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Abstract 

Avis, D., P. Erdiis and J. Path, Distinct distances determined by subsets of a point in space, 

Computational Geometry: Theory and Applications 1 (1991) l-l 1. 

We answer the following question posed by Paul Erdiis and George Purdy: determine the 

largest number fd(k) = f with the property that almost all k-element subsets of any n-element 

set in [Wd determine at least f distinct distances, for all sufficiently large n. For d = 2 we 

investigate the asymptotic behaviour of the maximum number of k-element subsets of a set of n 

points, each subset determining at most i distinct distances, for some prespecitied number i. We 

also show that if k = o(n”‘), almost all k-element subsets of a planar point set determine 

distinct distances. 

1. Introduction 

Let k, n be natural numbers, k fixed and II very large. Given a set of k points 

Sk = {PI, . . . , pk} in Euclidean d-space, let Ipi -pjl denote the distance between 

pi and pj, and let D(&) denote the number of distinct values of Ipi -pjI, 

1 s i <j s k. The following problem was raised by Erdiis and Purdy [5]. 

Determine the largest number fd(k) =f with the property that almost all 
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k-element subsets of any n-element set S c Rd determine at least f distinct 

distances. that is 

as n tends to infinity. In Sections 2 and 3 we obtain matching upper and lower 

bounds for&(k) when d > 3. 

It is not difficult to see that f,(k) =f2(k) = ($) f or every integer k. In fact, these 

equations follow from the general theory developed in Section 3. As ErdGs and 

Purdy suggested almost 20 years ago, it might be interesting to investigate the 

following more delicate question. Given 0 < i s ($), determine or estimate the 

asymptotic behaviour of the function hik(n), the maximum number of k-element 

subsets S, of an n element set S s lRd with the property that D(&) c i, that is, S, 

determines at most i distinct distances. Obviously, 

hik(n) = o(n”) for all i <fd(k), 

i~>~(n) = &(nk) for all i >fd(k). 

(For nonnegative functions f and g defined on the natural numbers, we write 

f(n) = Q&(n)) if f(n) 2 c g(n) for some positive constant c and all sufficiently 

large n.) However, even in the plane it seems to be a hopelessly difficult task to 

determine the exact order of magnitude of these functions. For simplicity, we 

shall write hivk(n) instead of hsk(n). In particular, we are very far from knowing 

the answer to the following old problem of Erdiis: What is the smallest value k(i) 
for which 

hWi)(n) = 0 

holds for all n? It is conjectured that k(i) = O(i logl” i), and the best currently 

known bound k(i) < i5’4 log’ i is due to Chung, Szemeredi and Trotter [l]. In 

Section 4 we obtain some results on /z(~)-‘,~ for 1~ i s k - 2. 

2. Upper bound for f,(k) 

For d 2 3 upper bounds on fd(k) come from the so-called Lenz examples (see 

[3]). For even d, set t = d/2, and fix k. For any give large n, distribute n points as 

evenly as possible amongst t mutually orthogonal unit circles with common 

centre, so that each circle contains either [n/t] or [n/t] points. Every pair of 

points chosen from distinct circles determines the same distance. Now consider a 

k-tuple Sk where the points are again chosen as evenly as possible from the t 
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circles. Then it can easily be verified that D(S,) ~g,(k) where 

0 k = 1, d even, t = d/2; 

gAk) = 1 k = 2, d even, t = d/2; (1) 
g,(k - 1) + [(k - 1)/t] k > 3, d even, t = d/2. 

It is easy to see that we can choose an E > 0 for which at least snk k-subsets of the 

at points have the above property. This implies that&(k) d gd(k). 

For odd d, set t = [d/2], and fix k. For any given large n, distribute y1 points as 

evenly as possible amongst t sets consisting of t - 1 mutually orthogonal unit 

circles with common centre and the line passing through the common centre 

orthogonal to all of the circles. Now again every pair of points chosen from 

distinct circles determines the same distance. However the points on the line each 

determine a distinct distance to the circles. Now consider a k-tuple & where the 

points are again chosen as evenly as possible from the t sets. In case of an uneven 

division, we choose [k/t] points from the line. Then it can easily be verified that 

D(&) S g,(k) where 

0 k = 1, d odd, t = [d/2] ; 

g&k) = 1 k = 2, d odd, t = [d/2] ; (2) 
g,(k - 1) + Lklt] k 2 3, d odd, t = [d/2]. 

