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Abstract. A Private Information Retrieval (PIR) protocol enables a
user to retrieve a data item from a database while hiding the identity
of the item being retrieved. In a t-private, k-server PIR protocol the
database is replicated among k servers, and the user’s privacy is protected
from any collusion of up to t servers. The main cost-measure of such
protocols is the communication complexity of retrieving a single bit of
data.
This work addresses the information-theoretic setting for PIR, in which
the user’s privacy should be unconditionally protected from collusions
of servers. We present a unified general construction, whose abstract
components can be instantiated to yield both old and new families of PIR
protocols. A main ingredient in the new protocols is a generalization of a
solution by Babai, Kimmel, and Lokam to a communication complexity
problem in the so-called simultaneous messages model.
Our construction strictly improves upon previous constructions and re-
solves some previous anomalies. In particular, we obtain: (1) t-private
k-server PIR protocols with O(n1/b(2k−1)/tc) communication bits, where
n is the database size. For t > 1, this is a substantial asymptotic im-
provement over the previous state of the art; (2) a constant-factor im-
provement in the communication complexity of 1-private PIR, providing
the first improvement to the 2-server case since PIR protocols were in-
troduced; (3) efficient PIR protocols with logarithmic query length. The
latter protocols have applications to the construction of efficient families
of locally decodable codes over large alphabets and to PIR protocols with
reduced work by the servers.

1 Introduction

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data
item of its choice from a database, such that the server storing the database does
not gain information on the identity of the item being retrieved. For example,
an investor might want to know the value of a specific stock without revealing
which stock she is interested in. The problem was introduced by Chor, Goldreich,
Kushilevitz, and Sudan [11], and has since then attracted a considerable amount
of attention. In formalizing the problem, it is convenient to model the database
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by an n-bit string x, where the user, holding some retrieval index i, wishes to
learn the i-th data bit xi.

A trivial solution to the PIR problem is to send the entire database x the
user. However, while being perfectly private, the communication complexity of
this solution may be prohibitively large. Note that if the privacy constraint is
lifted, the (non-private) retrieval problem can be solved with only dlog2 ne + 1
bits of communication. Thus, the most significant goal of PIR-related research
has been to minimize the communication overhead imposed by the privacy con-
straint. Unfortunately, if the server is not allowed to gain any information about
the identity of the retrieved bit, then the linear communication complexity of the
trivial solution is optimal [11]. To overcome this problem, Chor et al. [11] sug-
gested that the user accesses k replicated copies of the database kept on different
servers, requiring that each individual server gets absolutely no information on
i. PIR in this setting is referred to as information-theoretic PIR.1 This naturally
generalizes to t-private PIR, which keeps i private from any collusion of t servers.

The best 1-private PIR protocols known to date are summarized below: (1)
a 2-server protocol with communication complexity of O(n1/3) bits [11]; (2)
a k-server protocol with O(n1/(2k−1)) communication bits, for any constant k
(Ambainis [1] improving on [11], see also Ishai and Kushilevitz [15]); and (3) an
O(log n)-server protocol with O(log2 n log log n) communication bits ([11], and
implicitly in Beaver and Feigenbaum [4]). For the more general case of t-private
PIR, the best previous bounds were obtained in [15], improving on [11]. To
present these bounds, it is convenient to use the following alternative formulation
of the question:

Given positive integers d and t, what is the least number of servers for
which there exists a t-private PIR protocol with communication com-
plexity O(n1/d)?

In [15] it was shown that k = min (bdt − (d + t − 3)/2c , dt − t + 1 − (d mod 2))
servers are sufficient. If t is fixed and d grows, the number of servers in this
bound is roughly (t − 1

2 )d.
No strong general lower bounds on PIR are known. Mann [20] obtained a

constant-factor improvement over the trivial log2 n bound, for any constant k.
In the 2-server case, much stronger lower bounds can be shown under the restric-
tion that the user reconstructs xi by computing the exclusive-or of a constant
number of bits sent by the servers, whose identity may depend on i (Karloff
and Schulman [17]). These results still leave an exponential gap between known
upper bounds and lower bounds. For a list of other PIR-related works the reader
can consult, e.g., [7].

