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Abstract: In [2] Hodes and Specker proved a theorem which implies 

that certain Boolean functions have nonlinear formula size complexi- 

ty. I shall prove that the asymptotic bound for the theorem is 

n. log log n. 

§ O. Introduction 

Let f be a Boolean function, i.e. f:[0,1} n-~ {0, I} for some posi- 

tive integer n. The variables of f will be denoted usually by 

Xl, . . . . . . .  ,x n. Given 1 L il<i2< <irOn, then flxll ...... xl2 Xlr 

denotes the function from {0,I~ r into t0, i} obtained by substituting 

O's for all the variables of f different from Xil ... Xir. In § 5 

we shall need substitutions containing also l's; in such a case we 

add a superscript to the bar. A base is an arbitrary finite set of 

Boolean functions /I ; the elements of~'~ are called connectives. The 

(formula size) complexity of f in base .cA is the number L n(f) 

equal to the minimum of the total number of occurrences of variables 

in an expression over~'~ equivalent to f , (or co if such an ex- 

pression does not exist). 

The theorem of Hodes and Specker [~ can be expressed as follows: 

If fl is the base of all binary connectives, (or equivalently 

/~ = (O,I,A,~))), then there exists a function S(r,n) such that for 

e v e r y  r 

lim S (r,n) ~o , 

n ---* 

and if 

(I) L~(f) g n. S(r,n), then there exist igi I< ... <irOn and 

a Boolean function b(x,y) of two arguments such that 

fl • • • ---- b(Xil~ (~ • , • v ... v Xir ). Xll. - Xlr ..- X~r xx I 

(~) denotes addition modulo 2). 
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This form of the statement is convenient for the proof. For the proofs 

of lower bounds the theorem is used the other way around, namely, if 

f does not have a restriction of the form above, then it has com- 

plexity n . S(r,n), thus nonlinear. The function S constructed 

by Hodes and Specker grows for fixed r more slowly than log* n 
2 

e 

(which is the inverse function to 2 2. m-times). The aim of this 

paper is to show that the theorem holds in an arbitrary base 51 with 

the estimate (I) replaced by 

L n(f) ~ ~n.n(log log n - log r) 

for some ~n > O. All the logarithms in this paper are of base 2. 

Further, I shall show that for /~ = {~), A , v~ and r~ 3 fixed, the 

bound is asymptotically best; this was done jointly with S. Poljak. 

Since Hodes-Specker theorem has a direct application to lower bounds 

on complexity of symmetric Boolean functions, the paper is also a 

contribution to this still open field. 

My method of the proof is based on the Ramsey theorem• This is not 

surprising since the theorem (in the form above) resembles the Ramsey 

theorem. The Ramsey theorem has been used by Vilfan [II] for proving 

s generalization of Hodes-Specker theorem but in a different manner. 

The idea of my proof is very simple. Let ~ (Xl,...,x n) be a formula 

of small complexity. For every i,j, i! i < j~ n, define the induced 

formula ~ ~xi,xj} in a suitable way and so that the number of occur- 

rences of xi,x j in the induced formula is the same as in the ori- 

ginal one and it does not contain other variables. This concept is 

almost the same as the one used by Ne~iporuk in [8]. Since the com- 

plexity of ~ is small, the number of occurrences of x i in ~ is 

small for many i's, say for xi, i=l,..., m ~ n/2. If I restrict my- 

self to this set of variables then the number of nonisomorphic in- 

duced formulae is small. Now I colour the pairs (i,j) from {l,...,m} 
by "the shape of ~ {xi,x~}". Using the Ramsey theorem I get a sub- 

set {il,...,ir}~ {l,...,m~V such that for every a<b, c<d, 

O({Xia , xiJ is isomorphic to ~ ~Xic , Xi~. The same is true if I 

use the induced formula ~ = ~Xil,... , xi~ , (defined similarly) 

instead of o~ . Then it is shown ~ha~formulae with this property (it 

is natural to call them homogeneous formulae) have a very special 

shape which forces them to be equivalent to b(Xil~ ... xi 2 , 

v ... v xir). This is the longest part of the proof since (as it xi I 



423 

is often the case in lower bound proofs) one has to consider many 

cases. The concept of inducing is, of course, chosen so that ~ is 

equivalent to the formula obtained from O<by substituting O's for 

every variable different from Xil,...,Xir. 

It seams that the method could be used for some other kinds of com- 

plexity, (e.g. number of arithmetic operations), therefore in § 1 

I prove a theorem about general terms. In § 2 the theorem is applied 

to Boolean formulae in order to obtain the main result. 

§ 1 Structure of homogenous terms 

In this paragraph I shall use terms (denoted by ~ , p , .... ) of the 

language consisting of a set of variables V = {Xl,...,Xn} , (denoted 

also by x,y,z,u,v,...) a set of at least binary operations/~ (de- 

noted by a,b,d ,...) and a single constant c. The set of varia- 

bles which occur in a term o6 will be denoted by ¥(06). We shall 

agree to write ~(Ul,...,u k) to indicate that V(~)~ {Ul,...,Uk}- 

It is important to visualize terms as rooted trees in which the ver- 

tices are the leaves labelled by the elements of V c and junct- 

ions labelled by the elements of ~ of the corresponding arity; more- 

over the leaves are linearily ordered, which induces a linear order- 

ing of the successors of any junction. The tree structure determines 

an ordering of the vertices, namely, u is below v iff the short- 

est path from v to the root contains u iff the subterm determined 

by v is a subterm of the subterm determined by u. The isomorphism 

of terms will be defined by ~(Ul,...,u k) ~ ~(Vl,...,v k) iff 

~(ul,...,u k) = ~ (Vl/Ul,--.,vk/uk), 
where y/z denotes the substitution of z for every occurrence of 

y. From this point on I shall use the less precise notation without 

the substitution sign. 

Definition 

Let ~ be a term, X ~ V. The term induced by X will be denoted by 

X and defined inductively by 

cX = C; 

xiX = x i if x i e X, 

= c otherwise; 

b(~l,...,~k ) =~i X if ~jX = c for all j # i, 

= b(~iX,..., ~k X) otherwise. 
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(~eace = c if e(jX = c for all j). 