Again, this implies that &(k) Cg,(k). 0 ur main result is to show that these 

bounds are in fact tight, that is&(k) = g,(k). 

It is convenient to get a closed form expression for g,(k), which we now do in 

terms of the Turan number T(k, t + l), which is the maximum number of edges 

in a graph on k vertices which does not contain a K,,,. Tut-an showed that 

T(k t + 1) = ct - l)(k2 - r2> + r f 
2t 0 2 

where r is the remainder of k upon division by t. This bound is obtained for the 

so-called Turin graph, that is, a complete t-partite graph formed by distributing 

the k points into t parts as evenly as possible. Consider the Lenz example with d 

even and t = d/2. The number of distinct distances in an evenly distributed 

k-tuple is just the number of edges in the complement of the Turan graph plus 

one for the distance between the circles, so that 

gd(k) = (‘I) - T(k, t + 1) + 1, d even. (I’) 

When d is odd, let t = [d/2]. Then the number of distinct distances in an evenly 

distributed k-tuple in our construction is the number of edges in the complement 

of the Turan graph, plus one for each point on the line, and when d 2 5, plus one 
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for the distance between the circles. Therefore 

a(k) = (‘Ii - T(k t + 1) + [;I + &>3), d odd, (2’) 

where ltd,3) is the indicator function that is zero unless d > 3 and one otherwise. 

3. Lower bound on f,(k) 

For large at and fixed d 2 3, let S be a set of n points in [Wd. Two ordered 

k-tuples of points S, = (pi, . . . , pk) and S; = (pi, . . . , p;) are said to have the 

same type if 

Ipi -piI = lpg -phi if and only if IpI -pll = Ipi -p;11 for all i, i, g, h. 

Recalling that D(&) denotes the number of distinct distances in S,, we clearly 

have D(S,) = D(S;) for any two k-tuples S,, S; having the same type. Let 

T=(T,,..., T,} be a set of k triples, where T ES. We say that T is type 
invariant if all k-tuples S; = (p;, . . . , p;) with pi E T (1 c i c k) have the same 

type. If T is type invariant, we define D(T) = D(&). We call S, a representative 
k-tuple of T. The role of type invariance is shown in the following lemma. 

Lemma 3.1. Let d, k, w be fixed integers, and fix E > 0. Then there exists an 
integer no = n,,(d, k, w, E) with the following property. Any set S of n 2 n, points 
in Rd for which there are at least enk k-tuples that determine w distinct distances 
contains a type invariant set of k triples T = { T, , . . . , T,}, with D(T) = w. 

Proof. Let S satisfy the condition of the lemma, and let H denote the k-uniform 

hypergraph consisting of the k-tuples described. It follows from a well-known 

result of Erdiis that we can divide S into disjoint parts V,, . . . , vk and find an 

E’ > 0 so that there are at least e’nk hyperedges in H having precisely one point 

from each v. In fact I’ = (k!/kk) E will do. Let H’ denote the subhypergraph 

consisting of these k-tuples. Since the total number of possible types of k-tuples is 

at most ($)‘“‘, we can find an E* > 0 so that at least e*nk k-tuples in H’ have the 

same type. Let H* denote the subhypergraph of H’ consisting of these k-tuples. 

Now E* is independent of n. It follows from another well-known theorem of 

Erdiis [4] that if it is sufficiently large, there is a system of triples T c v, such that 

every k-tuple with a point from each ‘I;: is included in H*. Therefore T = 

{T,, . . . , T,} is a type invariant triple system with D(T) = w. 0 

Given a type invariant triple system T, we define an edge coloured graph 

G = G(T) as follows. The vertices of G are the k triples in T. Let Sk = 

{PI>. . . , pk} be a representative k-tuple for T. Then (11, q) is an edge of G 

whenever Ipi -piI = Ipg -phi for some {g, h} # {i, j}. Furthermore, edges are 
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given the same colour whenever their lengths are the same. Let G denote the 

complement of G. It is immediate from the definitions that D(T) is equal to the 

number of edges in G plus the number of edge colours. Each edge in G implies 

certain geometric constraints on the triples defining its endpoints. These are 

summarized in the following lemma. 

Lemma 3.2. Let (T, T,) and (T,, Th) be monochromatic edges of the graph 
G = G(T) defined above. 

(i) If i, j, g, h are all distinct, then T. and 17; determine two circles C, and C, 
with common centre and lying in two orthogonal 2-flats. 