A different approach for reducing the communication complexity of PIR is to
settle for computational privacy, i.e., privacy against computationally bounded
servers. Following a 2-server solution by Chor and Gilboa [10], Kushilevitz and
Ostrovsky [19] showed that in this setting a single server suffices for obtaining
1 The term “information-theoretic PIR” may also refer to protocols which leak a

negligible amount of information on i. However, there is no evidence that such a
relaxation is useful.
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sublinear communication, assuming a standard number-theoretic intractability
assumption. The most communication efficient single-server PIR protocol to date
is due to Cachin, Micali, and Stadler [9]; its security is based on a new number-
theoretic intractability assumption, and its communication complexity is polyno-
mial in log n and the security parameter. From a practical point of view, single-
server protocols have obvious advantages over multi-server protocols.2 However,
they have some inherent limitations which can only be avoided in a multi-server
setting. For instance, it is impossible for a (sublinear-communication) single-
server PIR protocol to have very short queries (say, O(log n)-bits long) sent
from the user to the server, or very short answers (say, one bit long) sent in
return. These two extreme types of PIR protocols, which can be realized in the
information-theoretic setting, have found different applications (Di-Crescenzo,
Ishai, and Ostrovsky [12], Beimel, Ishai, and Malkin [7]) and therefore serve
as an additional motivation for information-theoretic PIR. A different, coding-
related, motivation is discussed below.

Our results. We present a unified general framework for the construction of
PIR protocols, whose abstract components can be instantiated to meet or beat
all previously known upper bounds. In particular we obtain:

• t-private k-server PIR protocols with communication complexity
O(n1/b(2k−1)/tc). In other words, k > dt/2 is sufficient for the exis-
tence of a t-private k-server PIR protocol with O(n1/d) communication.
For t > 1, this is a substantial asymptotic improvement over the previous
state of the art [15]. For example, for t = 2 the communication complexity
of our protocol is O(n1/(k−1)), while the communication complexity of the
best previous protocol [15] is O(n1/b2k/3c). Our bound is essentially the best
one could hope for without asymptotically improving the bounds for the
1-private case.

• A constant-factor improvement in the communication complexity compared to
the 2-server protocol of [11] and its 1-private k-server generalizations from [1,
15]. In the 2-server case, this provides the first improvement since the problem
was introduced in [11].

• Efficient PIR protocols with logarithmic query length: We construct a t-
private k-server PIR protocol with O(log n) query bits and O(nt/k+ε) answer
bits, for every constant ε > 0. The 1-private protocols from this family were
used in [7] to save computation in PIR via preprocessing, and have interesting
applications, discussed below, to the construction of efficient locally decodable
codes over large alphabets.

It is interesting to note that in contrast to previous PIR protocols, in which
the user can recover xi by reading only a constant number of answer bits (whose
location depends only on i), most instances of our construction require the user
to read all answer bits and remember either the queries or the randomness
used to generate them. It is open whether the previous constructions of [15] (in
2 However, for practical sizes of databases and security parameter, known multi-server

(and even 2-server) protocols are much more efficient in computation and are typi-
cally even more communication-efficient than single-server protocols.
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particular, the t-private protocols for t > 1) can be improved if one insists on
the above “easy reconstruction” feature, which allows the user’s algorithm to be
implemented using logarithmic space.

Locally decodable codes. Information-theoretic PIR protocols have found a
different flavor of application, to the construction of locally decodable codes. A
locally decodable code allows to encode a database x into a string y over an
alphabet Σ, such that even if a large fraction of y is adversarially corrupted,
each bit of x can still be decoded with high probability by probing few (randomly
selected) locations in y. More formally, a code C : {0, 1}n → Σm is said to be
(k, δ, ρ)-locally decodable, if every bit xi of x can be decoded from y = C(x) with
success probability 1/2+ρ by probing k entries of y, even if up to a δ-fraction of
the m entries of y are corrupted. Katz and Trevisan [18] have shown an intimate
relation between such codes and information-theoretic PIR. In particular, any
information-theoretic PIR protocol can be converted into a locally decodable
code with related efficiency by concatenating the answers of all servers on all
possible queries. This motivates the construction of PIR protocols with short
queries.

The short-query instantiations of our PIR construction have an interesting in-
terpretation in terms of locally decodable codes. The main focus in the works [18,
14] has been on the following question. Suppose that ρ, δ are restricted to be
greater than some positive constant. Given a constant number of queries k and
a constant-size (say, binary) alphabet Σ, what is the minimal asymptotic growth
of the code length? Generalizing a PIR lower bound of [20], it is proved in [18]
that for any constant k the code length must be super-linear. For the case of
a linear code with k = 2 (non-adaptive) queries, an exponential lower bound
on m(n) has been obtained by Goldreich and Trevisan [14]. While no super-
polynomial lower bounds are known for the case k > 2, the best known upper
bound (obtained from PIR protocols with a single answer bit per server, see
Section 6) is m(n) = 2O(n1/(k−1)), which is exponential in n. Our construction
answers the following dual question: Suppose that we insist on the code being
efficient, namely of polynomial length. Then, how small can the alphabet Σ
be? More precisely, given a constant k, how small can Σk(n) be such that the
code length m(n) is polynomial and, as before, ρ(n), δ(n) are kept constant?
The short-query variants of our construction imply the following upper bound:
for any constants k ≥ 2 and ε > 0 it suffices to let Σk(n) = {0, 1}β(n), where
β(n) = O(n1/k+ε).

