
SIAM J. COMPUT.
Vol. 23, No. 3, pp. 563-572, June 1994

1994 Society for Industrial and Applied Mathematics
007

SUBQUADRATIC SIMULATIONS OF BALANCED FORMULAE
BY BRANCHING PROGRAMS *

JIN-YI CAIt Ant) RICHARD J. LIPTON

Abstract. This paper considers Boolean formulae and their simulations by bounded width branching programs.
It is shown that every balanced Boolean formula of size s can be simulated by a constant width (width 5) branching
program of length s 1.81 l.... A lower bound for the translational cost from formulae to permutation branching programs
is also presented.

Key words, branching programs, Boolean formulae, Boolean circuits, group theory

AMS subject classifications. 68Q 15, 68Q25

1. Introduction. In a beautiful paper, Barrington [B] showed that the class of languages
recognized by (nonuniform) NC circuits (fan-in 2, depth O(log n) on n inputs) is identical
to the class recognized by bounded width branching program with polynomial length. His
main motivation was to resolve a conjecture that had been made by Borodin et al. [BDFP].
They had conjectured the opposite is true, namely, that bounded width computations requires
exponential length to simulate NC; in particular, the majority function requires exponential
length.

Barrington showed that any balanced Boolean formula of depth d can be recognized by a
branching program of width 5 and length (2a)2. Thus, if an NC function is represented by a
balanced tree of depth d (so the size s of the tree is roughly 2a), then the length ofthe branching
program will be s2, quadratic in the size of the tree. (For simplicity, we assume our balanced
trees are fully balanced binary trees, as in Barrington’s paper. Although our construction works
for trees not fully balanced, the estimate of the length is more complicated.) Barrington’s work
has been generalized by Ben-Or and Cleve [BC] to algebraic formulae. Their simulation, which
uses a construction similar to Barrington’s, also has a quadratic increase in the length.

The first set of results in this paper is to improve on the upper bound established by
Barrington. We show that, for width 5 branching programs, the exponent 2 in Barrington’s
construction can be improved to 1.811 Then in 5 we present a lower bound on the
translational cost from formulae to branching programs over any finite groups.

Our primary motivation for this work is to study branching programs and the important
class NC [Pi][Co]. If we can shed further light on the relationship between branching
programs and the class NC in the attempt to lower the exponent of the cost of simulating
NC by branching programs, the study will have proved to be worthwhile.

Specifically, we would like to sharpen the estimate of the translational cost from Boolean
formulae to branching programs. The class of balanced Boolean formulae of polynomial size
is the same as NC; thus, this also provides improved simulation of NC by branching pro-
grams, although in general, another polynomial factor will appear [Sp], just as in Barrington’s
simulation. For the class of balanced Boolean formulae, one referee points out that, in fact,
people have thought that the quadratic bound of Barrington was optimal, before the current

paper. Also, understanding how to encode information into simple groups may help shed light

*Received by the editors May 7, 1990; accepted for publication (in revised form) March 3, 1993. A preliminary
version of this paper appeared in the Annual Symposium on Foundations of Computer Science 1989.

tDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544 (jyc@cs.
princeton, edu). The work of this author was supported by National Science Foundation grants CGR-8709818
and CCR-9057986.

;Department of Computer Science, Princeton University, Princeton, New Jersey 08544 (rjl@cs.
princeton, edu). The work of this author was supported by Defense Advanced Research Projects Agency and
Office of Naval Research grants N00014-85-C-0456 and N00014-95-K-0465.

563

564 JIN-YI CAI AND RICHARD J. LIPTON

onto why no construction seems possible in solvable groups. These questions are intimately
related to constant depth circuits with modulo p gates for a fixed finite set of primes p.

Unlike Barrington’s construction, our branching programs in this paper use subprograms
that are not restricted to have only two output values for intermediate steps, although the final
output is still Boolean. The question of this so-called "weak" versus "strong" representation,
namely, whether the less restrictive weak representation (with possibly more than two output
values in intermediate steps) is more powerful than strong representation (with exactly two

outputs), has been of interest in other upper/lower bound proofs. The present paper provides
quantitative evidence that, for branching programs, indeed the less restrictive representation
is more powerful.

There already has been some extension of our work since a preliminary version [CL] of
this paper appeared in FOCS ’89. Cleve [C1] has proved one of our original conjectures: that
indeed the exponent can be reduced to + at the cost of increased (depending on but still
constant) width for the simulating branching program. The width achieved is rather large, and
the theoretical question of whether the increase is necessary is still open.