(ii) If i, j, g are distinct and h = j, then either case (i) occurs with Tg lying on 
Ci, or ?; lies on a line 1 orthogonal to, and passing through the common centre of, 
circles C, and C, determined by T. and T,. Ci and C, need not be orthogonal, 

We call a vertex 7;: that is not isolated in G linear if its points lie on a line, and 

circular otherwise. Based on the above lemma, we have that G(T) satisfies the 

following combinatorial properties describing G(T). 

Lemma 3.3. For d 2 3, let t = [d/2]. 
(i) G(T) cannot contain Kttl as a subgraph. 

(ii) If d is odd then G(T) cannot contain a K, in which all of the vertices are 
circular. 

(iii) If T is linear, then either all edges of a given colour are incident on ?] or 
none are. 

Proof. (i) Suppose G = G(T) contained a K,+,. Each edge colour in G occurs at 

least twice. Therefore by Lemma 3.2, each vertex of the K,,, corresponds to 

some triple T that lies in a subspace orthogonal to the triples corresponding to 

each of the other t vertices. Further at most one of these vertices can be linear. 

Therefore the K,+, spans 2t + 1 dimensions, a contradiction. 

(ii) Arguing similarly to (i), the existence of such a K, would require 2t 
dimensions, a contradiction. 

(iii) Suppose T is linear and edge (7;, q) is red. If there is a red edge (T,, T,) 

where {i, j) f {g, h), we can apply Lemma 3.2(i). But this contradicts the fact 

that T is linear. 0 

Finally, before proving the main lemma we need a couple of technical results 

that are contained in the following lemma. 

Lemma 3.4. For natural numbers k * t 2 2: 

(i) x[k$]=k-t+L 

(ii) T(k, t + 1) 2 T(k, t) + 
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Proof. (i) This is easily verified for k = t. Otherwise 

(ii) Recall that T(k, t + 1) counts the number of edges in a complete t-partite 

graph on k vertices with the vertices as evenly distributed as possible. We 

construct a complete (t - 1)-partite graph with vertices as evenly distributed as 

possible and T(k, t) edges from this graph as follows: Choose a part with [k/t] 
vertices, and sequentially move each vertex to one of the other t - 1 parts that 

has minimum cardinality. The vertex moved is made adjacent to all vertices that 

are not in its new part. Since the cardinality of the new part is at least [k/t], the 

number of edges in the graph goes down by at least one at each step. The result 

follows. 0 

We are now ready to prove the main lemma about type invariant triple 

systems. 

Lemma 3.5. For a type invariant triple system T containing k triples of points in 
Rd, d 2 3, 

Proof. Let t = [d/2] and let G = G(T) be the edge coloured graph described 

above defined on T. By Lemma 3.3(i), G cannot contain a K,,,. Therefore G’, 

the complement of G, contains at least (“2) - T(k, t + 1) edges. Recall that the 

number of distinct distances in T is the sum of the number of colours in G and the 

number of edges in its complement. If d is even we have from (1’) that 

D(T) 2 (;) - T(k, t + 1) + 1 = g,(k), 

as required. 

The case where d is odd is more difficult and we proceed by induction on k. We 

have trivially that D(T) Sgd(k) for k St - 1. Fix some k 2 t and assume 

inductively that D(T) 2 gd(j) for i d k - 1. We first suppose that G has no K, as a 

subgraph. If d = 3 then G has no edges and all distances are distinct. If d 2 5, 
then the complement G has at least (‘;) - T(k, t) edges, so 

D(T) 2 (;) - T(k, t) + 1 C= (;> - T(k, t + 1) + I;] + 1 =&(k), 

where the second inequality follows from Lemma 3.4(ii). 

We now assume that G contains a K,, which by Lemma 3.3(ii) has at least one 

linear vertex, say z. If k = t we are done: this case is impossible for d = 3, and 

for d 2 5 G must have at least two colours, so D(T) 2 2 =&l(t). If k = t + 1 then 
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G contains at least one edge (since there can be no K,,,), the edges of G require 

two colours if d > 3 and one colour if d = 3, so D(T) Z= gd(t + 1) as required. So 

we may assume k > f + 1. By Lemma 3.3(iii), there must be some colour, say red, 

for which all the red edges are incident on r. Since there can be no K,,,, each of 

the k - t vertices of G not in the K, must be non-adjacent to at least one vertex in 

the K,. Consider deleting the t triples corresponding to the vertices of the K, from 

the k triple system T obtaining the k - t triple system T’. Since T’ is also type 

invariant, we may apply the inductive hypothesis to it. Let G’ = G(T’). The 

number of colours in G’ is at least one less than the number of colours in G. The 

number of edges in G’ is at least k -t less than the number of edges in G. 