Organization. In Section 2 we give an overview of our unified approach for
constructing PIR protocols. In Section 3 we provide some necessary definitions.
In Section 4 we describe a meta-construction of PIR protocols, in Section 5 we
instantiate one of its crucial ingredients, and in Section 6 we derive new and old
families of PIR protocols as instances of the meta-construction from Section 4.
For lack of space we omitted most of the proofs. These can be found in the full
version of this paper [6].
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2 Overview of Techniques

At the heart of our constructions is a combination of two techniques.3

Reduction to polynomial evaluation. A first technique is a reduction of the
retrieval problem to the problem of multivariate polynomial evaluation. Specifi-
cally, the retrieval of xi, where the servers hold x and the user holds i, is reduced
to an evaluation of a multivariate polynomial px, held by the servers, on a point
E(i), which the user determines based on i. We refer to E(i) as the encoding of i.
As observed in [5] and, more generally, in [11], the degree of px can be decreased
by increasing the length of the encoding E(i) (i.e., the number of variables in
px). Originating in [4], different variants of this reduction have been implicitly or
explicitly used in virtually every PIR-related construction. Interestingly, encod-
ings realizing the optimal length-degree tradeoff, which were utilized in [11,12] to
obtain special families of PIR protocols with short answer length, could not be
used in protocols optimizing the total communication complexity [11,1,15]. We
remedy this situation in the current work, and consequently get a constant-factor
improvement to the communication complexity even in the 2-server case.

Simultaneous messages protocols for polynomial evaluation. A main in-
gredient in our new protocols is a generalization of a solution by Babai, Kimmel,
and Lokam [3] to a communication complexity problem of computing the gen-
eralized addressing function in the so-called simultaneous messages (SM) model.
Interestingly, this problem was motivated by circuit lower bounds questions,
completely unrelated to privacy or coding. Towards solving their problem, they
consider the following scenario. A degree-d m-variate polynomial p is known to
k players, and k points y1, y2, . . . , yk (each being an m-tuple of field elements)
are distributed among them such that player j knows all points except yj . An
external referee knows all k points yj but does not know p. How efficiently can
the value p(y1 + y2 + . . . + yk) be communicated to the referee if the players are
restricted to simultaneously sending messages to the referee?

A naive solution to the above problem is to have one of the players send an
entire description of p to the referee. Knowing all yj , the referee can then easily
compute the required output. A key observation made in [3] is that it is in fact
possible to do much better. By decomposing p(y1 + y2 + . . .+ yk) into terms and
assigning each term to a player having the least number of unknown values, it
is possible to write p(y1 + . . . + yk) as the sum of k lower degree polynomials in
the inputs, each known to one of the players. More precisely, player j can locally
compute from its inputs a degree-bd/kc polynomial pj with its unknown inputs
as indeterminates, such that p(y1 + . . . + yk) = p1(y1) + p2(y2) + . . . + pk(yk).
Then, by letting player j communicate the (much shorter) description of pj , the
referee can compute the required output. The amount of savings obtained by this
degree reduction technique depends on the values of the parameters m,d, and
k. In [3,2], due to constraints imposed by the specific problem they consider,
the degree-reduction technique is applied with rather inconvenient choices of
parameters. Thus, in their setting the full savings potential of the technique has
3 A restricted use of the same approach has been made in the companion work [7].
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not been realized. It turns out that in the PIR context, where there is more
freedom in the choice of parameters, the full spectrum of possible tradeoffs is
revealed.

It is instructive to look at three useful choices of parameters: (1) If d = 2k−1,
then the degree of each polynomial pj is only b(2k − 1)/kc = 1. When m >> d,
this 2k − 1 savings factor in the degree makes the description size of each pj

roughly the (2k − 1)-th root of the description size of p. (2) If d = k − 1, the
degree of each pj becomes 0, and consequently communicating each pj requires
sending a single field element. (3) Finally, if m >> d and d >> k, then the cost
of communicating pj is roughly the k-th root of that of communicating p. These
three examples, respectively, turn out to imply the existence of k-server PIR
protocols with: (1) both queries and answers of length O(n1/(2k−1)); (2) queries
of length O(n1/(k−1)) and answers of length O(1); (3) queries of length O(log n)
and answers of length O(n1/k+ε), for an arbitrarily small constant ε > 0.