Our lower bound takes a first step toward this direction. Using a Ramsey-type argument,
we show that over any finite group there must be a superlinear increase in the length in general.
We establish the first superlinear lower bound for a class of branching programs that compute
functions with linear formula size.

2. Preliminaries. The branching program model is a generalization of the binary de-
cision tree model. We consider a branching program as given by a leveled directed acyclic
graph. It has a "start" node. All links point from nodes of one level to the next, and all nodes of
the last level are terminal nodes, labeled accept or reject. Each nonterminal node is labeled by
a Boolean variable and has two links labeled true orfalse. A setting of the Boolean variables
determines a unique path from the start node to a terminal node. The complexity, measures
are its width and length (see [B] for details).

We assume our NC circuits are given by balanced binary trees of depth O(log n). In
this paper, we speak of "size" as the tree size, or formula size, and circuits as balanced
Boolean formulae. In case the tree is not balanced, one can always balance the tree (at the
cost of a polynomial blow up of the circuit size). It is also well known that any NC circuit
can be simulated by a Boolean formula of polynomial size. Note that the quadratic cost of
Barrington’s simulation is also measured in terms of the balanced binary tree size of the circuit.
To compare the cost of our simulation with that of Barrington’s, we just consider balanced
Boolean formulae.

We use some elementary notions and results of group theory; they can be found in any
standard textbook in that subject (e.g., [H]).

3. A subquadratic simulation. We first review Barrington’s construction [B]. Suppose
an AND gate, f/’, g, is given. Let’s represent the truth values of f and g (true or false)
by some elements of a finite simple group in such a way that the AND gate f/ g can be
represented likewise. This can be accomplished as follows. Represent "f true" by some

5-cycle a A5 and "f false" by the identity ,45, where A,, is the alternating group
on n letters. Represent g by some b 6 A5 and likewise. Call the representation ot and/3,
respectively. Consider the commutator [or,], namely, the representation c/ot-/-, where
say, c- a-1 or depending on "f true" or "f false," respectively. Because the
identity commutes with any element of the group, we see immediately that the commutator
evaluates to if f/ g is false. The commutator construction is completed by choosing a and
b carefully so that the commutator [a, b] is yet another 5-cycle. The case with an OR gate
is dual. It should be clear how this can be translated to a statement about width 5 branching
programs.

SUBQUADRATIC SIMULATIONS 565

We note that by using a commutator at every level of a Boolean formula, the overhead
is quadratic, that is, for a Boolean formula of size s, the length of the simulating branching
program using this construction has length s2.

We shall first give some intuitive ideas leading toward a subquadratic simulation of a
Boolean formula. Without loss of generality, we assume our Boolean formulae are given by
binary trees of depth O (log n) and the AND and OR gates alternate at every level. We indicate
the modifications needed when the Boolean formulae do not conform to the requirements of
strict alternation.

Again, assume we are given f/x g. It is apparent that if we solely depend on commutators,
we necessarily end up with a quadratic blowup. On the other hand, with any simulation (without
global reconfiguration), the best one can hope for is linear (or close to) linear overhead. If
we simply concatenate the branching programs representing f and g, in other words, if we
multiply the respective representations instead offorming their commutator, we get the optimal
linear overhead. However, over a group, this necessarily will produce multiple representations
for f/x g for (at least) one of the truth values. This cannot be continued indefinitely, as the
sets of representatives for true and false must be kept disjoint. Thus, it appears that certain
"cleanup" steps must be taken.

We show that by carefully combining multiplication with commutators, one can simulate
a Boolean formula more efficiently, that is, with a simulation of subquadratic length.

Any balanced Boolean formula of depth d can be expressed as u/x (v x/(x/x y)), u v
(v v (x/x y)), u v (v/x x/x y), or u v (v v x v y) or their duals, where u is of depth d 1, v
is of depth d 2, and x and y are of depth d 3, respectively.

LetF=u/x(vv(x/xy)). Leta (14235),b= (12345),c= (14352),and
d (15243). The following relations can be easily verified:

[a,b]=aba-b-1 =(14235)(12345)(53241)(54321)=(12534)--c-l,

[a, b2] ab2a-b-2 (14235)(13524)(53241)(42531) (132),

[a, b2][a, b] -1 [a, b2]c (132)(14352) (15243) d,

[c, d1=(14352)(15243)(25341)(34251)=(12453).

