge of this work: we need a
way to specify an encrypted length-n unit vectorei (i.e., a lengthn vector with1 in its i-th position and0’s
elsewhere) while keeping the valuei secret, and having a representation that is short enough to give our pro-
tocol communication efficiency beyond that of the trivial solution. Perhaps somewhat surprisingly, we show
that a recent public-key homomorphic-encryption scheme, due to Boneh, Goh and Nissim [3], allows us to
obtain just that. For example, one can specify such a length-n unit vector using communication complexity
which is

√
m times a security parameter.

Finally, for Alice to read information from the array of extra information, she applies efficient PIR
schemes, e.g. [17, 7], that, again, allow keeping the keywords that Alice is after secret.

We emphasize that all the communication in the protocol is sub-linear inn. This includes both the
communication from the senders to the storage-provider Bob (when sending email messages) and the com-
munication from Alice to Bob (when she retrieves/searches for messages). Furthermore, we allow Alice to
deletemessages from Bob’s machine in a way that hides from Bob which messages have been deleted.

Our main theorem is as follows:

MAIN THEOREM (informal): There exists Public-Key Encryption schemes that support sending, reading
and writing into remote server with the following communication complexity:

• O(
√

n log n) for sending a message from any Sender to Bob

• O(polylog(n)) for reading by Alice from Bob’s (encrypted) memory.

• O(
√

n log n) for deleting messages by Alice from Bob’s memory.

Organization: In Section 2, we further explain and develop the tools needed for our solutions. Section
3 defines the properties we want our protocols to satisfy. Finally, Section 4 gives the construction and its
analysis.

2 Ingredients

We will make use of several basic tools, some of which are being introduced for the first time here, in this
paper. In this section, we define (and create, if needed) these tools, as well as outline their utility in our
protocol.

2.1 Bloom Filters

The Bloom filter provides a way to probabilistically encode set membership using a small amount of space,
even when the universe set is large. The basic idea is as follows:

3

Choose an independent set of hash functions{hi}ki=1, where each functionhi : {0, 1}∗ −→ [m].
SupposeX = {xi}li=1 ⊂ {0, 1}∗. We set an arrayT = {ti}mi=1 such thatti = 1 ⇐⇒ ∃j ∈ [k] and
j′ ∈ [l] such thathj(xj′) = i. Now to test the validity of a statement like “a ∈ S”, one simply verifies that
hi(a) = 1,∀i ∈ [k]. If this does not hold, then certainlya 6∈ S. If the statement does hold, then there is
still some probability thata 6∈ S, however this can be shown to be negligible. Optimal results are obtained
by havingm proportional tok, and in this case it can be shown that the probability of an inaccurate positive
result is negligible ask increases, as will be thoroughly demonstrated in what follows.

This work will use a variation of a Bloom filter, as we require more functionality. We would like our
Bloom filters to not just store whether or not a certain element is in a set, but also to store some values
associated to the elements in the set (and to preserve those associations).

Definition 2.1 A (k, m)-Bloom Filter with Storageis a collection{hi}ki=1 of functions, withhi : {0, 1}∗ −→
[m] for all i, together with a collection of sets,{Bj}mj=1. To insert a pair(a, v) into this structure,v is added
to Bhi(a) for all i ∈ [k]. Then, to determine whether or nota ∈ S, one examines all of the setsBhi(a) and
returns true if all are non-empty. The set of values associated witha ∈ S is simply

⋂
i∈[k] Bhi(a).

Let us now further analyze a(k, m)-Bloom filter with storage to estimate the total size of such a structure,
and hopefully to find an optimal construction.

For the purpose of analysis, the functionshi will as usual, be modelled as uniform, independent ran-
domness. Recall that forw ∈ {0, 1}∗, we defineHw = {hi(w) | i ∈ [k]}.

