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Abstract: In [2] Hodes and Specker proved a theorem which implies
that certain Boolean functions have nonlinear formula size complexi-
ty. I shall prove that the asymptotiec bound for the theorem is
n.log log n.

§ O.Introduction
Let £ be & Boolean function, i.e. £:{0,1}® —» {0,1} for some posi-
tive integer n. The variables of f will be denoted usually by

qe Given 1 £1i,<i,< ... <i <n, then f’lxil xiz... xir
denotes the function from {0,1}F into {0,1} obtained by substituting
0’s for all the variables of f different from xil ese xir. In§ 5
we shall need substitutions containing also 1’s; in such a case we
add a superscript to the bar. A base is an arbitrary finite set of
Boolean functions () ; the elements of {1 are called connectives. The
(formula size) complexity of f in base Q1 is the number L (f)
equal to the minimum of the total number of occurrences of variables
in an expression over () equivalent to f , (or oo if such an ex-
pression does not exist).

XppeeesX

The theorem of Hodes and Specker [2] can be expressed as follows:

If () is the base of all binary connectives, (or equivalently
2 = {0,1,A,®} ), then there exists a function S(r,n) such that for
every r
lim S (r,n) — o0 ,
n — oo
and if

(1) L4(f) £ n. S(r,n), then there exist 1€i;< ... <i <4n and
a2 Boolean function b(x,y) of two arguments such that

flx, ooo X, =Dblx; ® ... @ =x X: V oeos V Xz )
b ip 1 ip ! 1 ip

{ ® denotes addition modulo 2).
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This form of the statement is convenient for the proof. For the proofs

of lower bounds the theorem is used the other way around, namely, if
f dAoes not have a restriction of the form above, then it has com-

plexity =n . S(r,n), thus nonlinear. The function S constructed

by Hodes and Specker grows for fixed r more slowly than 1og* n
2

(which is the inverse function to 22 m~-times). The aim of this
paper is to show that the theorem holds in an arbitrary base {1 with

the estimate (1) replaced by
L,(f) £ €&, .n(log log n - log r)

for scme £, > 0. All the logarithms in this paper are of base 2.
Further, I shall show that for {1 ={®, A ,Vv} and r>3 fixed, the
bound is asymptotically best; this was done jointly with S. Poljak.
Since Hodes-Specker theorem has a direct application to lower bounds
on complexity of symmetric Boolean functions, the paper is also a
contribution to this etill open field.

My method of the proof is based on the Ramsey theorem, This is not
surprising since the thecrem (in the form above) resembles the Ramsey
theorem. The Remsey theorem has been used by Vilfen [11] for proving
a generalization of Hodes-Specker theorem but in a different manner.
The idea of my proof is very simple. Let o((xl,...,xn) be a formula
of small complexity. For every 1i,j, 1l<€£i<j<n, define the induced
formula o {xi,xj} in a suitable way and so that the number of occur-
rences of xi,xj in the induced formula is the same as in the ori-
ginal one and it does not contain other variables. This concept is
almost the same as the one used by Nediporuk in [8]. Since the com-
plexity of « is small, the number of occurrences of x; in & is
small for meny i’s, say for X i=l,s.., m 2 n/2, If I restrict my-
self to this set of variables then the number of nonisomorphic in-
duced formulae is small., Now I colour the pairs (i,j) from {1,...,m}
by "the shape of d.{xi,x.}". Using the Ramsey theorem I get a sub-
set {il,...,ir}g {1,...,m? such that for every a<b, c<d,

c({xﬁa, xig} is isomorphic to d.{xic, xig . The same is true if I
use the induced formula /3 = o({xil,..., xig , (defined similarly)

instead of X ., Then it is shown that formulae with this property (it
is natural to call them homogeneous formulae) have & very special
shape which forces them to be equivalent to b(xi ® ...® X5
: 1 2
Xy ¥V oees VX ). This is the longest part of the proof since (as it
1 r
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is often the case in lower bound proofs) one has to consider many
cases, The concept of inducing is, of course, chosen so that /G’is
equivalent to the formula obtained from O by substituting 0’s for

every variable different from Xi yeeesX; o
1 T

It seams that the method could be used for some other kinds of com-
blexity, (e.g. number of arithmetic operations), therefore in § 1

I prove a theorem about general terms, In § 2 the theorem is applied
to Boolean formulae in order to obtain the main result.