These identities have the following implications. If we represent the truth value of x and
y by (if it is true) and b (if it is false) and if we multiply the representations, we get if
x/x y is true and b or b2 otherwise. Now let’s represent the truth value of v by (if it is
true) and a (if it is false) and form the commutator of the representations of v and of x/x y
and then form the product of this commutator with [a, b]- c (1435 2). We call this
last multiplication a shift. As a result, we get c if v v (x/x y) is true and or d otherwise.
Finally, if we represent u by d (if it is true) and (if it is false) and form the commutator of the
representations of v v (x/x y) and u, we end up with a nice clean form: [c, d] (12453)
if F u/x (v v (x/x y)) is true and otherwise.

It should be clear that the shift step does not cost anything in the branching program
length, as [a, b] (12534) is a constant and can be absorbed in the previous transition step
in the branching program involving a variable.

By recursively applying the construction, we can get the following estimate. Suppose x,
y, v, and u respectively represent circuits of depth k, k, k + 1, and k + 2 and of size 2k, 2k,
2+, and 2k+2, and let i be the respective lengths of the branching programs. Then we have

gk+3 2(gk+2 + 2(ek+ + (g + gk))).

566 JIN-YI CAI AND RICHARD J. LIPTON

Let e 2 eli then

ek+ ek+2 -Jr- ek+ -I- ek.
We have the characteristic equation

By Cardan’s formula [J], we can solve this equation exactly, with the only real root

,k (1 + (19 + 3/-) 1/3 + (19 3v/-) 1/3) -. 1.839

Thus, the construction here achieves a subquadratic blowup of O(s +lg-) O(s1879").
We also remark that had the function F been u v (v v (x/ y)), we would not have to carry

out the shift step in the above construction. Notice that if we simply form the commutator of
the representations of v and of x/ y, we get if v v (x/ y) is true and [a, b] (1 2 5 3 4)
or [a, b2] (1 3 2) otherwise. We represent u by or (13 2)-1(1 25 3 4) (15 3 2 4) (in
case it is true or false) and form the commutator of the representations of u and of v /(x/ y),
and we have if F is true and

[(15 3 2 4), (1 2 5 3 4)] [(1 5 3 2 4), (1 3 2)] (1 2 3 4 5)

if F is false.
Moreover, given F u /(x/x (y/ z)) or F’ u /(x /(y /z)), we have the following

construction that performs even better. (These 4 cases are exhaustive, using duality.)
Let

a=(13425), a’ (1 4235), b=(14523),

b’-- (1 24 5 3), c=(12534), c’ (1 3 42 5),

and

y aa’ bb’ cc’ aba’b’ aca’c’ bcb’c’ (15 4 3 2),

3 abca’b’c’ (1 3 4 25).

If we consider a.byczaxbycz, where ax if x is true and a a if x is false, similarly
for the others, we have:

ifx=y--z-- 1,

axOyCzaxOyC 3 (1 3 4 2 5) if x y z 0,

?’--(15432) otherwise.

For F u /(x/ y/x z), we represent u by or ?’-13 (1 5 3 2 4) (true or false,
respectively), and we have

[?,, ,,-13] [3, ?,-13] (12 45 3).

For F’ u /(x v y v z), we represent u by 1 or , (true or false, respectively), and we
have

[?’, 31 (1 4 2 3 5).

SUBQUADRATIC SIMULATIONS 567

(This is even slightly better in complexity with a growth of S 1"842"’’. We omit the details.
For simplicity we do not consider the strict requirements on alternation and multiple fan-in
in the remainder of this paper to avoid tedious case analysis. Thus, we assume our tree is
balanced and alternate at each level.)

4. Iterated simulation. In this section we indicate an improvement of the construction
given in the last section. Again let us look at F u/ (v v (x/ y)). The simple observation
is that in the above construction when we have represented v v (x/ y) by c if it is true and
or d if it is false, we can relax somewhat on the representation of u. More specifically, if we
have u u v u2, we may represent both u and u2 by d (true) and (false) and then simply
form the multiplication of the representation. This gives us the representation for u as d or d2

when u is true and otherwise. Now because all powers of d commute, we still get if F is
false. However, if F is true we get either

[c,d]=(12453) or [c,d2]--(234).