Therefore 

D(T)aD(T’)+l+k-t>g,(k-t)+l+k-t 

=gd(k)+l+k-t-‘s 
i=O 

= gd(k) 

as required. The first equation above comes from iterating Equation (2), the 

second follows from Lemma 3.4(i). 0 

We can now prove the main theorem. 

Theorem 3.6. For all d 2 3, fd(k) = g,(k). 

Proof. In >Section 2 we showed that fd(k) sgd(k), so it remains to show that 

g,(k) is also a lower bound. Let t = [d/2]. Assume that there is an E > 0 for 

which one can find arbitrarily large sets of n points where at least .snk of the 

k-subsets determine w distinct distances. By Lemma 3.1, we can find a type 

invariant triple system T = {T,, . . . , rk} which also determines w distinct 

distances. From Lemma 3.5 we have w age, completing the proof. 0 

4. Results for d = 2 

In this section we obtain some results of hisk(n), the maximum number of 

k-element subsets & of a planar Set of IZ points with the property that D(&,) =Z i. 

Proposition 4.1. Let k 2 3, 2 =S i s k - 2 b e xe and let n tend to infinity. Then: fi d 

(i) Q(nk-’ log n) < h(~)-l~k(n) < O(rzkpi”), 

(ii) Q(nk-‘) < h(g)-r*k(n) c O(nk-‘). 

Proof. (i) The number of isosceles triangles determined by the points of an n “* by 

n1’2 piece of the integer lattice is at least cn2 log n, for some positive constant c. 
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For each isosceles triangle we can pick k - 3 other points arbitrarily, to obtain a 

k-element subset with at most (t) - 1 distinct distances. This shows the lower 

bound. On the other hand, the number of those k-element subsets of an 

n-element set S which contain two element equidistant from a third one is at most 

= O(nk-2’3), 

because the first term of this product is known to be 0(n7’3) [6]. The number of 

those k-element subsets of S which contain two disjoint pairs determining the 

same distance, is at most 

where m(S, A) denotes the number of point pairs in S determining distance A. 

Thus, C,m(s, A) = (‘;) and by [7] and [2], m(s, A) ccn4 for every A. This 

implies that the above expression cannot exceed 

proving the upper bound in (i). For part (ii) of the proposition, we record the fact 

that the number of 4-tuples consisting of two disjoint pairs of vertices determining 

the same distance is O(n’““). 

(ii) For the lo wer bound, it suffices to consider i = k - 2. Let S be an 

n-element .set consisting of a point p and n - 1 points equidistant from p. Then 

any k-element subset of S which contains p determines at most ($) - k + 2 distinct 

distances, giving the lower bound. For the upper bound it suffices to consider 

i = 2. Let us consider an n-element point set S in the plane, and let S, be a 

k-element subset of S that determines at most (t) - 2 distinct distances. Let Gk be 

an edge coloured graph with vertex set V(G,) = S, = {pl, . . . , pk}, two vertices 

pQ and pb being joined by an edge if and only if Ipa - p6 I= Ipc - pdl for some 

{c, d} # {a, b}. S’ mce S, determines (‘;) - 2 distinct distances, colours red and 

blue suffice. We consider five cases. 

Case 1: Gk contains three independent monochromatic edges. 

We proceed as in part (i) of the proposition. The number of such k-element 

subsets is at most 
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Case 2: Gk contains disjoint red and blue isosceles triangles. 

The number of 6-tuples determining two disjoint isoscles triangles is at most the 

square of the total number of isosceles triangles determined by the set of points, 

which is 0(n’4’3). Thus the number of such k-element subsets is at most O(nk-‘). 
Case 3: Gk contains a (say) red isosceles triangle and two blue edges, which are 

all mutually disjoint. 
The number of such 7-tuples is at most the number of isosceles triangles times 

the number of 4-tuples determining two monochromatic edges. From part (i) of 

the proposition, this is at most 0(n7’3)O(n10’3) = O(n”). Again the number of 

k-element subsets for this case is at most O(nk-‘). 
Case 4: Gk contains two red edges and two blue edges, which are all mutually 

disjoint. 
The number of such 8-tuples is at most 0(n10’3)O(n10’3) = O(n’), and the 

number of k-element subsets for this case is at most O(nk-‘). 
Case 5: There is a point pa in Gk that is (a) incident to 3 edges of the same 

colour, or (b) incident to at least one red edge and at least one blue edge, or (c) 
incident to 2 edges of the same colour and Gk is monochromatic. 