Less formally the induced term o( X can be defined as follows. If 

X n V(o() = ~ then otX = c. Otherwise 

(i) omit from o< all the junctions v such that the subformula deter- 

mined by v is of the form b(~l,...,~k), where V(~i) N X # @ 

for at most one i; 

(ii) omit all the leaves labelled by the elements of V(c()- X; 

(iii) at the junctions whose arity does not correspond to the number 

of predecessors, fill the remaining places by c; and preserve the 

labeling and the orderings. (The operation (iii) is never used if fl 

contains only binary symbols.) Whence we have the following lemma. 

Lemma 1.1 X c_ y ~ X = (~Y)X. [] 

If X : {Xil,...,Xik ] , Y = {Xjl,...,Xjk } , il<... <i k, jl<... <Jk 

then I shall write 

o~X ~ ~Y 

instead of 

( ik) ~ ~Y( Jl Jk ) etX Xil,...,x = x ,...,x • 

Definition 

A term G1 is called k-homogeneous over Z iff ~X,Y gz, Ixl=IYi= k, 

otX ~ ~Y. 

I shall omit k and/or Z if k =2 , Z = V. 

Lemma 1.2 If IVI >~ 3 and et is homogeneous then ot is 1-homogeneous. 

Proof: easily from Lemma 1.1. [] 

I shall use also the following notation: 

Ot [YI'''''Yk ] 

means that every Yi occurs in o( exacitly once and o~ does not con- 

tain other variables; 

~(u,v] 
means that V(o~) =~u,v~ and v occurs in o~ exactly once. 

If o~ can be expressed in the form ~ (u,)~ , where 3~ is not a single 

variable, then u is uniquely determined; if moreover ~ is minimal, 

then also ~ and ~ are uniquely determined. 

Examples. 

i. a(b(d(y,z), e(x,x)),x) = ~(x,~l where 

~(u,v] = a(v,u), "~= b(d(y,z), e(x,x)), 

or 
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~ ( u , v ]  = a ( b ( v , e ( u , u ) ) , u ) ,  5e= d ( y , z ) .  
2. a ( b ( x , y ) ,  d ( x , e ( z , x ) ) )  cannot be decomposed. 

Theorem 1.3 (Structure of homogeneous terms.) Let o~ be a homogeneous 

term, V = {Xl,...,Xn) , n 23, and suppose oc does not contain cons- 

tsnt subterms other then c. Then at least one of the following con- 

ditions holds : 

i) ~ = c; 

2) ~= b(E1,...,/Sk) and /31''''' ~k are homogeneous; 

3) ~ = ~(x I, ~ (x2,..., ~(x n, ~] ... ] ] or 
= ~(Xn, ~ (Xn_l,... ~ (Xl, d'] .... ] ] and ~ is homogeneous; 

4) oc = ? (Xl, ~ ( x 2 , . . .  ~ (Xn_l,  Y (Xn)] "'" ] ] ' 
or the same with the reverse order of variables; 

5) ~= ~ [J(Xl),...,orCXn)l where, for some b en and iLj, 

every nontrivial subformula of ~ [ Yl,''',Yn] is of the form 

b(c,...,c,/~,c,...,c, v ,c,...,c). 

where /~ , ~ are on the i-th and j-th places. 

If moreover o~ is 3-homogeneous~ then at least one of the conditions 

1)-4) holds. 

An example of a homogeneous term is shown on Fig.l. 

Proof: 

(i) First I prove the theorem for fl consisting of binary operations 

only. The binary operations will be denoted by an infix o , thus di- 

fferent occurrences of o may denote different operations. Let 

be a homogeneous term. I omit the trivial case when c~ is a variable 

or the constant, and assume ~ =~o~ . Consider the following three 

main cases (with several subcases): 

1. v(/~)n v(,~) = Z. 

i.i. If V(~) = ~, then O~X = ~X,: thus ~ and ~ are homogeneous, 

which is condition 2) of the theorem. If V(~ ) = ~, then we get the 

s~me, 

1.2° Le~ u e V ( ~ )  , veV(~ ).  Then 

( I )  K {u,v~ =~(uJ o~{vJ . 
Let w6 V be an arb i t rary element, and le t  ~ be the smallest subterm 

of oK containing a l l  the occurrences of w • I f  there were an occurren- 

ce of z in o f , z ~ w, thenc~{w,z} could not be isomorphic to (i). 

Thus I have proved that 

: ~ [~ l (X l ) ,  - ' ' ,  ~n(Xn)] • 
1-homogeneity of ~ , (Lemma 1.2), implies 

 l(t) : ... 
and homogeneity implies that all the operations in 
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~[yl~...,ynl are equal, thus we get 5). 
2. V(~) = V(~) = V. Then 

~X = ~X o ~ X, 

thus /3 , ~ are homogeneous - condition 2). 

3. V(~)n V(~) ~ Z and V(~ ) ~ V. (The case V(~) ~ V is symmet- 
ric). 

3.1. Claim: IV(/3 ) J = i. 

If not, then we have u~V(~ ), v~V(~) 0 V(~ ), w~V(~ ), w #v. Then 

[u,v} = ~{v) o ~{u,v}, 
{w,v~ =~w,v} o ~ lw,v}. 

(W may not occur in ~ {w,v} ). This two terms cannot be isomorphio~ 

since ~[v~ contains only one variable,~ while ~{w,v~ contains two. 

3.2. Claim: V(~) ={Xl} or V(~) =Ix n}. 

If V(~) =~xi}, l<i<n, then the first occurrence of a variable both 

in o~ [Xl,Xi} and o({XiXn} is xi, thus they would not be isomorphic. 

Henceforth assume V(t~ ) = {Xl~ ( =[Xn~ being symmetric). By the as- 
sumption of this case XleV(~) , hence V(p) = V(o<) = V. 