§ 1 Structure of homogencus terms

In this paragraph I shall use terms (denoted by 'V fR yees) Of the
language consisting of a set of variables V = {xl,...,xn} , (denoted
also by x,y,z,u,v,...) & set of at least binary operations {2 (de-
noted by a,b,d ,...) and a single constant c¢. The set of varia-
bles which occur in a term o will be denoted by V(0(), We shall
agree to write - Oﬁ(ul,...,uk) to indicate that V(o) ¢ {ul,...,uk}.

It is important to visualize terms as rooted trees in which the ver~-
tices are the leaves labelled by the elements of V ¢ and junct-
ions labelled by the elements of 0 of the corresponding arity; more-
over the leaves are linearily ordered, which induces a linear order-
ing of the successors of any junction. The tree structure determines
an ordering of the vertices, namely, u is below v iff the short-
est path from v to the root contains u iff the subterm determined
by v is a subterm of the subterm determined by u. The isomorphism
of terms will be defined by o (uy,e.e,uy) ¥ B(Vyyeee,v ) ife

OC(ul,...,uk) = A (vl/ul,...,vk/uk),
where y/z denotes the substitution of 2z for every occurrence of
y. From this point on I shall use the less precise notation without
the substitution sign.
Definition
Let & be a term, X & V., The term induced by X will be denoted by
X and defined inductively by

cX = ¢
xiX = x4 if x; € X,
c otherwise;

blody,eue, & ) =00X if o(J-X=c for all § # i,

= b( XXy eee, o(kx) otherwise.
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(henace = c if O(jX = ¢ for all j).

Less formally the induced term ol X can be defined as follows. If
XnvV(x) =@ then & X = ¢c. Otherwise

(i) omit from o all the junctions v such that the subformula deter-

mined by v is of the form b(A,,...,,), where v( ﬂi) NxX#¢
for at most one 1ij;

(ii) omit all the leaves labelled by the elements of V(o) - X;

(iii) at the junctions whose arity does not correspond to the number
of predecessors, fill the remaining places by c¢; and preserve the
labeling and the orderings. (The operation (iii) is never used if 0
containe only binary symbols.) Whence we have the following lemma.

lemma 1.1 X <Y = X=(ay)X. O
If X = {Xil,-oo,xik} ’ Y = {le’...’xjk} 3 il< sen <ik, jl<c-o <,jk
then I shall write

174

ol X

/{Y

) ] FY(le’...’xjk).

instead of
OCX(X- XETP. 9
11’ ’ i
Definition
A term of is called k-homogeneous over 2 iff VX,Y € Z,IXi=1¥i= k,

s

X = &Y.
I shall omit k and/or 2 if k=2 , 2=V,

Lemma 1.2 If [VI>® 3 and o is homogeneous then « is l-homogeneous.
Proof: easily from Lemma 1.1, [J

I shall use also the following notation:
0‘.[)’11"'1yk]

means that every ¥y occurs in ol exacitly once and & does not con-

tain other variables;

& (u,v]
means that V(o) ={u,v} and v occurs in ol exactly once.

If of can be expressed in the form y’(u,yd y where is not a single
variable, then u is uniquely determined; if moreover ¥ is minimal,
then also ¥ and ¥ are uniquely determined.

Examples.

1. a(b(d(y,z), e(x,x)),x) = ¥ (x,¥] where
w(u,v] = alv,u), = bldly,z), elx,x)),

or
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Y (u,v] = a(b(v,e(u,u)),u), y= dly,z).
2. a(b(x,y), d(x,e{z,x))) cannot be decomposed.

Theorem 1.3 (Structure of homogeneocus terms.) Let of be a homogeneous
term, V = {xl,...,xn} ,» D 23, and suppose ol does not contain cons-
tant subterms other then c¢. Then at least one of the following con-
ditions holds:

1) o= ¢;
2) d= b(pl,...,/{k) and A y,essy 3y are homogeneous;
3) X =p(xq, f(xz,...,f(xn,f] eeel] or
0‘-=)"(xn, P (X yseee )a(xl,o"] «es.]1 ana d is homogeneous;
4) &= pxy, f(xz,... f(xn_l,'ya (x )1 .0 11,
or the same with the reverse order of variables;
5) o= \f[J(xl),...,cf(xn)] where, for some b € and i<j,

every nontrivial subformuls of Y[ Yyseear¥pyl is of the form
b(c,...,c,/.«.,c,...,c, YV 3CyeeeyC)e