We note that the situation is exactly the same as what we have before in v v (x/ y).
More exactly, after a conjugation, we have the exact dual case as in the representation for
v v (x/ y) just before the shift. (We recall that a shift is free.) Specifically, the pairs a, b and
c, d are conjugate to each other by the same conjugation. Let ot (1 4 2). Conjugation by
otgivesca =ot-cot=(42351)=aandd =(45123)=bandthus[c,d] =[a,b]
and [c, d2] [a, b2]. (Just like a shift, a conjugation is merely a renaming of the states of
the branching program, and thus it is free. But unlike a shift, a conjugation is a simultaneous
renaming of the input as well as the output states, and thus in the actual construction of the
branching program, the conjugation does not even need to be carried out. We include them in
the exposition only to show that inductively the construction can be carried out.)

Of course, now it is natural to iterate on this. Let hi and h be circuits of depth k 4- and
gi+l hi o hi, where o --/ if is even and v if is odd, and 0 < __< rn 2 for some rn > 2.
Let ji be a circuit of depth k 4- and f+2 f+ o gi+l, where o v if is even and/ if

is odd. Finally, let Fm+ fm o gin, where gm is a circuit of depth k 4- m and o =/ if rn
is even and v if m is odd. Our simulation will carry multiple values as we move up the tree.
But in the last step we bring it back to the form of single-valued representation in both cases,
true or false.

We have the following recurrence relation where i denotes the length of a branching
program simulating a circuit of depth and size 2;.

k+m+l 2(ek+m 4- 2(2k+m-2 4-’" 4- 2(2,+ + 2(2, + ek+))...)),

or

m+l

21 2k+m+l .k+m 4- .k+m+l-i 4- 2mk+l
i=3

Simplifying a bit, let i 2i i, we have

m+l

k+m+l ’k+m 4- k+m+l-i 4- k+l,
i=3

which has a characteristic equation

Xrn+l() ,.m+l Am 4- m+l-i 4- "--O.
i=3

568 JIN-YI CAI AND RICHARD J. LIPTON

LEMMA 4.1. Each Xi has a unique positive root Ai, > 3. Furthermore, the set {Ai}
forms a monotonic decreasing sequence with limit

A,= - 2+ + r6-- + v/-6 1.7549

This implies the following theorem.
THEOREM 4.2. Every balanced Boolean formula ofsize s can be simulated by a width 5

permutation branching program oflength O(sl+lg-z*+()) , O(s181’). Thus, exponent of
the simulation is at most 1.811

Proof of the lemma. It is easy to verify that x3(A) A3 A2 A has a unique real
root at A3 3(1 + (19 + 3/-) 1/3 -k- (19 3q/)1/3) , 1.839... by Cardan’s formula.

22Furthermore, X3 has a unique local maximum at -3 of X3 (-3) -5 and a unique local
minimum at of X3(1) -2; thus, x3(A) < 0 for A < A3 and monotonic increasing for
A>I.

Let

(253+ -- ,,/6 1.7549...

be the unique real root of x,(A) (. 1)2. (Cardan’s formulas). Inductively, we assume
that Xm has a unique positive real root Am, A, < Am < < A3, and, moreover, Xm is
monotonic increasing for A > A,, and Xm (A) < 0 for 0 < A < Am.

Let

(1) Am(A Xm+I(A) Xm(A) Am-2((A- 1)2A- 1) Am-2X,(A).

It follows, by the definition of A,, that Am (A) > 0 for A > A, and A (A) < 0 for 0 < A < A,.
Furthermore, it can be verified directly that A’m (A) > 0 for A > A,.

Thus, Xm+I(A) Xm(A) + Am(A) < 0 for 0 < A < A, and monotonic increasing for
A > A,; therefore, Xm+l (A) has a unique positive real root Am+, A, < Am+ < Am < < A3.
Moreover, Xm+l (A) < 0 for 0 < A < Am+. The induction is completed.

It follows that lim Am exists. Let A* limAm. We claim A* A,. Suppose not; thus,
A, < A*. By (1), Xm(A,) is some negative constant -c independent of m.