3.3 Claim: o( = ~l(Xl, ~2(x2,...~n_l(Xn_l, ~] ...]]. 
I shall prove by induction for i = l,...,n-1, 

(2) C~= ~l(Xl,(~2(x2,...)oi(xi,Yi] ...]]. 
For i = i this is just the assumption V(~ ) = {Xl} . 

Suppose (2) for i<n-I and chose ~i minimal. Then Fi =/~o v where 
V(/~), V(P ) are not subsets of {xi}. 

3.3.1- First I show 

xi+ leV(/~) n V(~). 

Suppose not, say xi+ I ¢ V(/~) - V(~). Then xj • V(v) for some 
j ~ i,i+l. If i+l<j, then 

o(~Xi+l,X j} =/~{Xi+l,Xj} o Y~xj} 

{Xl,X 2} = ~[x 9 o ~txl,x2}, 

since x2eV(~), - contradiction. If j<i, then 

c<{xj,xi+l} = ~j(xj,/~xj,xi+l} o y [xjl ] = ~.'(xj,/~Xj,Xi+l}]; 

cC[xj,xi} = ~j(xj, ~iCxi,)~i{xi,xj}] ]. 

This two terms cannot be isomorphic, since there are more occurrences 
of u in ~'(u,v] than in ~j(u,v] , - contradiction~ 

3.3.2. Now I show 

(3) v(#~) = [xi+l}. 
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For j> i+l, xj cannot belong to V(/A) since 

o({Xi+l, xj~ =/~Xi+l,Xj} o~xi+l,Xj} -~ 

~Xl,X2] -- ~ Ix I} o ~ { Xl,X2}. 
If xj ~ V(/~ ) for some j< i+l, then the following two terms could 

not be isomorphic 

o£(xj,xi+l) = ~j(xj, /u(xj,xi+l} o V {xj,xi+l} ] ; 

c~{xj,Xn~ = ?j(xj,/~{xj} o ~{xj,x n} ]. 

Thus, by (3), q/i can be expressed in the form 

~i = ~i+l(Xi+l ' ~i+l ] ' 

which ends the proof of the claim. 

3.4. Claim: If q~ is minimal in 3.3, then 

(4) ~l(U,V ..... ~n.l(U,V]- 
Let y be minimal.If V(~) =[Xn}, then, for i~n, 

~{xi,Xn} = ~i(xi, ~ {Xn} ], 
and the claim follows easily from homogeneity. Otherwise ~ contains 

at least two variables, hence ~ = /~ o ~ for some /~, ~ . Using the 

same argument as in 3.3.1 one can show that XneV(~) n V(w). Thus 

for i< n 

(5) ~xi,x n} = ~i(xi,~{xi,Xn~ oy {xi,Xn} ] , 
whence the claim follows easily. 

If V('f ) = {Xn~, then o( is of the form 4). Therefore it remains to 

consider the case whem V(~) is larger. Then V(~) = V, since o~ 

must contain the same number of occurrences of every variable and by 
3.3 and 3.4. 

3.5. Claim: ~ = ~n(Xn,~], for some ~n and ~. In the proof of 3.4 
I have shown (5) (for every i<n). This term must be isomorphic to 

~{x1,x2} = FiCx1, ~2(x2,?2[Xl,X2~ ] ]. 
Moreover we know that ~l(U,V] = ~2(u,v] , thus for some term f , 

?2(x2,~2{Xl,X2} ] = ~ (x 2) O f ~ /~{xi,Xn} o y {xi,Xn}. 

Hence V(/~) = {xn], which proves the claim. 

Further I shall assume that )C in 3.5 is minimal. 

3.6. Claim: ~ (u,v ] =df ~i (u'v] ..... ~n_l(U, v] does not contain more 

occurrences of u then ~n(U,V]. 
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3.6.1. First assume Xne V(~). Then 

(6) OL{xI,x 2} = ~(Xl ,  ~ (x2, ~d ~Xl,X2}]] ~cKKXl,Xn} = F ( x 1 ,  ~ n ( X n , ~  ~Xl}]] , 

whence the claim follows. In the rest of the proof of the claim I as- 

sume x nEV(X) and )~ = /~ o v , for some /~o v. 

3.6.2. If xj~V(/~)n V(~), j<n, then ~ [xj,Xn} is the minimal term 

such that o( [xj,Xn} can be expressed as 

~(xj, ~n(Xn, ~ {xj,Xn} ] ]. 

Comparing this decomposition with the decomposition of e((Xl,X2} in 

(6) the claim follows. 

3.6.3. r shall show that V(~) n V(v ) ~ ~Xn}. If not, then there are 

xi~ V(~) - V(V), xj~ V(v) - V(/~), i,j # n, since ~ is minimal. 
Then 

O({xi,Xn} = ~ (x i ,  ~n(Xn, /~ (xi,Xn} o y [Xn}]]~ 

o({xj,Xn} = ~(xj, ~n(Xn,/~Xn} o ~ {xj,Xn}]] , 

a contradiction. 

3.6.4. It remains to consider V(/~) n V(p ) = ~. Suppose it is so and 

x n~V(/u). (The proof would be similar if x neV(¢)). Choose xi,x j 

as in 3.6.3. If i<j, then 

(7) ct{xi,xj} ~ ~ {xi,xn}, 
hence 

~ ( x j , / t ~ x j }  o Y lxi} ] ~ ~n(Xn,/X{xn} o y(x i ]  ] . 

This isomorphism maps Y[xi} onto itself, hence/x{xj} o y {xi} onto 

/~{x n} o y{x i}, thus ~ (u,v ]= ~n(U,V], which is even more than I wan- 

ted to prove. If j<i then in (7) ~xj} must be mapped onto P{xi} , 

by the uniqueness of the decomposition, and then pfxj} o ~(xi) onto 

/k [Xn} o y ~xi} which is impossible. Thus 3.6 is proved. 