where f+ 3 v are on the i-th and j-th places.
If moreover of is 3-homogeneous, then at least one of the conditions
1)-4) holds.
An example of a homogeneous term is shown on Fig.l.
Proof:
(i) First I prove the theorem for () consisting of binary operations
only. The binary operations will be denoted by an infix o , thus di-
fferent occurrences of o may denote different operations. Let o
be a homogeneous term. I omit the trivial case when o« is a variable
or the constant, and assume X =40 ) . Consider the following three
main cases (with several subcases):
1. V(B)n V(g) = g,
1.1, If V(@) = @, then X = p X, thus 3 and )¢ are homogeneous,
which is condition 2) of the theorem. If V(y) = @, then we get the
same,
1.2, Let u€vV(Bs) , veV(y ). Then
1) o fu,v} =g {uj opy{v} .
Let weV be an arbitrary element, and let d" be the smallest subterm
of & containing all the occurrences of w . If there were an occurren-
ce of z in d , z # w, thenot{w,z} could not be isomorphic to (1).
Thus I have proved that

o« = p[di(xg)y0ee, d(x )]
1-homogeneity of ol , (Lemma 1.2), implies
I = v =d (1),

and homogeneity implies that all the operations in




426

*faguael By ‘Aasurq p‘q ‘¢ = u

‘sl snosusfowoy v Jo erdwexe uy

s
|
m\c/c
* p 7 Np
X
™~ e ™~
T >, e
NN AN

‘T FTd

\/



427

)O[yl,...,yn] are equal, thus we get 5).
2. V() =V{g) = V. Then
pX o s X,
thus 43, o are homogeneous - condition 2).
3 V(p)n V(pr) # @ and V(B)E V. (The case V(p) SV is symmet-
ric).
3.1. Claim: |V(B) | =
If not, then we have ue€vV(g), veV(g)n V(pn), weV(g), w #v. Then

oL[U.,V} = ﬂ{v} o %{uyv}’

aiw,v} =g{w,v} o ¥ {w,v.
(w may not occur in ¥ {#,v})e+ This two terms cannot be isomorphic,
since /3{,v} contains only one variable, while f3{w,v} contains two.
3.2. Claim: V(A) ={x;} or V(s) ={x}. )
It V(/3) ={xi} s 1<i<n, then the first occurrence of a variable both
in of {x3,%;} and o({x;x;} is x;, thus they would not be isomorphic.

Henceforth assume V(pg) = {x31 ( ={x,} being symmetric). By the as-
sunption of this case X € V(y ), hence Vip) = V() =

303 Claim: o = Yl(xl’ Pz(x2,acorn_l( _1, Y] .0‘]]

I shall prove by induction for i = 1,...,n-1,

(2) (?(-= Yl(xl’()02(x2"")ai(xi’yi] esel]e

For i =1 this is just the assumption V(/s) = {xl}
Suppose (2) for i< n-1 and chose Yi minimal. Then ¥4 =m0y where
V), V(v ) are not subsets of {x. }.

3+¢3.1e First I show
lEV(/«) nNVv(v).

Suppose not, say X541 € Vi) = V(v ). Then x5 € V(Vv) for some
J #1,i+1. If i+1< j, then

d{x’+1)x ¥ ﬂ£x1+19x .} o V{XJ-} ,i-

A {xq,x5} = Alxd o yU{x1,%50,
since x,€V(y), - contradiction. If j<i, then
o {x5o%5,1) = )oj(xj’/“ixj’xhl} 0 y{xj}] = )’l(xj’/“‘{xj’xhl}];

A {x50x5} = Pylx50 pilxgs pi{xs,%53] 10

This two terms cannot be isomorphic, since there sre more occurrences
of u in Y'(u,v] then in fj(u,v] s - contradictione

3.3+.2+ Now I show
(3) V(/«) = {xi+1}.
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For Jj>i+l, x5 cannot belong to V(/u) since

d{xi+l’ xj} =/u{xi+l’xj} O/A{Xi.,l,xj} =

= ‘*{xlile =/!{x1} ° X{x].,xz}'

If xjeV(/A) for some j<i+l, then the following two terms could
not be isomorphic

°"~(xj:x5_+1} = fj(xja /‘{xj’xi+l} o fojrxi+1}] H

“{xj’xn} = yzj(xj,/u{xj} o v{xj,xn} 1.

Thus, by (3)) "Y/'

i cen be expressed in the form

Yi = Fiea e Yiea 1o
which ends the proof of the claim.
3.4. Claim: If - is minimal in 3.3, then
(4) piluv = .o =)0n_l(u,v].
Let < be minimal.If V(w) ={xn},. then, for 1i<n,
o(.{xiyxn} = )oi(xio ’)"{xn}]’
and the claim follows easily from homogeneity. Otherwise 7 contains
at least two variables, hence 4 = mo vV for some w, v . Using the
same argument as in 3.3.1 one can show that x e V(gm) n V(v ).+ Thus
for i<n
(5) ot {xg,x} = Py (% plxg,x} oy {x;,%}] »
whence the claim follows easily.