It is easy to show, by directly taking and estimating the derivative on Xm+, that for all
A>A,,

(A) > A m
Xm+l "q- mXm(A) > A, mc,

which tends to infinity as m -- o.
However, by the intermediate value theorem, for all m, there exists)m A,, such that

the value of Xm (A) at ’m is bounded above:

C(L.) X,,,(m) Xm(.)
<

Am A, A* A,

This contradiction shows that lim Am A,. 1-]

5. A superlinear lower bound. We turn our attention to lower bounds in this section. In
particular, we ask what is the minimum length of a branching program for functions with linear

SUBQUADRATIC SIMULATIONS 569

formula size. In this section we present a lower bound of 2 (n log log n) for the translational
cost from NC circuits to permutation branching programs over any finite group. This bound
is the first known lower bound for the translational cost.

Several super linear lower bounds are known for branching programs. Chandra, Furst,
and Lipton [CFL] showed that the function i xi n/2 requires 2(nw(n)) in the length
of any bounded-width branching program, where w(n) is the inverse function of the van
der Waerden numbers. Pudlik [Pu] proved an f2 (n log log n / log log log n) lower bound for
threshold functions. A lower bound of f2 (n log n) for symmetric Boolean functions was
achieved by Ajtal et al [Aj]. However, it is not known whether any lower bound applies to
functions with linear circuit size. See also [B2] and [BT] for lower bounds for branching
programs over specific groups such as $3 and some solvable groups. Our bound is the first
over an arbitrary finite group.

Our lower bound applies only to permutation branching programs and not to (unrestricted)
branching programs in general. In fact, we establish the f2 (n log log n) lower bound for the
AND function/7+1 xi, which has a trivial width two branching program of length n. Our
proof is Ramseyian; a similar method has been used in [AM].

THEOREM 5.1. Anypermutation branchingprogram computing thefunction AND AT--1 xi
requires length (n log log n).

Let a permutation branching program over a finite group G be given that computes the
logical AND function of n Boolean variables x l, x2 x,,.

We assume the branching program has the following normal form

B P(Xl, X2 x,,) gl (xi)g2(xi2) gL (XiL).

(See [B2].) Thus, for each step, the transition depends on one Boolean variable x. Furthermore,
if x is true, then the transition is identity gk(1) 1, and if x is false, then the transition is
some element of the group G, gk (0) g. 6 G. Without loss of generality, every permutation
branching program can be brought to this form without any increase of length.

We prove a lower bound on the length L of the branching program. Let n, denote the num-
ber of variables that occur exactly k times in the branching program, then yk> nk n and
,,> kn L. If k>(log31og3n)/znk >_ n/2, then we are done: L > (n log log n)/4. We as-
sume k<(log3og3n)/2 nk > n/2, andthusthereexistsk < (log log3 n)/2, nk > n/log3 log3 n.
Set all other variables to true, we get a branching program on nk variables, each variable appears
exactly k times, where k < (log log n)/2. Denote N nk.

Let .ij be the location of the jth appearance of the ith variable xi. By renaming variables
if necessary, we assume that the first appearances are in order, that is,

ell < 21 < < N1.

Consider the second appearances of these variables. We select a subset of the variables of
cardinality > N1/3, such that the second appearances of these variables are nicely correlated
to the first appearances of the same variables. More precisely, we show that there exists a
subsequence i < i2 < < im of 1, 2 N, where m > N1/3, such that one of the
following three alternatives hold:

(1) i12 > i22 >’’" > im2, or
(2) it2 < i22 <’’" < gi,,,2 and il2 > i,,,1, or

(3) iil < il2 < i21 < i22 <’’" < i,,,1 < i,,,2"
For any sequence of integers, it is well known that we can first obtain either a monotonic

decreasing subsequence of length m’ > N1/3 or a monotonic increasing subsequence of length

570 JIN-YI CAI AND RICHARD J. LIPTON

m’ > N2/3 of the sequence g12, 22 N2. If the subsequence is monotonic decreasing,
then the first altenative holds.

Suppose it is monotonic increasing. By setting all the other variables to true and by
renaming the variables, we may assume the subsequence is gl2 < 22 < < m’2. For
< < m’, let p(i) max{pl/i2 > p}, that is, the relative place of i2 in the first

sequence. Clearly, p(i) > for all i, and < p(1) < <_ p(m’)= m’. Now we ask the
key question: Is there an i, < _< m’, such that p(i) > ? If so, then we choose the
subset as those with indices between and p(i)"

i2 < 1i+12 < < p(i)2,

and i2 > p(i)l. Thus, the second alternative holds.
Now suppose the answer is no, that is, for all i, p(i) < -7. Then we are going to

select our subsequence greedily as follows" Let q(i) p(i) + 1, and

/j- q-l)(1), _< j _< /--7,

where f) denotes the kth iterate of a function f. That all ij, < j < /-’, are no greater
than m’, and thus well defined, is a consequence of our hypothesis for all i, p(i) < /’.
This implies the third alternative and completes the proof of our claim.