Now I can end Case 3. Since 

~ { x  1} = ~ ( x  1, ~[Xl}] ~" o ~x  n} = ~n(Xn,%fXn}], and by 3.6,  e i t h e r  

~n(U,V] = ~ ( u , v ] ,  

or the re  i s  some ~ '  such t h a t  

yn(U,V] = ~ (u ,~ ' (u ,v ] ] .  
Thus for some term ~ , 

(% = ~(x I, ~ (x 2,--. ~(x n, c F] ...]] • 
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Since for i~j, 

o(~xi,xj} = ~(xi, ~(xj, ~xi,xj~]] , 

is homogeneous, i.e., condition 3). 

(ii) Now let 0( be a homogeneous term over a general base /i . For 

every operation b 6 ~-~ of 8rity k~3, choose k-i new binary ope- 

rations bl,...,bk_ I. Let o(' be the term resulting from o( by applying 

all the possible substitutions of the form 

b ( / 4 1 , . . . , / ~ k ) ,  > b l ( / ~ l , b 2 ( / ~ 2 , . . ,  b k _ l ( / 3 k _ l , / ~ k ) . . . ) ) .  
Claim: c&' is homogeneous. This is because similar operations produce 

0(' X from o(X, namely, the operations of the form 

b(c, ..., c, O(il,C, ... ,c, ~i2,c, ...... ,c, o~ij,c,...,c ) : 

• (o( ,... b i (o~ ,O(ij ) ...)). bil il'bi2( °~ i2 j-I ij-i 

By (i) I know that at least one of the five conditions of the theorem 

holds for o£'. Accordingly I shall consider four cases. 

]. oL'= c, then o~ = c. 

~ = ~ o~ , and /4 , y are homogeneous, then 

= k 2, 
k 

where V(# ) = V = V(~) = i~2V(~i ). Whence 

: 

thus ~ '~2'''"~k are homogeneous - condition 2). 
i 

3. If 3) or 4) holds for o~ then 

or'= ~ ' (X l ,~ ' ( x2 , .~ ,2 ]  ] , 
(or with Xn,Xn_ I instead of Xl,X2). 

3.1. Claim: ~' corresponds to a part of the original term ~( . Suppose 
! s not, then for some operation b of ~ , i<j and terms ~'(Xl),/~ ,u , 

(8) o( r= bi([' (Xl),bj(/~' , ~')), 

or for some term 0~ , 

oK'= 9~(Xl,bi( ['(Xl),bj(/~' , ~')) , 
where 

l J l 

(9) bj(/~,~ ) = ~ (x2,~2 ]. 

Without loss of generality I shall consider only (8). Then ~ is of the 

following form 

b(... [(Xl) "'" /~ "'" V l "'" u2 ...... V ...) 
m 
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where only [ ,/~, Vl,..., pm are different from c , and 
m 

v(/~) = v(/), U vCvi ) = v(v'). 
i=l 

By (9), V(/) = {Xr} or V(W') = [x2]. In the first case 

i{Xl,X2] = b(... ~(Xl)... /~(x 2) ... Wl{Xl,X2} ... ~m [Xl'Xr} "'')' 

while a term corresponding to /~(x 2) in ~ [Xl,X 3} is missing - con- 

tradiction. The second case is ruled out by a similar argument, thus 

the claim is proved. 

Now the condition 3) or 4) follows easily from the claim. If e.g. 

~'(x 2, ~ (Xn ,d~' ~'= p'(Xl, ... ' ]...] ], 
then 

: ~ (Xl, ~(~2,"- ~(~n,°rJ "''I], 

where ~ is the term corresponding to ~;. Homogeneity of ~'can be 

proved in the same way as in (i). 
4 

4. O('= ~t [~r(Xl),...,oF(Xn)] , and all the operations in ~'~l,...,y n] 

are the same. If this is an operation of fl then, clearly, 

= ~'[~rl(Xl),... , ~n(Xn)] . If it is bi, for some b ~n , then dif- 

ferent occurrences of b i in ~ must correspond to different occurren- 

ces of b in ~ , (since they have the same index i ). Thus again 

= ~ [Ofl(Xl),...,<n(Xn)]. The rest is the same as in (i), 1.2. 

(iii) Let K be 2- and 3-homogeneous. Suppose 5) holds. Then because 

of 3-homogeneity also 4) holds.[3 

Remarks. 

I. An easy corollary of the theorem is that if ~ is 1,2,3-homogeneoust 

then it is k-homogeneous for every k~ n. It would be more appropriate 

to reserve the word "homogeneous" for this concept. 

2. The theorem can be inverted if the relation of ~ to ~ in 4) is 

specified. 

§ 2 The lower bound theorem 

In this paragraph I shall apply Theorem 1.3 to Boolean formulae. For 

sake of convenience I consider only bases which contain nullary 

connectives (constants) 0,i, unary connectives 7(x), O(x), !(x), 

and do not contain the identity unary connective. The letters will be 

used in a similar way as in § I, i.e. ~, ~ , ..., are formulae, 
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x,y,z,u,v,.., variables, a,b,d,.., at least unary connectives, c, c i 

for 0,i, etc. Also I shall assume that the formulae do not contain 

parts of the form el(a2(/)),(al,a 2 unary connectives), or 

(b(Cl,...,Ck) , (b a k-ary coanective and cie~O,l~ ). 

Definit ion 

Let ~ be a Boolean formula, X a set of variables. Then o~- the 

formula B-induced by X is the formula produced from nt by the follow- 

ing rules : 

i) substitute 0 for the variables of X; 

2) replace every part b(Cl,...,c k) by the corresponding constant; 

3) replace every part b(~l,... ~Xk) , where only ~i is a nonconstant, 

by o~ i or a(C(i) , where a is the corresponding unary connective; 

4) replace every part el(a2( ~ )) by /3 or a(p), where a is the 

corresponding unary connective (a(x) = al(a2(x))). 

k-B-homogeneous and B-homogeneous formulae are defined analogically as 

in§ I. 