Claim 2.2 Let ({hi}ki=1, {Bj}mj=1) be a(k, m)-Bloom filter with storage as described above in Definition
2.1. Suppose the filter has been initialized to store some setS of sizen and associated values. Suppose
also thatm = dcnke wherec > 1 is a constant. Denote the relation of element-value associations by
R(·, ·). Then for anya ∈ {0, 1}∗, the following statements hold true with probability1− neg(k), where the
probability is over the uniform randomness used to model thehi:

1.
(a ∈ S) ⇐⇒ (Bhi(a) 6= ∅ ∀i ∈ [k])

2. ⋂
i∈[k]

Bhi(a) = {v | R(a, v) = 1}

Proof: (1.,⇒) Certainly if Bhi(a) = ∅ for somei ∈ [k], thena was never inserted into the filter, and
a /∈ S. (⇐) Now suppose thatBhi(a) 6= ∅ for everyi ∈ [k]. We’d like to compute the probability that for
an arbitrarya ∈ {0, 1}∗,

Ha ⊂
⋃

w∈S

Hw

I.e., a random element will appear to be inS by our criteria. We model each evaluation of the functions
hi as independent and uniform randomness. There were a total ofnk (not necessarily distinct) random sets
modified to insert then values ofS into the filter. So, we only need to compute the probability that allk
functions placea in this subset of theBj ’s. By assumption, there are a total ofdcnke sets wherec > 1 is a
constant. LetXk,k′ denote the random variable that models the experiment of throwingk balls intodcnke
bins and counting the number that land in the firstk′ bins. For a fixed insertion of the elements ofS into our
filter and lettingk′ be the number of distinct bins occupied,Xk,k′ represents how close a random element
appears to being inS according to our Bloom filter. More precisely,Pr[Xk,k′ = k] is the probability that a
random element will appear to be inS for this specific situation. Note thatXk,k′ is a sum of independent
(by assumption) Bernoulli trials, and hence is distributed as a binomial random variable with parameters,
(k, k′

cnk), wherek′ ≤ nk. Hence,

Pr[Xk,k′ = k] =
(k′

cnk

)k
≤

(1
c

)k

4

So, we’ve obtained a bound that is negligible ink, independent ofk′. Hence, if we letYk be the experiment
of samplingk′ by throwingnk balls intodcnke bins and counting the distinct number of bins, then taking
a random sample from the variableXk,k′ and returning 1 if and only ifXk,k′ = k, thenYk is distributed
identically to the variable that describes whether or not a randoma ∈ {0, 1}∗ will appear to be inS according
to our filter. Now, since we havePr[Xk,k′ = k] < neg(k) and the bound was independent ofk′, it is a trivial
exercise to see thatPr[Yk = 1] < neg(k) which is exactly what we wanted to show.�

(2.) This argument is quite similar to part 1.(⊇) If R(a, v) = 1, then the valuev has been inserted and
associated witha and by definition,v ∈ Bhi(a) for everyi ∈ [k]. (⊆) Now supposea ∈ S andv ∈ Bhi(a) for
everyi ∈ [k]. The probability of this event randomly happening independent of the relationR is maximized
if every other element inS is associated with the same value. And in this case, the problem reduces to a
false positive for set membership with(n− 1)k writes if a ∈ S, or the usualnk if a /∈ S. This has already
been shown to be negligible in part 1.�

In practice, we will need some data structure to model the sets of our Bloom filter with storage, e.g. a
linked list. However, in this work we will be interested in oblivious writing to the Bloom filter, in which
case a linked list is clearly impossible to implement as the dynamic size of the structure would leak infor-
mation. So, we would like to briefly analyze the total space required for a Bloom filter with storage if it is
implemented with fixed length buffers to represent the sets. Our hope is that with1− neg(k) probability no
buffer will overflow.

Claim 2.3 Let ({hi}ki=1, {Bj}mj=1) be a (k, m)-Bloom filter with storage as described in Definition 2.1.
Suppose the filter has been initialized to store some setS of sizen and associated values. Again, suppose
thatm = dcnke wherec > 1 is a constant, and denote the relation of element-value associations byR(·, ·).
If for everya ∈ S we have that|{v |R(a, v) = 1}| ≤ λ then

Pr
[

max
j∈[m]
{|Bj |} > α

]
< neg(α)

Again, the probability is over the uniform randomness used to model thehi.