Combining the two techniques. In the case of 1-private PIR, the two tech-
niques can be combined in the following natural way. On input i, the user com-
putes an encoding y = E(i) and the servers compute a degree-d polynomial px

such that xi = px(E(i)). To generate its queries, the user “secret-shares” E(i)
among the servers by first breaking it into otherwise-random vectors y1, . . . , yk

which add up to y, and then sending to each server Sj all vectors except yj .
Using the SM communication protocol described in the previous section, the
servers communicate xi = px(y) to the user.

This simple combination of the two techniques is already sufficient to yield
some of the improved constructions. In the remainder of this work we generalize
and improve the above solution in several different ways. First, we abstract its
crucial components and formulate a generic “meta-construction” in these ab-
stract terms. Second, we instantiate the abstract components to accommodate
more general scenarios, such as t-private PIR. In the full version of this pa-
per [6], we attempt at optimizing the amount of replication in the setting of [3],
i.e., use a more efficient secret-sharing scheme for distributing E(i), while main-
taining the quality of the solution. This motivates various extensions of the SM
communication model, which may be of independent interest.

3 Definitions

Notation. By [k] we denote the set {1, . . . , k}, and by
([k]

t

)
all subsets of [k]

of size t. For a k-tuple v and a set T ⊆ [k], let vT denote the restriction of v
to its T -entries. By Yj for some j we represent a variable, while by the lower
letter yj we represent an assignment to the former variable. By H we denote the
binary entropy function; that is, H(p) = −p log p − (1 − p) log(1 − p), where all
logarithms are taken to the base 2.

Polynomials. Let GF(q) denote the finite field of q elements. By F [Y1, . . . , Ym]
we denote the linear space of all polynomials in the indeterminates Y1, . . . , Ym

over the field F , and by Fd[Y1, . . . , Ym] its subspace consisting of all polynomials
whose total degree is at most d, and whose degree in each indeterminate is at most
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|F | − 1. (The last restriction guarantees that each polynomial in Fd[Y1, . . . , Ym]
represents a distinct function p : Fm → F .) A natural basis for this linear
space consists of all monic monomials satisfying the above degree restrictions.
The case F = GF(2) will be the most useful in this work. In this case, the
natural basis consists of all products of at most d distinct indeterminates. Hence,
dim(Fd[Y1, . . . , Ym]) =

∑d
w=0

(
m
w

)
for F = GF(2). We denote this dimension by

Λ(m, d) def=
∑d

w=0

(
m
w

)
. We will also be interested in Fd[Y1, . . . , Ym] where |F | > d.

In this case, the dimension of the space is
(
m+d

d

)
.

PIR protocols. We define single-round information-theoretic PIR protocols.
A k-server PIR protocol involves k servers S1, . . . ,Sk, each holding the same
n-bit string x (the database), and a user who wants to retrieve a bit xi of the
database.

Definition 1 (PIR). A k-server PIR protocol P = (R,Q1, . . . ,Qk,A1, . . . ,
Ak, C) consists of a probability distribution R and three types of algorithms:
query algorithms Qj, answering algorithms Aj, and a reconstruction algorithm
C. At the beginning of the protocol, the user picks a random string r from R.
For j = 1, . . . , k, it computes a query qj = Qj(i, r) and sends it to server Sj.
Each server responds with an answer aj = Aj(qj , x). Finally, the user computes
the bit xi by applying the reconstruction algorithm C(i, r, a1, . . . , ak). A protocol
as above is a t-private PIR protocol, if it satisfies: (1) correctness. The user
always correctly computes xi; (2) t-privacy. For every i1, i2 ∈ [n] and T ⊆ [k]
such that |T | = t, the distributions QT (i1,R) and QT (i2,R) are identical.

Linear secret-sharing. A t-private secret-sharing scheme allows a dealer to
distribute a secret s among k players, such that any set of at most t players
learns nothing on s from their joint shares, and any set of at least t + 1 players
can completely recover s from their shares. A secret-sharing scheme is said to
be linear over a field F if s ∈ F , and the share received by each player consists
of one or more linear combinations of the secret and r independently random
field elements (where the same random field elements are used for generating
all shares). A linear secret-sharing scheme is formally defined by a k-tuple L =
(L1, . . . , Lk) such that each Lj is a linear mapping from F × F r to F `j , where
`j is the j-th player’s share length. Finally, given a linear secret-sharing scheme
as above, a vector in Fm will be shared by independently sharing each of its m
entries. We next define two linear secret-sharing schemes that will be useful in
the paper.