If V(y) ={x,}, then o is of the form 4). Therefore it remains to
consider the case whem V() is larger., Then V(y) =V, since «
must contain the same number of occurrences of every variable and by
3.3 and 3.4.

3.5. Claim: 4 = 'fn(xn,x] , for some Pn and % . In the proof of 3.4
I have shown (5) (for every i<n). This term must be isomorphic to

o {xysxy} = py(xys Polxy, Yolxg o] le

Moreover we know that )ol(u,v] = )az(u,v] , thus for some term f ’
Polxps ¥olxpsxad 1= A(xp) o f ¥ afxgsxp) o v {x5,%}.

Hence V(a) = {x,}, which proves the claim.

Further I shall assume that X in 3.5 is minimal.

3.6+ Claim: p(u,v l=40 9 (u,v) = oo = _(u,V] does not contain more
occurrences of U then fn(u,v].
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3¢6.1. Firat assume X, € V(% ). Then

(6) 0‘-{1‘191(2} = Y(xl’ ¥ (xzv X {xl:xg}]] = d{xlsxn} = f(xl) Y’n(xn’ ¥ {xl}]]’
whence the claim follows. In the rest of the proof of the claim I as~
sume x €V(X) and X =mo v, for some MoV,

3642, If xjeV(/.«) n V(v), j<n, then % {xj,xn} is the minimal term
such that o {xj,xn} can be expressed as
Y(xj’ fn(xn’ x {xj’xn}] ]’
‘Comparing this decomposition with the decomposition of o((xl,xz} in
(6) the claim follows.

3+6.3. T shall show that V(m)n V(v ) # {x;}. If not, then there are
X4 € Vim) = V(v), Xj€ V(v) « V(u), 1,j # n, since % is minimal.,
Then

o({xi,xn} = Y’(xi’ )on(xn’ M {xi’xn} oy [xn}]]?

¥ oo{xgoxpd = plxg, pplag, mlxd o Y ixg,xdll,

a contradiction.

3+6+4+ It remains to consider V(/u) n V(y ) = @. Suppose it is so and
X, € V(s ). (The proof would be similar if xneV( Y )). Choose X{ X5
as in 3.6.3. If i<j, then

(7 o({xi,xj} = ot{xi,xn},
hence

Y'(xj,,u[xj} o V{x5}] ] ')on(xn,/u{xn} ov{x;}].
This isomorphism maps vy {xi} onto itself, hence_,u{xj} oy {xi} onto.
Mixl o v {xs}, thus y (u,v J= p,(u,v]}, which is even more than I wan-
ted to prove. If j<i then in (7) #ixj} nust be mapped .ontc V{xi} ’

by the uniqueness of the decomposition, and then ,u{xj} o v{xi} onto
pmixpl oy {x;} which is impossible. Thus 3.6 is proved.

Now I can end Case 3. Since
oA {x3} = f(xl, )Ci_xl}] g xAixp} = }"n(xn,%{xn}], and by 3.6, either
Pnlu,v] = plu,v],
or there is some )o' such that
Polu,vl = )D(u,)"(u,v]].
Thus for some term d s

%= Py, P(xgpene Plx, d] eenl]



430

Since for i<,
O(ixi,xj} = P(xi’ P(xj: Orixinxj}]] ’
J is homogeneous, i.e., condition 3).
(ii) Now let X be a homogeneous term over a general base 1 . For
every operation b ¢ () of arity k >3, choose k-1 new binary ope-

rations bl""’bk-l‘ Let o' be the term resulting from o by applying
all the possible substitutions of the form

b(ﬂl,ooc, ﬂk)H bl(ﬂ l,ba(ﬂ2’coo bk-l(ﬁ k"l’ﬂk)...)).
Claim: o isg homogeneous. Thie is because similar operations produce
o' X from « X, namely, the operations of the form

b(c,ooo,c, “il,C,o'o,C, O&iz,c,o-o ooc,C,dij,C,-oQ,c) b3

es e b- (d' d' ) -00)).
B = R B U
By (i) I know that at least one of the five conditions of the theorem
holds for o« . Accordingly I shall consider four cases.