Proof: To begin, let us analyze the situation case ofλ = 1, so there will be a total ofnk values placed
randomly into thedcnke buffers. LetXj be the random variable that counts the size ofBj after thenk
values are randomly placed.Xj of course has a binomial distribution with parameters(nk, 1

cnk). Hence
E[Xj] = (1/c). If (1 + δ) > 2e, we can apply a Chernoff bound to obtain the following estimation:

Pr[Xj > (1 + δ)/c] < 2−δ/c

Now, for a givenα we’d like to computePr[Xj > α]. So, set(1+ δ)/c = α and henceδ/c = α− 1/c. The
bound then gives us:

Pr[Xj > α] < 2−α+1/c = 2−α2(1/c) = neg(α)

Then by the union bound, the probability thatanyXj has more values thanα is also negligible inα. Now
in the case ofλ > 1, what has changed? Our analysis above treated the functions as uniform randomness,
but to associate additional values to a specific element ofa ∈ S the same subset of buffers (Ha in our
notation) will be written to repeatedly- there is no more randomness to analyze. Each buffer will have at
mostλ− 1 additional elements in it, so our above bound becomesneg(α− λ) which is stillneg(α) asλ is
an independent constant.�

This leads us to the following observation:

Observation 2.4 One can implement a(k, m)-Bloom filter with storage by using fixed length arrays to store
the setsBj , with the probability of losing an associated value negligible in the length of the arrays. The
total size of such a structure is linear in the following constants and variables:

1. n — The maximum number of elements that the filter is designed to store.

5

2. k — The number of functions (hi) used, which serves as a correctness parameter.

3. α — The size of the buffer arrays, which serves as a correctness parameter. Note thatα should be
chosen to exceedλ, the maximum number of values associated to any single element of the set.

4. l — The storage size of an associated value.

5. c — Any constant greater than 1.

So, for our application of public-key storage with keyword search, if we assume that there are as many
keywords as there are messages, then we have created a structure of sizeO(n · l) = O(n log n) to hold the
keyword set and the message references. The only other factors of the size are either correctness parameters
or constants.

Furthermore, with an added factor of a correctness parameter to the buffer lengths, one can implement
andobliviously updatean encrypted Bloom filter with storage, using the probabilistic methods of Ostrovsky
and Skeith [19].

As a final note on our Bloom filters with storage, we mention that in practice, we can replace the
functionshi with pseudo-random functions in which case our claims about correctness are still valid, only
with a computational assumption in place of the assumption about thehi being truly random, provided that
the participating parties are non-adaptive2.

2.2 Modifying Encrypted Data in a Communication Efficient Way

Our next tool is that of encrypted database modification. This will allow us to privately manipulate the
Bloom filters that we constructed in the preceding section. The situation is as follows:

• A database owner holds an array of ciphertexts{ci}ni=1 where the ciphertextsci = E(vi) are encrypted
using a public-key for which he does not have the private key.

• A user would like to modify one plaintext valuevi in some way, without revealing to the database
owner which value was modified, or how it was modified.

Furthermore, we would like to minimize the communication between the parties beyond the trivialO(n)
solution which could be based on any group homomorphic encryption. Using the cryptosystem of Boneh,
Goh, and Nissim [3], we can accomplish this with communicationO(

√
n), wheren is the size of the

database.
The important property of the work of [3], for our paper, is the additional homomorphic property of the

cryptosystem: specifically, in their system, one can compute multivariate polynomials of total degree 2 on
ciphertexts. I.e., ifE is the encryption map and if

F =
∑

1≤i≤j≤u

aijXiXj

then from an array of ciphertexts,{cl = E(xl)}ul=1, then there exists some functioñF on ciphertexts (which
can be computed using public information alone) such that

D(F̃ (c1, ..., cu)) = F (x1, ..., xu)
2In the case of malicious message senders, we cannot reveal the seeds to the random functions and still guarantee correctness,

however, we can entrust the storage provider with the seeds, and have the message senders execute a protocol for secure two-party
computation with the storage provider to learn the value of the functions. This can be accomplished without the storage provider
learning anything, and with the message sender learning onlyhi(w) and nothing else. An example of such a protocol can be found
in the work of Katz and Ostrovsky [15] if we disallow concurrency, and the work of Canetti, Lindell, Ostrovsky, and Sahai [8] to
allow concurrency. Here, the common reference string can be provided as part of the public key. These solutions, of course, require
additional rounds of communication between the senders and the storage provide, and additional communication. However, the
size of the communication is proportional to the security parameter and is independent of the size of the database. We defer this
and other extensions to the full version of the paper.