For a formula c~ denote by F(o~) the term which results from ~ by 

omitting the unary connectives of c4 and replacing O's and l's by 

the symbol c. (Clearly, if c< is a formula in the sense of this para- 

graph then F(~) is a term in the sense of § i-) 

Lemma 2.1 

I) X ~Y ===~(X B = (c~Y B) YB ; 

2) ~t is B-homogeneous over Z ~ ~Z B is B homogeneous over Z, 

( o( may contain other variables then those in Z); 

3) F(c~X B) = (F(O~))X; 

4) cc is B-homogeneous over Z~F(OL) is homogeneous over Z~ 

5) c~ is B-homogeneous over Z, IZl ~ 3 ~ ~is 1-B-homogeneous. 

Proof: 

If V(cX) ~] X ~ @, then c~X B can be constructed as follows: 

i. construct (F(o())X, 

2. add the corresponding unary connectives and replace the symbol c 

by the corresponding constants. 

Whence we obtain 3). Then using Lemma i.i we get I). The implications I) 

2), I) ~ 5), 3) ~ 4) are trivial. [] 
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Lemma 2.2 (Structure of B-homogeneous formulae). Let o((Xl,...,Xn) 

be B-homogeneous over V = ~Xl, .... ,xn} , n ~>3. Then at least one of 

the following conditions holds: 

I) o~ = constant; 

2) o~ = b(~l,...,l~k), ben , k~l, and ~l,...,f3k are B-homoge- 

neous; 

3) o(= ~(Xl, ~ (x2,... ~(Xn_l, n#(Xn,~]] ...]], or with the reverse 

order of variables, where ~ is B-homogeneous, ~(u,v] = ~(u,v] 

or ~ (u,v] = y (u, 7v] , and ~ (u,v] is equivalent either to 

u~v or uvv or -IUAV or v; 

4) oC = ~(Xl, ~(x2,... ~ (Xn_l, ~(xn)] ,..]], or with the reverse 

order of variables, where 

(i) either ~(u,v]---- u~v and (~(u)_~u or ~#(u)~ -lu), 

(ii) or ~ (u,v] --~ uvv and ~# (u)----u, 

(iii) or ~ (u,v]---~- -luav and ~ (u) = _ -~u; 

5) oc = )o [ c / C X l ) , . . . ,  ,3"(Xn)] , where f o r  some c~{O,1}  , 
(i) either ~ [YI'''''Yn]-- c(~ Yl q) "'" ~yn' 

(ii) or ~ [yl,...,yn]-- c ~ (Yl v ... v yn ) and C~(y)--y, 

(iii) or ~ [YI'''''Yn] ~ c O (Yl A ... ^ yn ) and oC(y)--=- -ly. 

Proof: 

Let o~ be B-homogeneous over V. By Leman 2.1, F(o() is homogeneous. 

If F(~) = c, then o( is constant. Now assume that O~ is not constant. 

Then by Theorem 1.3 at least one of the conditions 2)-5) holds for 

F(o(). I s~all consider five cases. 

I. c~ = a(~ ), where a is a unary connective. Since c~ is not constant, 

a = -I , and V(~) = V. Let ~ ~ Xc_V, IXI = 2, then o(~ B is either 

a variable or a more complicated formula. If ~ X B is a variable, or 

if the main connective of it is at least binary, then c~X B = -I/~X B. 

If ~XB = b(~), b(x) =-1(x), 0(x) ~ l(x) resp. then ~X B = ~ , 

!(~), o(~) reap. ~hus 

~XB =~ ~ZB~XB = /3~ B, 
hence ~ is homogeneous. This proves condition 2) of the lemma. 

Henceforth I shall assume that the main connective of o~ is at least 

binary. 

2. F(c~) = b(/l,...,/k) P ~l'''''~k homogeneous. Them 

(%= b(~l,...,~k ) and V(~i) = V(/i) = V for i = l,...,k. 
Thus 

~x m = bc ~lXB,...,~kXB), 
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whence ~l'''"~k are B-homogeneous - condition 2). 

3. F(~) =~(x I, / (x2,..., f~(Xn,J]]]where oF is homogeneous. (l 

shall not consider the symmetric case where the variables are in the 

reverse order.) Then o6 can be decomposed as follows 

(i) oL= ?l(Xl, ~2(x2,... Fn(Xn_l,J]...] ] . 

The decomposition might not be unique because of unary connectives. 

Therefore I postulate that the unary connective which is possible to 

include either in ~i or ~i+l' i<n be included in ~i" The unary 

connective between ~n and c ~ will be included in ~n if and only if 

there is the same connective between ~i and ~2 " Now ~ 2'''"/n have 

the main connective at least binary; the same is true about ~I' since 

this is the assumption above. The formula o({xl} , hence any ot {xi} 

too, has the main connective at least binary. This proves that 

(2) ~I(O,V]----__ ... _~n_l(O,v]-- v 

Hence, for i<n, 

o~{xi,Xn} = ~i(xi, ~n(Xn , ~] {xi,x n} ] , 

therefore ~I = ~2 = "'" = ~n-l" I shall denote these by )o and )o n 

by ~ • Since 

F( ? (u,v]) = ?'(u,v] = F(q~(u,v]) 

and since 

fXl} ~ ~ {Xn}, 
the on ly  d i f f e r e n c e  between ~ ( u , v ]  and ~ ( u , v ]  might be the unary 
connective at v . Recall that the decomposition (I) is chosen so that 

if there is a unary connective at v in 3~ (u,v] then the same is at 

v in ~ (u,v] . By (2) the connective can be only the negation. Thus 

(3) ? ( u , v ]  = 7 ( u , v ]  or F (u ,  v] -- 7 ( u , ~ v ] "  

Then, by (2) ,  

(4) ~ (O,v ] = v or 7~ (O,v] = -lv r e s p e c t i v e l y .  
Since ~ =  F ( ~ )  i s  homogeneous and c~ is  B-homogeneous, the only  

d i f f e r e n c e  between cOX B and J Y B '  IXf=IYl= 2, might be the  main una-  
ry  c o n n e c t i v e .  Using (2) ,  (3) and (4) ,  one can e a s i l y  compute t h a t  
the parity of the number of negations before the last junction of Or 

is always the same. Hence o ~ X B and o/Y B are isomorphic, which 

proves that o c is B-homogeneous. The rest of condition 3) follows from 

F ( O , v ]  - v .  
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4. Suppose condition 4) of Theorem 1.3 holds for F(~). Then , using 

quite a similar argument, one can prove condition 4) of the lemma. 