Definition 2 (The CNF scheme [16]). This scheme may work over any finite
field (in fact, over any finite group), and proceeds as follows. To t-privately share
a secret s ∈ F :

– Additively share s into
(
k
t

)
shares, each labeled by a different set from

([k]
t

)
;

that is, s =
∑

T∈([k]
t ) rT , where the shares rT are otherwise-random field

elements.
– Distribute to each player Pj all shares rT such that j 6∈ T .
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The t-privacy of the above scheme follows from the fact that every t players miss
exactly one additive share rT (namely, the one labeled by their index set) and
every set of t+1 players views all shares. The share vector of each party consists
of

(
k−1

t

)
field elements.

Definition 3 (Shamir’s scheme [21]). Let F = GF(q), where q > k, and let
ω1, . . . , ωk be distinct nonzero elements of F . To t-privately share a secret s ∈ F ,
the dealer chooses t random elements a1, . . . , at, which together with the secret
s define a univariate polynomial p(Y ) def= atY

t + at−1Y
t−1 + . . . + a1Y + s, and

sends to the the j-th player the value p(ωj).

4 The Meta-construction

We describe our construction in terms of its abstract general components, and
specify some useful instantiations for each of these components. In Section 5 sev-
eral combinations of these instantiations are used for obtaining different families
of PIR protocols.

Building blocks. There are three parameters common to all of our construc-
tions: (1) a finite field F , (2) a degree parameter d, and (3) an encoding length
parameter m. The database x is always viewed as a vector in Fn. Some variants
of our construction use an additional block length parameter `. All variants of
our construction (as well as previous PIR protocols) can be cast in terms of the
following abstract building blocks:

Linear space of polynomials. Let V ⊆ Fd[Y1, . . . , Ym] be a linear space of
degree-d m-variate polynomials such that dim(V ) ≥ n. The three most useful
special cases are:
V1: The space Fd[Y1, . . . , Ym] where F = GF(2); m and d must satisfy
Λ(m, d) ≥ n.
V2: The space Fd[Y1, . . . , Ym] where |F | > d; here, m and d must satisfy(
m+d

d

) ≥ n.
V3: The linear subspace of Fd[Y1, . . . , Ym] such that F = GF(2) and V is
spanned by the following basis of monomials. Let ` be an additional block
length parameter, and let m = `d. We label the m indeterminate by Yg,h, where
g ∈ [d] and h ∈ [`]. The basis of V will include all monic monomials contain-
ing exactly one indeterminate from each block, i.e., all monomials of the form
Y1,h1Y2,h2 · · ·Yd,hd

. Since the number of such monomials is `d, the restriction on
the parameters in this case is `d ≥ n.

Low-degree encoding. A low-degree encoding (with respect to the polynomial
space V ) is a mapping E : [n] → Fm satisfying the following requirement: There
exist m-variate polynomials p1, p2, . . . , pn ∈ V such that ∀i, j ∈ [n], pi(E(j))
is 1 if i = j and is 0 otherwise. By elementary linear algebra, dim(V ) ≥ n
is a necessary and sufficient condition for the existence of such an encoding.
Given a low-degree encoding E and polynomials p1, p2, . . . , pn as above, we
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will associate with each database x ∈ Fn the polynomial px ∈ V defined by
px(Y1, . . . , Ym) =

∑n
i=1 xipi. Here x is fixed, and x1, . . . , xn are fixed coefficients

(and not variables). Note that px(E(i)) = xi for every i ∈ [n] and x ∈ Fn. With
each of the above linear spaces we associate a natural low-degree encoding (see
[6] for proofs of validity):4
E1: E(i) is the i-th vector in GF(2)m of Hamming weight at most d.
E2: Let ω0, . . . , ωd be distinct field elements. Then, E(i) is the i-th vector of the
form (ωf1 , . . . , ωfm) such that

∑m
j=1 fj ≤ d.

E3: Let (i1, . . . , id) be the d-digit base-` representation of i (that is, i =∑d
j=1 ij`

j−1). Then, E(i) is a concatenation of the length-` unit vectors
ei1 , ei2 , . . . , eid

. The validity of this encoding follows by letting pi = Y1,i1 · . . . ·
Yd,id

.

Linear secret-sharing scheme. Denoted by L. We will use either L = CNF
(defined in Definition 2) or L = Shamir (defined in Definition 3). In the full
version of this paper we also utilize a third scheme, which slightly optimizes
CNF.

Simultaneous messages communication protocol (abbreviated SM pro-
tocol). The fourth and most crucial building block is a communication protocol
for the following promise problem, defined by the instantiations of the previous
components V, E, and L. The problem generalizes the scenario described in Sec-
tion 2. The protocol, denoted P , involves a user U and k servers S1, . . . ,Sk.