6

Applying such a cryptosystem to encrypted database modification is trivial. Suppose{xij}
√

n
i,j=1 is our

database (not encrypted). Then to increment the value of a particular element at position(i∗, j∗) by some
valueα, we can proceed as follows: Create two vectorsv, w of length

√
n where,

vi = δii∗

wj = αδjj∗

So that

viwj =
{

α if (i = i∗ ∧ j = j∗)
0 otherwise

Then, we wish to add this valueviwj to thei, j position of the database. Note that, for eachi, j, we are just
evaluating a simple polynomial of total degree two onvi, wj and the data elementxij . So, if we are given
any cryptosystem that allows us to compute multivariate polynomials of total degree two on ciphertexts, then
we can simply encrypt every input (the database, and the vectorsv, w) and perform the same computation
which will give us a private database modification protocol with communication complexityO(

√
n).

We formalize as follows. Suppose(K, E ,D) is a CPA-secure public-key encryption scheme that allows
polynomials of total degree two to be computed on ciphertexts, as described above. Suppose also that an
array of ciphertexts{cl = E(xl)}nl=1 is held by a partyS, which have been encrypted under some public
key, Apublic. Suppose thatn is a square (if not, it can always be padded by< 2

√
n + 1 extra elements to

make it a square). DefineF (X, Y, Z) = X + Y Z. Then by our assumption, there exists someF̃ such
thatD(F̃ (E(x), E(y), E(z))) = F (x, y, z) for any plaintext valuesx, y, z. We define a two party protocol
ModifyU ,S(l, α) by the following steps, wherel andα are private inputs toU :

1. U computesi∗, j∗ as the coordinates ofl (i.e.,i∗ andj∗ are the quotient and remainder ofl/n, respec-
tively).

2. U sends{vi = E(δii∗)}
√

n
i=1, {wj = E(αδjj∗)}

√
n

j=1 to S where all values are encrypted underApublic.

3. S computesF̃ (cij , vi, wj) for all i, j ∈ [
√

n], and replaces eachcij with the corresponding resulting
ciphertext.

By our remarks above, this will be a correct database modification protocol. It is also easy to see that
it is private, in that it resists a chosen plaintext attack. In a chosen plaintext attack, an adversary would
ask many queries consisting of requests for the challenger to execute the protocol to modify positions of
the adversary’s choice. But all that is exchanged during these protocols is arrays of ciphertexts for which
the plaintext is known to the adversary. Distinguishing two different modifications is precisely the problem
of distinguishing two finite arrays of ciphertexts, which is easily seen to be infeasible assuming the CPA-
security of the underlying cryptosystem and then using a very standard hybrid argument.

3 Definitions

In what follows, we will denote message sending parties byX , a message receiving party will be denoted
byY, and a server/storage provider will be denoted byS.

Definition 3.1 A Public Key Storage with Keyword Searchconsists of the following probabilistic polyno-
mial time algorithms and protocols:

• KeyGen(k): Outputs public and private keys,Apublic andAprivate.

• SendX ,S(M,K, Apublic) This is a two-party protocol that allowsX to send the messageM to a
serverS, encrypted under some public keyApublic, and also associatesM with each keyword in the
setK. The valuesM,K are private inputs that only the message-sending partyX holds.

7

• RetrieveY,S(w,Aprivate): This is a two party protocol between a userY and a serverS that retrieves
all messages associated with the keywordw for the userY. The inputsw,Aprivate are private inputs
held only byY. This protocol also removes the retrieved messages from the server and properly
maintains the keyword references.

We now describe correctness and privacy for such a system.

Definition 3.2 Let Y be a user,X be a message sender and letS be a server/storage provider. Let
Apublic, Aprivate ←− KeyGen(k). Fix a finite sequence of messages and keyword sets:

{(Mi,Ki)}mi=1 .

Suppose that, for alli ∈ [m], the protocolSendX ,S(Mi,Ki, Apublic) is executed byX andS. Denote by
Rw the set of messages thatY receives after the execution ofRetrieveY,S(w,Aprivate). Then, a Public Key
Storage with Keyword Search is said to becorrect on the sequence{(Mi,Ki)}mi=1 if

Pr
[
Rw = {Mi | w ∈ Ki}

]
> 1− neg(k)

for everyw, where the probability is taken over all internal randomness used in the protocolsSend and
Retrieve. A Public Key Storage with Keyword Search is said to becorrectif it is correct on all such finite
sequences.