The relation between ~ and ~ follows easily from B-homogeneity and 

the assumption that o( is nonconstant. 

5. Suppose condition 5) of Theorem 3.1 holds for F(~). Then 

= ~[O~l(Xl),..., ~n(Xn)). This decomposition is not unique again. 

If I choose ~Fl,... , ~n so that their main connectives are not unary, 

then, by 1-B-homogeneity, ~F 1 = "~2 = "'" = ~n" Thus I can drop out 

the subscripts at cD. Since ~ is nonconstant, ~-(x)~ x or ~ ~x. 

The assumption about F(~) implies that there are occurrences of 

only one connective b of arity k ~2 in ~ , and they are always 

in a contex 

(5) ... b(Cl,...,ci,/~,ci+z,-.-,c j, ~ , cj+2,...,c k) .... 

Every Boolean formula of two arguments is equivalent to a formula 

(6) d(el(x)o e2(Y)) , 

where any of the unary connectives d,ele 2 may be missing and 

o ~ {@9 , •} • Choose such a formula for 

b(Cl,...,ci,x,ci+2.-.cj,y,cj+2,..-,Ck ), 

replace every occurrence of (5) in ~ by this formula, and collect 

consecutive unary connectives. Denote by ~/: the resulting formula, 

contains only binary and unary connectives. Denote by 

: = :(Xn)]. 
Since 7'-- ~ ' 

A similar argument shows that ~[xi,xj] , l~i<j~n can be const- 

ructed from ~{xi,xj} using the same procedure by which I construc- 

ted / from ~ . Thus / is B-homogeneous. 

Now I shall consider three cases. 

5.1. The binary connectives of ~ are ~. If there occurs a constant 

unary connective in 41. , then some, hence by 1-B-homogeneity every, 

[xi} must be constant. Since the binary connectives are (~ , this 

is possible only if there is a constant unary connective on every path 

from a variable to the root. Then 9~ , hence also c~ ) is constant - 

contradiction. If there is no constant unary connective in -/), then 

~' (yl,...,yn), hence ~ (yl,...,yn), is equivalent to t~Yl~)... 

"''~)Yn' t ~ {0,I), i.e. condition 5), (ii) of the lemma. 
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5.2. The binary connectives of 7 are v and C~(x) ~ x. Then 

~[xl,...,Xn] is B-homogeneous, as it is equivalent to ~ . Let, for 

l~i<j~n, 

(7) ~{xi,x j} = f(gl(xi) v g2(xj)), 

where any of the unary connectives f, gl,g 2 may be missing. If f 

is not missing, then it is also the main connective of ~ (consider 

(Xl,X ~ ). It was shown in part i of the proof that in such a case 

after removing the main connective I get a B-homogeneous formula 

again. Thus without loss of generality I can assume that f is miss- 

ing. 

Claim: The unary connectives may occur only at the variables of $w . 

Suppose not. Take some junction such that there is exactly one unary 

connective below it. Let i,j be such that the paths from x i and 

xj to the root meet at it for the first time. Then f must occur 

in (7) - contradiction. 

1 cannot occur in ~ since ~ is not constant. Suppose ~ contains 7. 

Then by 1-B-homogeneity it must contain at least two occurences of ~. 

By B-homogeneity it must contain three such occurrences. But then 

f must occur in (7) again - contradiction. Now we know that only 

ma~ occur in ~ . But if O was at one variable then it must be at 

every one. This would be a contradiction since ~ is not constant. 

Thus I have proved that q, may contain a unary connective only as the 

main connective. Hence we have 5), (ii) of the lemma. 

5.3. The binary connectives of ~ are • and ~'(x)~ ~ x. This is 

dual to 5.2, hence 

7[YI"'"Yn] ~c ~ ( x  1A. . .  ^Xn), c ~ o , 1 } ,  
and 5) (iii) follows.O 

Corollary 2.3 Let ~ be B-homogeneous over V, V(~ ) ~V =~Xl,...,XnJ 

n~3 . Then, for some Boolean function of two arguments b , 

d.(Xl,...,x n)~ b(x I ~ ... ~ x n, x I • ... • x n ). 

Proof: 

Use induction and Lemma 2.2. For example let 

= F (Xl, P (x2,'"~(xn, ~ ' ] ' " ]  ], 
where ~ is B-homogeneous and ~ (u,v] ~ 7 uA v. 

Then by the induction assumption 
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o r- b(x I ~ ... ~ Xn, x I , ... v Xn)' 

Hence 

~ 7x IA qx 2 A -.. A qx n A b(x I ~) ... (~ Xn,X I v ... v x n) ~ 

(x I vx2v ... vx n) A b(x I ~ ... ~ Xn,X 1 v ... VXn). 

Theorem 2.4 (Main Theorem.) For every base El , there exists a posi- 

tive constant ~ such that, for every f :(O,l}n-~ ~0,i], r~ 3, if 

Ln(f) ~ ~n(log log m - log r), 

then there exist I% i I (... <ir~ n and a Boolean function b of 

two arguments such that 

flxil ... Xir~ b(Xil ~ ... ~ Xir , Xil v .o. v xir) • 

Proof 

I. Let /I and r~S be given. Let ~ (Xl,...,x m) be a k-formula, 

which means that no variable occurs in /3 more than k-times. Then 

every B-induced formula ~ X B is again a k-formula• There exists a 

constant C >0 such that the number of k-formulae with two variables 

is at most ~= 2 C'k. Thus ~ is an upper bound to the number of non- 

isomorphic formulae ~ XB, where JXI= 2. 