– User’s inputs: Valid L-shares y1, . . . , yk of a point y ∈ Fm. (That is, the k
vectors yj can be obtained by applying L to each entry of y, and collecting
the shares of each player.) Moreover, it may be useful to rely on the fol-
lowing additional promise: y = E(i) for some i ∈ [n]. Most of the protocols
constructed in this paper do not make use of this additional promise.

– Servers’ inputs: All k servers hold a polynomial p ∈ V . In addition, each Sj

holds the share vector yj .
– Communication pattern: Each server Sj sends a single message to U based

on its inputs p, yj . We let βj denote a bound on the length of the message
sent by Sj .

– Output: U should output p(y).

In Section 5 we will describe our constructions of SM protocols P corresponding
to some choices of the space of polynomials V , the low degree encoding E, and
the linear secret-sharing scheme L.

Putting the pieces together. A 4-tuple (V, E, L, P ) instantiating the above
4 primitives defines a PIR protocol PIR(V, E, L, P ). The protocol proceeds as
follows.
4 Since the existence of an appropriate encoding is implied by dimension arguments,

the specific encoding being employed will usually not matter. In some cases, however,
the encoding can make a difference. Such a case is discussed in Section 5.
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– U lets y = E(i), and shares y according to L among the k servers. Let yj

denote the vector of shares received by Sj .
– Each server Sj lets p = px, and sends a message to U as specified by protocol

P on inputs (p, yj).
– U reconstructs xi = p(y) by applying the reconstruction function specified

in P to y1, . . . , yk and the k messages it received.

The following lemma summarizes some properties of the above protocol.
Lemma 1. PIR(V, E, L, P ) is a t-private k-server PIR protocol, in which the
user sends m`j field elements to each server Sj and receives βj bits from each
server (where `j is the share size defined by L and βj is the length of message
sent by Sj in P ).

Note that the only information that a server gets is a share of the encoding
E(i); the t-privacy of the secret sharing scheme ensures that a collusion of t
servers learns nothing on i. For the query complexity, recall that y = E(i) ∈ Fm

and the user shares each of the m coordinates of y independently. Thus, the
share size of server Sj is m`j , where `j is the share size defined by L for sharing
one coordinate (field element).

Some perspective concerning a typical choice of parameters is in place. In
the typical case where k is viewed as a constant, all `j are also constant, and so
the query complexity of PIR(V, E, L, P ) is O(m). If d is constant then, for any
of the three vector spaces V1,V2,V3, letting m = O(n1/d) suffices to meet the
dimension requirements. Thus, when both d, k are constants, the length of the
queries in PIR(V, E, L, P ) is O(n1/d) and the length of the answers is determined
by P .

In principle, the SM component in our construction could be replaced by a
more general interactive protocol. However, there is yet no evidence that such an
additional interaction may be helpful. Moreover, in defining an interactive vari-
ant of the fourth primitive one would have to take special care that the privacy
requirement is not violated by the interaction. In the current non-interactive
framework, the privacy property is guaranteed by the mere use of a t-private
secret-sharing scheme.

5 Simultaneous Messages Protocols

We next describe SM protocols corresponding to useful combinations of V , E,
and L. These may be viewed as the core of the PIR protocol.

Protocol P1. Protocol P1 will serve as our default protocol. It may be viewed
as a natural generalization of the protocol from [3]. The ingredients of this pro-
tocols are the polynomial space V1 = Fd[Y1, . . . , Ym] where F = GF(2), the
encoding E1 which encodes i as a vector in GF(2)m of weight ≤ d, and the
secret-sharing scheme CNF.

Lemma 2. For V = V1, E = E1, and L = CNF, there exists an SM protocol
P1 with message complexity βj = Λ(m, bdt/kc)(k−1

t−1

)bdt/kc
.
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Proof. Let y =
∑

T yT be an additive sharing of y induced by the CNF shar-
ing, such that the input yj of Sj is (yT )j /∈T . The servers’ goal is to com-
municate p(y) = p(

∑
T yT ) to U . Let Y = (YT,b)T∈([k]

t ),b∈[m], where each

variable YT,b corresponds to the input bit (yT )b, whose value is known to
all servers Sj such that j 6∈ T . Define a