Definition 3.3 A Public Key Storage with Keyword Search is said to be(n, λ, θ)-correctif whenever{(Mi,Ki)}mi=1
is a sequence such that

• m ≤ n

• |Ki| < θ, for everyi ∈ [m], and

• for everyw ∈
⋃

i∈[m] Ki, at mostλ messages are associated withw

then, it is correct on{(Mi,Ki)}mi=1 in the sense of Definition 3.2.

For privacy, there are several parties involved, and hence there will be several definitional components.

Definition 3.4 We defineSender-Privacyin terms of the following game between an adversaryA and a
challengerC. A will play the role of the storage provider andC will play the role of a message sender. The
game consists of the following steps:

1. KeyGen(k) is executed byC who sends the outputApublic toA.

2. A asks queries of the form(M,K) whereM is a message string andK is a set of keywords, andC
answers by executing the protocolSend(M,K, Apublic) withA.

3. A now chooses two pairs(M0,K0), (M1,K1) and sends this toC, where both the messages and
keyword sets are of equal size, the latter being measured by set cardinality.

4. C picks a bitb ∈ {0, 1} at random and executes the protocolSend(Mb,Kb, Apublic) withA.

5. A may ask more queries of the form(M,K) andC responds by executingSend(M,K, Apublic) with
A.

6. A outputs a bitb′ ∈ {0, 1}.

8

We define the adversary’s advantage as

AdvA(k) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
We say that a Public-Key Storage with Keyword Search isCPA-Sender-Privateif, for all A ∈ PPT, we have
thatAdvA(k) is a negligible function.3

Definition 3.5 We defineReceiver-Privacyin terms of the following game between an adversaryA and a
challengerC. A will again play the role of the storage provider, andC will play the role of a message
receiver. The game consists of the following steps:

1. KeyGen(k) is executed byC who sends the outputApublic toA.

2. A asks queries of the formw, wherew is a keyword, andC answers by executing the protocol
RetrieveC,A(w,Aprivate) withA.

3. A now chooses two keywordsw0, w1 and sends both toC.

4. C picks a bitb ∈ {0, 1} at random and executes the protocolRetrieveC,A(wb, Aprivate) withA.

5. A may ask more keyword queriesw andC responds by executingRetrieveC,A(w,Aprivate) withA.

6. A outputs a bitb′ ∈ {0, 1}.

We define the adversary’s advantage as

AdvA(k) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
We say that a Public Key Storage with Keyword Search isCPA-Receiver-Privateif, for all A ∈ PPT, we
have thatAdvA(k) is a negligible function.

4 Main Construction

We present a construction of a public-key storage with keyword search that is(n, λ, θ)-correct, where the
maximum number of messages to store isn, and the total number of distinct keywords that may be in use
at a given time is alson (however, the keyword universe consists of arbitrary strings of bounded length,
say proportional to the security parameter). Correctness will be proved under a computational assumption
in a “semi-honest” model, and privacy will be proved based only on a computational assumption. In our
context, the term “semi-honest party” will refer to a party that correctly executes the protocol, but may
collect information during the protocol’s execution. We will assume the existence of a semantically secure
public-key encryption scheme with homomorphic properties that allow the computation of polynomials of
total degree two on ciphertexts, e.g., the cryptosystem of [3]. The key generation, encryption and decryption
algorithms of the system will be denoted byK, E , andD respectively. We define the required algorithms
and sub-protocols below. First, let us describe our assumptions about the parties involved:X ,Y andS.
Recall thatX will always denote a message sender. Note that, in general, there could be many different
senders but, for the purposes of describing the protocol, we need only to name one. SenderX is assumed
to hold a message, keyword(s) and the public key. ReceiverY holds the private key.S has a storage
buffer forn encrypted messages, and it also has a(t, m)-Bloom filter with storage, as defined in Definition
2.1, implemented with fixed length buffers and encrypted under the public key distributed byY. Here,
m = dcnte, wherec > 1 is a constant. The functions and buffers will be denoted by{hi}ti=1 and{Bj}mj=1,
as usual. The buffers{Bj} will be initialized to 0 in every location.S maintains in its storage space
encryptions of the buffers, and not the buffers themselves. We denote these encryptions{B̂j}mj=1. The
functionshi are implemented by pseudo-random functions, which can be published byY.