By the Ramsay theorem (see e.g. [7]), if 

(I) m ~ ~ rt 

then there exists Z = ~Xil ,~..,x. } , i%i I< ... <irOn, such that 
I r 

the formulae B-induced by two element subsets of Z are isomorphic, 

i.e. ~ is B-homogeneous over Z . By Lemma 2.1, ~ Z B is B-homo- 

geneous over Z and, by C~rollary 2.3, 

V • V )o fl x11. --- Xlr- --~ZB~ b(xil~ .-. ~ Xir, Xil -. Xir 

If 

(2) k .< log log m - log r - log C 

C+I 

then 

C.k * log k + log C ÷ log r -~ (C+l).k ÷ log C • log r ~ log log m, 
rl 

2 C'k . C.k.r _~ log m ~ ~ ~m. 

Hence (2) :=> (I). 

3. Let f: {O,l]n-~ {0,I}, N = L~(f). Then there exists a formula 

(Xl,...,x n) -- f such that the total number of occurrences of va- 
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riables in ~ is N. Thus there are m ~n/2 variables which have at 

most 2N/n occurrences each. Let X be the set of these variables. 

Denote by ~ = ~X B. Then ~ is a k-formula, where k =L2N/n~.By i 

and 2, in order to find the required restriction of f, it is enough 

to have (2), i.e. solving the inequalities, 

I 
N ~ - -  . n • (log(log n-l) - log r - log C). 

2(C÷i) 

> 0 is sufficiently small, then the last inequality is implied If 

by 

N ~ ~ • n • (log log n - log r), 

for every N and r. [] 

Remarks. 

I. The theorem is true also for r = 2, but it is trivial, since, in- 

stead of the bound for Ln(f), it is enough to have n ~ 3. (Find 

xi,xj, i @ j, such that fioi'll O n-i ) = f(O j-I 1 on-J).) On the other 

hand r = 3 suffices for most applications. 

2. For more precise estimates it is better to preserve the constant 

term - log C in (2). A direct computation gives for the base /I of 

all at most binary connectives the following bound 

I . n . (log log n - log r - 17). 
Ln(f) ~ 3-4 

3. In the same manner as Hodes and Specker did, I can show that the 

condition of the theorem can be strengthened to 

. . ~ b(Xil v v ) fl Xil -- Xlr ... Xir 

for some unary Boolean function b , if i'l = {O,I,Q,!, ~, v, a}. In 

the light of the results of Khrap~enko [3],[4] and Kridevskij [6], 

see also [IO], this is uninteresting however. 

§ 3 Some applications 

Corollary 3.1 For every base fl there is a constant ~a> O such 

that, for every function f:[O,l} n .... ~ IO,l} and l~k<n-3, if for 

every vector ~ e ~0,I} n 

V" z~ci = k ~ f(c) = O, (rasp. I), 

Eci = k + 2 ~ f(c) = i, (resp. 0), 
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then 

T nCf) ~ 4" n. log logn.[] 

The proof is almost identical with the proof of Symmetric Function 

Lower Bound Theorem of [1]. Hence I give only a hint: if k~n/2, con- 

sider a function obtained from f by substituting k-I one's in f; 

if k>n/2, do the same with the dual function. (See also the proof 

of Theorem 4.2 below.) 

A function f: ~O,l}n-* fO,l] is called symmetric, if f(~) depends 

n defined by only on Zci. The symmetric threshould functions T k , 

n 
Tkn (~,) = i iff ~i=l ci ~ k, 

are examples of symmetric functions. Corollary 3.1 can be applied to 

Tk n if I< k < n-l, however a more general theorem holds 

Corollar~ 3.2 For all but sixteen symmetric functions 

f :{O,lJn-~{o,1}, 

Ln(f) >~ ~. n. log log n. [] 

Such a corollary (but with the old bound) was derived by Khrap~enko 

[5]. The sixteen functions are 

c I ~ (c 2A(x I ~) ... ~) Xn)) ~) Cc 3 A x I A .... A x n ) 

(c4A(XlV ... v x n )), cI,c2,c3,c4~ {0,i}. 

I shall show a less direct application of Theorem 2.4. Let n = m.k 

and let C denote a m x k matrix of O's and l's. Define 

gm'k(c) = I iff there are at least two rows with odd numbers of I~ 

or equivalently, 

gm'k(A) = T~2 (Cll@ ..- ~Clk, c21(9 ... ÷ ~)C2k , .-., Cml(9 ... 

... ~ cmk). 

Proposition 3.3 For any base /I , LJl(g re'k) >I °C~- m . k . log log m. 

Proof: 

Let O[ (Xll,...,Xmk) --___ gm, k be  a formula over fl . Let I ~j@k, 

and consider the j-th column. Then 

c~ {Xlj,X2j,...,Xmj } ---- T~2 (Xlj,...,Xmj) , 

thus it is of complexity at least 
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o C  . m . log log m. 

Hence there are at least so many occurrences of variables of the j-th 

column in ~ . Summing over all the columns I get the bound. [] 

Notice that I get a nonlinear bound even if k is "large" (say 

k = n 1-8), when the theorem cannot be used directly. (The same bound 

can be proved for the function fk,m considered in [1], but they 

have a better bound for it). 

§ 4 Asymptotical optimality of the bound 

The following example arose during a discussion with S. Poljak. 

I shall usetfor exponentiation, i.e. mtn is mn; following the usual 

convention I shall omit brackets in expressions like m#(nfk). 

Define by induction for m,k ~ I: 

~l,m (Xl'X2'''"Xm~2) =( V x i) ~(v x i) ~ ... ~ ( xi); 
I m*l (m-l)m+l 

~k*l,m(Xl'X2'''"Xm~2*(k~l) ) = °(k,m(/l' ~2 "'" /m~2~k )' 

where for i = I,..., mf2~k 

i = C~k,m(X(i-l).m ~2~k*l, .. x(i-l).m~2~k + 2 . Xi.m~2~k )" 

Thus every variable xi, i_<m~2~k occurs in O~k, m exactly once. 

Define, for n = 2~2~r 

= ~ ~i . °~n i=l ,2~2~(r-i) 

Hence o~ n has n variables, every variable occurs in it 

r = log log n times. Therefore the complexity of o( n is n.log log n. 

The reader is recommended to try to visualize o~ as a labeled tree, n 
see Fig. 2. 

Lemma 4.1 For every ~ ~ tO,l]n 

Eci : % l, 

~ci = 3~C~n (~) = O. 