Now one can iterate this process. Suppose s iterations are done, and N’ > N/3s variables
remain. Inductively, every successive sequence (consisting of the rth occurrence, < r < s,
of the remaining variables) is related to its previous sequences similarly as in that between
the first and the second sequence just shown. In fact, we can group together those successive
sequences related as in alternative 3, namely

’ilr < ’ilr+l < < .ilr’ < i2r < i2r+l < < i2r’ < < i,,,r < ’imr+l < < ’imr’,

or its reverse,

ir > .ir+l > > ’itr’ > ’izr >" izr+l > > ’izr’ >" > .i,,,r > i,,,r+l > >" ’imr"

Call any maximal such internal {jlr < j < r’} a block.
We focus on the last block, say starting from + to s. By renaming the variables, we

assume inductively x, x2 XN, are remaining, and

l,t+l < l,t+2 < < ls < 2,t+l < 2,t+2" < 2s < < .N’,t+l < .N’,t+2 < < .N’s,

and, if > 0, the tth and + 1st sequence are related as in alternative (1) or (2). (The other
alternative of reversing all < to > in the above e-sequence is symmetric.)

We will select a subsequence of els+l N’s+l, indexed by il < i2 < < in,, where
m > N’/3, such that one of the following three alternatives is true:

(1) .ilS+l > .i2sq-I >"" > .i,,,s+l, or

(2) gils+l < gi2s+l <"" < eims+l and eis+ > ei,,,s, or
(3) eit+ < eit+2 <... < .is < eis+l < ei2t+l < ei2t+2 < < ei2s < gi2s+l <
< eimt+l < .i,,,t+2 <"" < ei,,,s < gims+l"
The proof is identical to the base case, and we will not repeat it here.
Because k < (log log n)/2 < log log N, the process can be iterated k times. We

end up with k sequences each of which has n’ > N/3" variables, and the branching program
computes the AND function of these variables (all others are set to true). Moreover, all
adjacent blocks of sequences are related in one of three ways as above. Clearly, any block can

SUBQUADRATIC SIMULATIONS 571

be collapsed to just one sequence. After the collapse (and renaming the variables) we have
k’ _< k sequences, and the branching program looks like

SS2...&,,

where each Sj is either

glj(Xl)g2j(x2) gn’j(Xn’),

or

g,,;(x,,)g,,_;(x,,_) g;(x).

Consider the map F from < < n’ to G’’’
(sl (i), s2(i) s.,(i)),

where

sj(i) gljgzj gij,

in the first case of Sj, or

sj(i) gijgi-l,j.., gj,

in the second case of Sj. (Recall that gj gj(O) G.)
n it follows easily that n’ > N1/3’ >Because k < (log log n)/2 and N > og3-og3,’

IGIk’; thus, F(i) F(i’) for some < i’ by the pigeonhole principle. Therefore, for all j,
gi+l j gi’j G, or gi’j gi+ j G, which ever the case may be. This implies
that the original branching program evaluates to when all variables (after renaming) between
xi+ and xi, are set to false and others set to true. Hence it does not compute the AND function.
This completes the proof of our lower bound.

The method we used here to prove our f2 (n log log n) lower bound has been used by
Barrington and Straubing to obtain several other lower bounds [BS].

6. Open problems. There are many unanswered questions raised here. We mentioned
in the beginning of the paper that Cleve [C1] has proved the following theorem, which was the
first conjecture in the preliminary version of this paper.

THEOREM 6.1 (Cleve). For any > O, an NC circuit of size s can be simulated by a
width 22/’ (permutation) branching program of length O(s+E).

In view of this, it is natural to define Barrington’s constants 13, for each width k, that
is,/3 is the infimum of/3 such that any NC circuit of size s can be simulated by a width
k (permutation) branching program of length O(st). We conjecture that these Barrington’s
constants are greater than one (and hence nontrivial).