3“PPT” stands forProbabilistic Polynomial Times. We use the notationA ∈ PPT to denote thatA is a probabilistic polynomial-
time algorithm.

9

• KeyGen(k): RunK(k), the key generation algorithm of the underlying cryptosystem to create public
and private keys, call themApublic andAprivate respectively. Private and public parameters for a PIR
protocol will also be generated by this algorithm.

• SendX ,S(M,K, Apublic): SenderX holds a messageM , keywordsK andApublic and wishes to send
the message toY via the serverS. The protocol consists of the following steps:

1. X modifiesM to haveK appended to it, and then sendsE(M), an encryption of the modified
M to S.

2. S receivesE(M), and stores it at an available addressρ in its message buffer.S then sendsρ
back toX .

3. For everyj ∈
⋃

w∈K Hw, senderX writesγ copies of the addressρ to B̂j , using the probabilistic
methods from [19]. However, the information of which buffers were written needs to be hidden
from S. So, to accomplish the buffer writing in an oblivious way,X repeatedly executes the
protocol ModifyX ,S(x, α) for appropriate(x, α), in order to update the Bloom filter buffers.
To write a single address may take several executions of theModify protocol depending on the
size of the plaintext set in the underlying cryptosystem. Also, if|

⋃
w∈K Hw| < t|K|, execute

additionalModify(r, 0) protocols (for any randomr) so that the total number of times that the
Modify protocol is invoked is uniform among all keyword sets of equal size.

• RetrieveY,S(w,Aprivate): Y wishes to retrieve all messages associated with the keywordw, and erase
them from the server. The protocol consists of the following steps:

1. Y repeatedly executes an efficient PIR protocol (e.g., [17, 7]) withS to retrieve the encrypted
buffers{B̂j}j∈Hw which are the Bloom filter contents corresponding tow. If |Hw| < t, thenY
executes additional PIR protocols for random locations and discards the results so that the same
number of protocols are invoked regardless of the keywordw. Recall thatY possesses the seeds
used for the pseudo-random functionshi, and hence can computeHw without interacting with
S.

2. Y decrypts the results of the PIR queries to obtain{Bj}j∈Hw , using the keyAprivate. Receiver
Y then computesL =

⋂
j∈Hw

Bj , a list of addresses corresponding tow, and then executes PIR
protocols again withS to retrieve the encrypted messages at each address inL. Recall that we
have bounded the maximum number of messages associated with a keyword. We refer to this
value asλ. ReceiverY will, as usual, execute additional random PIR protocols so that it appears
as if every word hasλ messages associated to it. After decrypting the messages,Y will obtain
any other keywords associated to the message(s) (recall that the keywords were appended to the
message during theSend protocol). Denote this set of keywordsK.

3. Y first retrieves the additional buffers{B̂j}, for all j ∈
⋃

w′ 6=w∈K Hw′ , using PIR queries with
S. Note that the number of additional buffers is bounded by the constantθt. Once again,Y
executes additional PIR protocols withS so that the number of PIR queries in this step of the
protocol is uniform for everyw. Next, Y modifies these buffers, removing any occurrences
of any address inL. This is accomplished via repeated execution ofModifyY,S(x, α) for ap-
propriatex andα. Additional Modify protocols are invoked to correspond to the maximumθt
buffers.

Theorem 4.1 The Public-Key Storage with Keyword Search from the preceding construction is(n, λ, θ)-
correct according to Definition 3.2, under the assumption that the functionshi are pseudo-random.

Proof sketch: This is a consequence of Claim 2.2, Claim 2.3, and Observation 2.4. The preceding
claims were all proved under the assumption that the functionshi were uniformly random. In our protocol,
they were replaced with pseudo-random functions, but since we are dealing with non-adaptive adversaries,
the keywords are chosen before the seeds are generated. Hence they are independent, and if any of the

10

preceding claims failed to be true with pseudo-random functions in place of thehi, our protocol could be
used to distinguish thehi from the uniform distribution without knowledge of the random seed, violating the
assumption of pseudo-randomness. As we mentioned before, we can easily handle adaptive adversaries, by
implementinghi using PRF’s, where the seeds are kept by the service provider, and users executing secure
two-party computation protocols to gethi(w) for anyw using [15] or, in the case of concurrent users, using
[8] and having the common random string required by [8] being part of the public key.�

We also note that in a model with potentially malicious parties, we can apply additional machinery to
force “semi-honest” behavior, including commitments and zero-knowledge universal arguments [2].