We want to assign to each such k-element subset S, 5 S a (k - 1)-element 

subset S; E S, so that every (k - l)-tuple is assigned to only a bounded number of 

k-tuples. This can be done as follows. Set Sk = S, - {pa}. Given S; and Gk, the 

location of pa is pretty much determined. If pa has degree at least 3 in Gk then its 

position is uniquely determined. Otherwise there are at most 2 possible locations 

for pa. Now for each (k - l)-tuple S’ s S there are at most c,kh different k-tuples 

S, with Sk = S’, for some positive constant c,. To see this, note that the position 

of pa is determined (up to a constant number of locations) by three points in Case 

5(a), at most six points in Case 5(b), and at most four points in Case 5(c). This 

shows that the number of k-tuples satisfying the condition of Case 4 is at most 

~,k~(~ !! ,) = O(nk-‘). 

Cases l-5 are exhaustive, so we have shown that the number of k-tuples 

determining at most (“2) - 2 distinct distances is at most O(nk-‘) completing the 

proof of the proposition. 0 

Until now k was always assumed to be fixed as n tended to infinity. Next we 

investigate how fast k can grow with n so that it still remains true that almost all 

(in the sense defined in the introduction) k-element subsets of any set of n points 

in the plane determine (5) distinct distances. 

Theorem 4.2. Let n tend to infinity, k = o(nli7). Then almost all k-element subsets 
of a set S of n points in the plane determine (5) distinct distances. 

Proof. We prove the equivalent statement that there are at least (1 - o(l))n” 

ordered k-tuples that determine distinct distances. Let S be any set of n points in 

the plane. A point p E S is called centraf if there is a circle around p passing 



10 D. Avis, P. Erdiis, J. Path 

through at least n” elements of S. According to a theorem of Clarkson et al. [2] 

the maximum number of incidences among n points and m circles in the plane is 

O(n3’5m4’5 + n + WI). Hence, letting m denote the number of central points of S, 

we obtain 

mn 3’7 = 0(n3’5m4’5 + n + m) 

and SO m = O(n@‘). A straight line I is called rich if 1 contains at least nl” 

elements of S. It is easy to see that the number of rich lines r = O(n”*). 
Let us define a large number of ordered k-tuples of S by the following 

procedure. Pick any noncentral point p1 E S. If pl, p2, . . . , pi have already been 

determined for some i < k so that all distances dl, d2, . . . , d,;, induced by them 

are different, then we choose picl to be any point of S satisfying the following 

properties: 

(i) pi+1 is not central; 

(ii) lpi+1 -paI +4 (a si, b s G)); 

(iii) pi+1 is not the mirror image of pa with respect to a rich line 1 (a s i); 
(iv) pi+I does not lie on the perpendicular bisector of pa and p., (a, u’ 6 i). 
Let n0), n(ii), nCiS, and nCiV) denote the number of points in S violating property 

(i)-(iv), respectively. Obviously, we have n(‘) G m = 0(n6”), and n(“‘) G ir = 

iO(nl’*). The bound 

nW s i i 0 2n 
317 

follows from the fact that no pn is central, thus the circle of radius db around pa 
passes through at most n3/7 points of S. Finally 

n(iv) c i 0 2 
nl’* 

because the perpendicular bisector of pI1 and pa, cannot be rich. 

Thus the number of different ways we can define an ordered k-tuple pl, . . . , pk 
by the above procedure is at least 

,g, (n - i - 0(n6”) - i( i)n”’ - iO(nl’*) - (i)nl”) 2 nke-ck’n1’7 = (1 - o(l))n”, 

provided that k = o(nl”), and the result follows. 0 

It is easy to see that if we choose n equidistant points along a line and let 

k = Q(n”4), then a positive percentage of all k-tuples determine fewer than (t) 

distinct distances. A simple calculation along the above lines shows that this 

bound on k cannot be improved, as the following holds. 

Proposition 4.3. Let n tend to infinity and let k = o(n1’4). Then alyost all 
k-element subsets of a set of k points on a line determine (5) distinct distances. 
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