Proof: 

First it is easy to show using induction 
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( i )  ~ c  i = o ~ dk, m (F )  = 0; 

(2) ~T~c i = 1 ~ ~k ,m  ( ~ )  = 1. 

The first implication of the lemma follows from (2). The second one 

will be proved by induction over r = log log n. If r = I, then 

n = 4 and 

C¢4 = ~1,2 = (Xl v x 2) (~ (x 3 v x4). 

Thus the implication can be verified easily. Let r> 1 and suppose 

that the implication holds for 0L l, ~= 2#2~(r-I). 

Let ~ e{0,1} n be given, where 

= • = • = I, i I < i 2 < i 3 , Ci I ci 2 cl 3 

c i = 0 otherwise. 

Divide c into ~ blocks of length ~ , where the j-th block is 

~J = (c j r  *I , cj~+2 , " " ,  c ( j ~ l ) ~  )" 

Now I shall consider three eases. 

I. c i , c i , c i belong to the same block, say the j-th block. By 

(i), ~2), ~or e~ery l<i<_r, m = 2~25(r-i), 

K i_l, m(~l ~2 o~ i_l, m( ~ 2 ) )~ O{i,m(C ) = ~Xi_l, m ( ), O~i_l,m(C ),.-- 

= *J =-- o~ (~J). 
- -  O~Ji_l,m(O,...,0 , o< i_l,m(C ) , 0 , . . . , 0 )  i - l ,m 

Hence 

~n (~ )  -- ~ l ,~ ( ~ )  A ~e(c~J), 

which is equal to 0 by the induction assumption. 

• belong to different blocks, say to Jl-th, J2-th, 2. Cil , ci2 , c13 

J3-th ; jl<J2<J3 . By (i), (2), for every l<i~r, m = 2~2#(r-i), 

i - l ,  m (~J~) ~J2 o<i,m(~) = oLi_l,m(O,...,0, O~ , 0 , . . . , 0 ,  o~i_l,m(C ), 

0 , . . . , 0 ,  ot i l,m(~J3),O,...,O) --- OLi_l,m(~), 

whe re 

= d j2 = d j3 = = djl I; dj 0 otherwise. 
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Hence 

:  l,e ( F )  ^  t(F ), 
which is equal to 0 by the induction hypothesis. 

• belong to the same block. Then ]. Exactly two of Cil , ci2 , c13 

~l,t(~ ) ~ O, hence ~n(~ ) ~ 0 . [] 

Theorem 4.2 Let J~ = ~,v,A} , then for every m~l, there 

exists f:{O,l}m--~{O,l} such that 

L~(f) @ m. rlog log m ~ 

and for no l~i<j<k~m and no b , 

(3) flxiXjXk---- b(x i ~ x j  ~ Xk, x i v x j  v x k ) .  

Proof :  
Let m be given, let r = flog log m I , n = 2~2~r, and let ~n be 

the formula above. Let 

f~ ~n{Xl,...,Xm} 

Then the complexity of f 

the same value for (I,0,0) 

cannot hold. O 

In fact I have proved a little bit more: the bound in Corollary 3.I 

is asymptotically best, 

is ~ m.r. The righthand side of (3) gives 

and (i,I,I), hence by Lemma 4.1 (]) 

§ 5 Related results 

I. A generalization of Hodes-Specker theorem to d-sty logic, d ~ 2, 

was considered by Vilfan~l] • Let D = fO,l,..., d-l} be the set of 

logical values. A proper chain C(Xl,...,Xn,C) is,in my notation, 

every expression 

?(xl,?(x2,"" F(Xn ,cI ""]], 
or with the reverse order of variables, where c ~ D and 

~(o, ~Cx,y]]-- FCx,y]. 
(For d = 2 the last condition is equivalent to " ? (O,x]~ x or 

(O,x] is constant".) The generalization says, roughly speaking, 

this: If the complexity of f:Dn--~D is "small", then there exist 



444 

• , •. Xlr Xll ., • such that 

f l Xil ... Xir--=b(Cl(Xil,...,Xir,Cl),...,Ce(Xil,...,Xir,Ce)), 

where C i are some proper chains. The actual bound, which is in- 

stead of "small", is again worse than n • log * n. Vilfan derives 

Hodes-Specker theorem from his generalization only for the base of 

all at most binary connectives, but this restriction is unessential. 

Because of the similarity with Theorem 1.3, I believe that Vilfan's 

theorem can be derived from it with a bound assymptotically equal 

to n.log log log n for fixed ~ and d , 

3. A related theorem was proved by Fischer, Meyer and Paterson [i]. 

Their theorem can be expressed as follows: There exists a constant 

> 0 such that if the complexity of f~O,l~n--~ IO,l~ over the 

base of all binary connectives is 

(I) ~ .n.(log n - log r), 

then there exists a central restriction fl A x i ... x i (i.e. the 

number of substituted l's equals to the number ~f substituted O s 

possibly + 1), such that 

fJA . ~b(Xil ~ @ ), Xil .-. Xlr .-. Xir 

for some unary Boolean function b. If we replaced (1) by a bound 

. n (log log n - log r), then such a theorem would be a consequen- 

ce of Theorem 2.4. For comparison consider the symmetric threshould 

functions. The theorem of Fischer et al. gives better bounds for 

T n where log n<<k<<n - log n, for k~log n or k~n - log n 
k' 

both theorems give assymptitically the same bound, and for the other 

values my theorem is better. 

4. Still it is an open problem what is the complexity in a general 

base of such a simple function as T~ • By the results of Kri~evskij 

and others the complexity of T~ is asymptotically n.log n for the 

base n = {o,I,7, A, vS , see also [i0]. This is also the lowest 

known upper bound for any base. In this paper I have approached to 

this bound from below. However observe that formula ~n of § 4 can 

be easily~_~ transformed into a formula ~n such that for every c , 

if ~c i ~ 4, then 
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and the complexity of ~ n is assymptotically n. log log n. This can 

be generalized further, namely 4 can be replaced by an arbitrary 

constant. 
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