Theorem 4.2 Assuming CPA-security of the underlying cryptosystem (and therefore the security of our
Modify protocol as well), the Public Key Storage with Keyword Search from the above construction is
sender private, according to Definition 3.4.

Proof sketch: Suppose that there exists an adversaryA ∈ PPT that can succeed in breaking the se-
curity game, from Definition 3.4, with some non-negligible advantage. So, under those conditions,A can
distinguish the distribution ofSend(M0,K0) from the distribution ofSend(M1,K1), where the word “dis-
tribution” refers to the distribution of the transcript of the interaction between the parties. A transcript of
Send(M,K) essentially consists of justE(M) and a transcript of severalModify protocols that update loca-
tions of buffers based onK. Label the sequence ofModify protocols used to update the buffer locations for
Ki by {Modify(xi,j , αi,j)}νj=1. Note that by our design, if|K0| = |K1|, then it will take the same number
of Modify protocols to update the buffers, so the variableν does not depend oni in this case. Now consider
the following sequence of distributions:

E(M0) Modify(x0,0, α0,0) · · · Modify(x0,ν , α0,ν)
E(M0) Modify(x0,0, α0,0) · · · Modify(x1,ν , α1,ν)

...
...

...
...

E(M0) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν)
E(M1) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν)

The first line of distributions in the sequence is the transcript distribution forSend(M0,K0) and the
last line of distributions is the transcript distribution forSend(M1,K1). We assumed that there exists an
adversaryA that can distinguish these two distributions. Hence, not all of the adjacent intermediate distri-
butions can be computationally indistinguishable since computational indistinguishability is transitive. So,
there exists an adversaryA′ ∈ PPT that can distinguish between two adjacent rows in the sequence. IfA′
distinguishes within the firstν+1 rows, then it has distinguishedModify(x0,j , α0,j) from Modify(x1,j , α1,j)
for somej ∈ [ν] which violates our assumption of the security ofModify. And if A′ distinguishes the last
two rows, the it has distinguishedE(M0) from E(M1) which violates our assumption on the security of the
underlying cryptosystem. Either way, a contradiction. So we conclude that no suchA exists in the first
place, and hence the system is secure according to Definition 3.4.�

Theorem 4.3 Assuming CPA-security of the underlying cryptosystem (and therefore the security of our
Modify protocol as well), and assuming that our PIR protocol is semantically secure, the Public Key Storage
with Keyword Search from the above construction is receiver private, according to Definition 3.5.

Proof sketch: Again, assume that there existsA ∈ PPT that can gain a non-negligible advantage in
Definition 3.5. Then,A can distinguishRetrieve(w0) from Retrieve(w1) with non-negligible advantage.
The transcript of aRetrieve protocol consists a sequence of PIR protocols from steps 1, 2, and 3, followed
by a number ofModify protocols. For a keywordwi, denote the sequence of PIR protocols that occur in
Retrieve(wi) by {PIR(zi,j)}ζj=1, and denote the sequence ofModify protocols by{Modify(xi,j , αi,j)}ηj=1.

11

Note that by the design of theRetrieve protocol, there will be equal numbers of these PIR queries and
Modify protocols regardless of the keywordw, and henceζ and η are independent ofi. Consider the
following sequence of distributions:

PIR(z0,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)

...
...

...
...

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x0,η, α0,η)

...
...

...
...

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x1,η, α1,η)

The first line is the transcript distribution ofRetrieve(w0) and the last line is the transcript distribution of
Retrieve(w1). Since there existsA ∈ PPT that can distinguish the first distribution from the last, then there
must exist an adversaryA′ ∈ PPT that can distinguish a pair of adjacent distributions in the above sequence,
due to the transitivity of computational indistinguishability. Therefore, for somej ∈ [ζ] or j′ ∈ [η] we have
thatA′ can distinguish PIR(z0,j) from PIR(z1,j) or Modify(x0,j′ , α0,j′) from Modify(x1,j′ , α1,j′). In both
cases, a contradiction of our initial assumption. Therefore, it must be the case that no suchA ∈ PPT exists,
and hence our construction is secure according to Definition 3.5.�

Theorem 4.4 (Communication Complexity) We claim that the Public Key Storage with Keyword Search
from the preceding construction has sub-linear communication complexity inn, the size of the database.