(
k
t

)
m-variate polynomial q(Y ) def=

p(
∑

T∈([k]
t ) YT,1, . . . ,

∑
T∈([k]

t ) YT,m). Note that q has the same degree as p, and

q((yT )
T∈([k]

t )) = p(y). We consider the explicit representation of q as the sum of
monomials, and argue that for every monomial YT1,b1YT2,b2 . . . YTd′ ,bd′ of degree
d′ ≤ d there exist some j ∈ [k] such that at most bdt/kc variables YT,b with
j ∈ T appear in the monomial: Consider the multi-set T1 ∪ T2 ∪ . . . ∪ Td′ . This
multi-set contains d′t ≤ dt elements, thus there must be some j ∈ [k] that ap-
pears at most bdt/kc times in the multi-set. We partition the monomials of q
to k polynomials q1, . . . , qk such that qj contains only monomials in which the
number of the variables YT,b with j ∈ T is at most bdt/kc. Each monomial of q

is in exactly one polynomial qj , and therefore q(Y ) =
∑k

j=1 qj(Y ).
We are now ready to describe the protocol P1. Denote by Ȳ j the set

of variables whose values are unknown to the server Sj (that is, Ȳ j =
(YT,b)T∈([k]

t ),j∈T,b∈[m]) and by ȳj the corresponding values. Each Sj substi-

tutes the values yj of the variables it knows in qj to obtain a polynomial
q̂j(Ȳ j). The message of server Sj is a description of q̂j . The user, who knows
the assignments to all variables, reconstructs the desired value by computing∑k

j=1 q̂j(ȳj) = q((yT )
T∈([k]

t )) = p(y).

Message complexity. Recall that q̂j is a degree-bdt/kc multivariate polyno-
mial with m

(
k

t−1

)
variables. By the definition of q, not all monomials are possible:

no monomial contains two variables YT1,b and YT2,b for some b ∈ [m] and T1 6= T2.
Thus, to describe a possible monomial we need, for some w ∈ {0, . . . , bdt/kc},
to choose w indices in [m] and w sets of size t that contain j. Therefore,
the number of possible monomials of q̂j is at most

∑bdt/kc
w=0

(
m
w

)(
k−1
t−1

)w ≤
Λ(m, bdt/kc)(k−1

t−1

)bdt/kc
. Since each coefficient is from GF(2), the communica-

tion is as promised. ut

Protocol P2. Protocol P2 is useful for the construction of efficient PIR pro-
tocols with short answers (see Section 6). Unlike protocol P1, which can be
used with any combination of the parameters k, d, t, the applicability of P2 is
restricted to the case k > dt. That is, k = dt + 1 is the minimal sufficient num-
ber of servers. The first part of the following lemma is implicit in [4,5,11] and
a special case of the second part is implicit in [12,13]. The proof of the lemma
appears in the full version of this paper [6].

Lemma 3. For V = V2, E = E2, and L = Shamir, and assuming that k > dt
and |F | > k, there exists an SM protocol P2 in which each server sends a single
field element. Moreover, given the promise that p(y) ∈ F ′ for some subfield F ′

of F , it suffices for each server to send a single element of F ′.
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A special case of interest is when F ′ = GF(2) and F is a sufficiently large
extension field of F ′. In this case, each message in the SM protocol consists of a
single bit.

Protocol P3. Special cases of the protocol P3 are implicit in the 2-server PIR
construction from [11] and its k-server generalization from [15]. A useful feature
of this protocol is that it allows the user to compute his output by probing a
small number of bits from the received messages. We only formulate this protocol
for the 1-private case. Restricted generalizations to t-privacy may be obtained,
using the approach of [15]. However, unlike the previous protocols, we do not
know a “smooth” generalization to t-privacy. A proof of the following Lemma
appears in the full version [6].

Lemma 4. For V = V3, E = E3, and L = CNF, there exists an SM protocol
P3 with message complexity βj = `bd/kc( d

bd/kc
)

such that the user needs to read

only
(

d
bd/kc

)
bits from each message.

6 Families of PIR Protocols

We now derive several explicit families of PIR protocols from the meta-
construction.

Main family. Our main family of PIR protocols uses V1, E1, CNF, and P1.
Protocols from this family yield our main improvements to the known upper
bounds. We start with the general result, which follows from Lemmas 1 and 2,
and then consider some interesting special cases.

Theorem 1. Let m and d be positive integers such that Λ(m, d) ≥ n. Then, for
any k, t such that 1 ≤ t < k, there exists a t-private k-server PIR protocol with
(
k−1

t

)
m query bits and Λ(m, bdt/kc)(k−1

t−1

)bdt/kc
answer bits per server.

The total communication is optimized by letting d = b(2k − 1)/tc and m =
Θ(n1/d). Substituting these parameters in Theorem 1 gives the following explicit
bounds.

Corollary 1. For any 1 ≤ t < k there exist:

• A t-private k-server PIR protocol with Ok,t(n1/b(2k−1)/tc) communica-
tion bits; this is a significant asymptotic improvement over the previous
state of the art [15]. More precisely, the communication complexity is
O(k2

t

(
k
t

)
n1/b(2k−1)/tc).