1Let c IGI, a constant. Because k < (log log n)/2, 3 < n. As N > log3]g3 n,

log log

Thus, N/3" > c

N-log310g3n >n

1,/3 log log

> c + log log log n

> c > c’, for large n.

log log
.3 log log n.

572 JIN-YI CAI AND RICHARD J. LIPTON

CONJECTURE 6.2. Width k (permutation) branchingprograms simulating any NC circuit

ofsize s requires length f2(s+), for some ek > O.
Our lower bound in 5 can be viewed as the first step toward settling this conjecture. If

this conjecture is true, one may further inquire the exact order of growth of these Barrington’s
constants 13. The best known bound for/35 is 1.811 It is not clear what to expect in
general. A tight simulation of circuits by branching programs could offer the possibility
of proving lower bounds for circuits size, whereas a reasonable width could be valuable in
hardware design pertaining reconfigurable chips.

Acknowledgments. We thank Sandeep Bhatt, Walter Feit, Mike Fischer, Merrick Furst,
Roger Howe, Herb Scarf, and George Seligman for helpful conversations. We thank the two
anonymous referees for many comments.

[AM]

[B]

[B2]

[BS]

[BT]

[BC]

[BDFPI

[CL]

[CFL]

[Cl]

[Co]

[HI
[J]
[Pil

[Pu]

[Sp]

REFERENCES

M. AJTAL, L. BABAI, P. HAJNAL, J. KOMLOS, P. PUDLAK, V. RODL, E. SZEMERIDI, AND G. TURAN, Two
lower boundsfor branching programs, in Proc. 18th ACM STOC, Berkeley, CA, 1986, pp. 30-38.

N. ALON AND W. MAASS, Meanders and their applications in lower bounds arguments, JCSS, 38 (1988),
pp. 118-129.

D. BARRINGTON, Bounded-width polynomial-size branching programs recognizes exactly those lan-
guages in NC JCSS, 38 (1990) pp. 150--324.
, Width-3 permutation branching programs, Tech. memorandum TM-291, MIT Laboratory for

Computer Science, Cambridge, MA, 1985.
D. BARRINGTON AND H. STRAUBING, Superlinear lower boundsfor bounded-width branching programs,

in Proc. 6th Structure in Complexity Theory Conference, IEEE Computer Society Press, Alamitos,
CA, 199 l, pp. 305-313.

D. BARRINGTON AND O. THIRIEN, Non-uniform automata over groups, Lecture Notes in Comp. Sci.,

Springer-Verlag, 267, 1987, pp. 163-173.
M. BEN-OR AND R. CLEVE, Computing algebraicformulas using a constant number ofregisters, in Proc.

20th ACM STOC, Chicago, Illinois, 1988, pp. 254-257.
A. BORODIN, D. DOLEV, F. E. FICH, AND W. PAUL, Bounds for width-2 branching programs, SIAM J.

Comput., 15 (1986), pp. 549-560.
J. CAI AND R. LIPTON, Subquadratic simulations ofcircuits by branching programs, in Proc. 30th IEEE

FOCS IEEE Computer Society Press, Alamitos, CA, 1989, pp. 568-573.
A. CHANDRA, M. FURST, AND R. J. LIPTON, Multiparty protocols, in Proc. 15th ACM STOC, the ACM

Inc., West 42rid Street, New York, 1983, pp. 94-99.
R. CLEVE, Towards optimal simulations offormulas by bounded-width programs, in Proc. STOC, 22

(1990), Baltimore, MD, pp. 271-277.
S. CooK, The taxonomy ofproblems with fast parallel algorithms, Inform. and Control (Shenyang), 64

(1985), pp. 2-22.
M. HALL, The Theory ofGroups, MacMillan, New York, 1959.
N. JACOBSON, Basic Algebra, Vol 1, W. H. Freeman and Company, New York, 1985.
N. PIPPENGER, On simultaneous resource bounds (preliminary version), in Proc. 20th IEEE FOCS, IEEE

Computer Society Press, Alamitos, CA, 1979, pp. 307-311.
P. PUDLAK, A lower bound on complexity ofbranching programs, 11 th MFCS, Lecture Notes in Comput.

Sci., Springer-Verlag, vol. 176, pp. 480-489.
P. SPIRA, On time-hardware complexity tradeoffsfor Booleanfimctions, in Proc. 4th Hawaii Symposium

on System Sciences, North Hollywood, CA, Western Periodicals Co., 1971, pp. 525-527.