Proof: This can be seen as follows: from Observation 2.4, we see that a(k, m)-Bloom filter with storage
that is designed to storen different keywords is of linear size in

1. n — The maximum number of elements that the filter is designed to store.

2. t — The number of functions (hi) used, which serves as a correctness parameter.

3. α — The size of the buffer arrays, which serves as a correctness parameter. Note thatα should be
chosen to exceedλ, the maximum number of values associated to any single element of the set.

4. l = log n — The storage size of an associated value.

5. c — Any constant greater than 1.

However, all the buffers in our construction have been encrypted, giving an extra factor of a security
parameter. Additionally, there is another correctness parameter,γ coming from our use of the methods of
[19], which writes a constant number copies of each document into the buffer.

So, the total size of the encrypted Bloom filter with storage is

O(n · t · α · log(n) · c · k · γ) = O(n log n)

as all other parameters are constants or correctness parameters.
Therefore the communication complexity of the protocol is

• O(
√

n log n) for sending a message.

• O(polylog(n)) for reading using anypolylog(n) PIR protocol, e.g. [5, 7, 18].

• O(
√

n log n) for deleting messages.

�

12

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier,
H. Shi. Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and
Extensions. InProc. of CRYPTO, pp. 205-222, 2005.

[2] B. Barak, O. Goldreich. Universal Arguments and their Applications. IEEE Conference on Computa-
tional Complexity 2002: 194-203

[3] D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. TCC 2005: 325-341

[4] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with Keyword Search.
EUROCRYPT 2004: 506-522

[5] Y. C. Chang. Single Database Private Information Retrieval with Logarithmic Communication. ACISP
2004

[6] Y. C. Chang, M. Mitzenmacher. Privacy Preserving Keyword Searches on Remote Encrypted Data. In
Proc. of 3rd Applied Cryptography and Network Security Conference (ACNS), pp. 442-455, 2005.

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarith-
mic communication. In J. Stern, editor,Advances in Cryptology – EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science, pages 402–414. Springer, 1999.

[8] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and multi-party
secure computation. InProc. of the thiry-fourth annual ACM symposium on Theory of computing, pp.
494-503, 2002.

[9] B. Chor, N. Gilboa, M. Naor Private Information Retrieval by Keywords in Technical Report TR
CS0917, Department of Computer Science, Technion, 1998.

[10] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. InProc. of the
36th Annu. IEEE Symp. on Foundations of Computer Science, pages 41–51, 1995. Journal version:J.
of the ACM, 45:965–981, 1998.

[11] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information retrieval implies
oblivious transfer. InAdvances in Cryptology - EUROCRYPT 2000, 2000.

[12] M. Freedman, Y. Ishai, B. Pinkas and O. Reingold. Keyword Search and Oblivious Pseudorandom
Functions. InProc. of 2nd Theory of Cryptography Conference (TCC ’05), 2005.

[13] O. Goldreich, R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs.J. of the ACM,
43(3), pp. 431-473, 1996.

[14] S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci, 28(1):270–299, 1984.

[15] J. Katz, R. Ostrovsky. Round-Optimal Secure Two-Party Computation. in CRYPTO 2004: 335-354

[16] K. Kurosawa, W. Ogata. Oblivious Keyword Search. Journal of Complexity, Volume 20 , Issue 2-3
April/June 2004 Special issue on coding and cryptography Pages: 356–371

[17] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private
information retrieval. InProc. of the 38th Annu. IEEE Symp. on Foundations of Computer Science,
pages 364–373, 1997.

[18] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. IACR ePrint Cryptol-
ogy Archive 2004/063

13

[19] R. Ostrovsky and W. Skeith. Private Searching on Streaming Data. InAdvances in Cryptology –
CRYPTO 2005

[20] T. Sander, A. Young, M.Yung. Non-Interactive CryptoComputing For NC1 FOCS 1999: 554-567

[21] D. X. Song, D. Wagner, A. Perrig. Practical Techniques for Searches on Encrypted Data. InProc. of
IEEE Symposium on Security and Privacy, pp. 44-55, 2000.

14