• A 1-private k-server PIR protocol with k2((2k−1)!n)1/(2k−1) +k+k3 = O(k3

n1/(2k−1)) communication bits; this improves the previous best construc-
tion [15] by a constant factor which tends to e as k grows.

• A 1-private 2-server PIR protocol with 4(6n)1/3 + 2 ≈ 7.27n1/3 communica-
tion bits; in comparison, the communication complexity of the best previously
known 2-server protocol [11] is roughly 12n1/3.
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Another interesting case, discussed and used in [7], is when queries are short,
i.e., of length O(log n); such protocols are obtained by letting d = θm, where
0 ≤ θ ≤ 1/2 is some constant. Substituting m = (1/H(θ) + o(1)) log n and
d = bθmc in Theorem 1, and relying on the facts that limθ→0

H(θt/k)
H(θ) = t/k and

limθ→0
θ

H(θ) = 0, we obtain:
Corollary 2. For any constant integers 1 ≤ t < k and constant ε > 0, there
exists a t-private k-server protocol with O(log n) query bits and O(nt/k+ε) an-
swer bits. More precisely, for any 0 < θ ≤ 1/2 one can obtain query length
(
k−1

t

)
(1/H(θ) + o(1)) log n and answer length n(H(θt/k)+θ t

k log (k−1
t−1))/H(θ)+o(1).

As observed in [18], a 1-private k-server PIR protocol with query length α and
answer length β gives rise to a locally decodable code of length k · 2α over the
alphabet Σ = {0, 1}β : A string x ∈ {0, 1}n is encoded by concatenating the
answers of all servers on all possible queries, where x is viewed as the database.
If α = O(log n), then the code length is polynomial. By substituting t = 1 in
Corollary 2 and applying the above transformation we get:
Corollary 3. For any constant integer k ≥ 2 and constant ε > 0, there exist
positive constants δk, ρk, such that the following holds: There is a family C(n)
of polynomial-length (k, δk, ρk)-locally decodable codes over Σ(n) = {0, 1}β(n),
where β(n) = O(n1/k+ε).

Boolean family. We now derive the construction of the most efficient known
PIR protocols with a single answer bit per server. These are obtained by using
V2, E2, Shamir, and P2. Protocols from this family, utilized in [12,13], optimize
similar protocols from [4,5,11] in which each answer consists of a single element
from a moderately sized field. While the asymptotic communication complexity
of protocols from this family is worse than that of the best unrestricted protocols,
these protocols have found various applications. In particular they imply: (1) the
most efficient constructions of binary locally decodable codes known to date; (2)
very efficient PIR protocols for retrieving large records or “streams” of data; (3)
PIR protocols with an optimal amount of total on-line communication (see [12]);
(4) PIR protocols with poly-logarithmic amount of on-line work by the servers
(see [7]).
Theorem 2 (Implicit in [12]). Let m and d be positive integers such that(
m+d

d

) ≥ n. Then, for any t ≥ 1, there exists a t-private k-server PIR protocol
with k = dt+1 servers, dlog(k +1)em query bits per server, and a single answer
bit per server.

Corollary 4. For any constant d, t ≥ 1 there is a t-private PIR protocol with
k = dt + 1 servers, O(n1/d) query bits, and a single answer bit per server.

Cube family. Our last family of protocols generalizes the 2-server protocol
from [11] and its k-server generalization from [15]. It relies on V3, E3, CNF,
and P3 as building blocks. The communication in these protocols is not optimal,
but they have the advantage of requiring the user to read fewer bits from the
answers. These protocols have the interpretation of utilizing the “combinatorial
cubes” geometry which was first used in [11]. We start with the general result,
and then consider interesting special cases.
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Theorem 3 (Generalizing [11,15]). Let d and ` be positive integers such that
`d ≥ n. Then, for any k ≥ 2 there exists a 1-private k-server PIR protocol with
(k − 1)d` query bits per server and `bd/kc( d

bd/kc
)

answer bits per server, in which

the user needs to read only
(

d
bd/kc

)
bits from each answer.

Corollary 5, which already appears in [11,15], minimizes the total communica-
tion.
Corollary 5 ([11,15]). For any k ≥ 2 there exists a 1-private k-server PIR
protocol with O(k3· n1/(2k−1)) communication bits in which the user reads only
2k − 1 bits from each answer.
As a special case, utilized in [7], we may get protocols with logarithmic query
length.
Corollary 6. For any integer k ≥ 2 and δ < 1, there exists a 1-private
k-server PIR protocol with query length O(k21/δδ log n) and answer length
O(n1/k+H(1/k)δ) in which the user reads only O(nH(1/k)δ) bits from each an-
swer.
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