1. o= ¢, then ol = ¢,

A’ Aoy ,and A,y are homogeneous, then
ok b(/_{,/jz,-..,/{k), kk'>2,
where V(ﬂ ) =V = V(Y) = 'Uzv(ﬂi). Whence
j=

— bil(d il’biz( o(iz

o(X = b(ﬂx, ﬂ2x,.-.,ﬁkX),
thus 4 13310003, are homogeneous -~ condition 2).
3. If 3) or 4) holds for o then

¢ § i
o= pix),p (x,¥5,11,
(or with XX,y instead of xq,x5).
3.1. Claim: )o" corresponds toc a part of the original term ol . Suppose
not, then for some operation b of & , i<j and terms f'(xl),/u', v,

f ’ I

(8) &= by ( F' (x7),b5(u’y »)),
or for some term Vo

! 12
K= P (xq,b5( F (xl),bj(/«', v’y ,
where

A ¢

(9) bj(/"',y) = )0 (XZ’/}VZ]'
Without loss of generality I shall consider only (8). Then « is of the

following form
b(.oo f(xl) "o /" see Vl ose V2 see sos ¥

n ov-),
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where only f , A, ViseeeyV  are different from c¢ , and
»

Vim) = vip), U viv,) =vv).
By (9), V(#) = {x,} or V(V') = {x,}. In the first case

o {xys%5) = bloee Flxg)ees aexy) woe Vy{xy,%5} -0 Vg {X11%5] o),
while a term corresponding to A« (x,) in d.{xl,x3} is missing - con-
tradiction. The second case is ruled out by a similar argument, thus
the cleim is proved.

Now the condition 3) or 4) follows easily from the claim. If e.g.

o(lz ')al(xl, ?‘(xz,... )"I(xn, o/‘l]'.’] ],
then

= A (x), ¥ (xXppeee Plx, I L]l

where Y is the term corresponding to y;. Homogeneity of J" can be
proved in the seme way as in (i).

4. o' = )o/ [or(xl),...,f(xn)] , @and all the operations in y'[yl,...,yn]
are the same. If this is an operation of 3 then, clearly,

o = Y’I[‘fl(xl)""’ (fn(xn)] o If it is b;, for some bef) , then dif-
ferent occurrences of bi in o« must correspond to different occurren-
ces of b in & , (since they have the same index i ). Thus again
o=y Bfi(xl),...,cfh(xn)]. The rest is the same as in (i), 1l.2.

(iii) Let o be 2- and 3-homogeneous. Suppose 5) holds. Then because
of 3~homogeneity also 4) holds. [

Remarks.

l. An easy corollary of the theorem is that if & is 1,2,3-horogeneous,
then it is k~homogeneous for every k<ne It would be more appropriate
to reserve the word "homogeneous" for this concept.,

2. The theorem can be inverted if the relation of v to y in 4) is
gpecified.

§ 2 The lower bound theorem

In this paragraph I shall apply Theorem 1.3 to Boolean formulae., For
sake of convenience I consider only bases which contain nullary
connectives (constants) 0,1, unary connectives -(x), 0(x), 1l(x),
and do not contain the identity unary connective. The letters will be
used in a similar way as in § 1, i.e. o, B s +e+, 8re formulee,
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X3¥3ZyQ,V,ee. variables, a,b,d,... at least unary connectives, c, ¢4
for 0,1, etc. Also I shall assume that the formulae do not contain
parts of the form al(az(p )),(al,az unary connectives), or
(b(eyyeeesey), (b a k-ary comnective and cie{O,I} )e

Definition

Let o« be a Boolean formula, X a set of variables. Then ¢ x - the

forsula B-induced by X is the formula produced from oL by the follow-

ing rules:

1) substitute O for the variables of X;

2) replace every part b(cl,...,ck) by the corresponding constant;

3) replace every part b(cxl,... dk), where only o is a nonconstant,
by oy or a(ﬂxi), where & 1is the corresponding unary connective;

4) replace every part al(az(ﬂ )) by A or a(pB), where a is the
corresponding unary connective (a(x) = al(az(x))).

k-B-homogeneous and B-homogeneous formulese are defined analogically as
in § 1.

For a formula o denote by F(ol) the term whick results from « by
omitting the unary connectives of o and replacing 0’s and 1°s by
the symbol c¢. (Clearly, if & is a formula in the sense of this para-
graph then F{(o) is a term in the sense of § 1.)

Lemma 2.1

1) XeY =¥y = («Y¥p) Y ;

2) o is B-homogeneous over Z = &Zp is B Thomogeneous over Z,
( ¢ may contain other variables than those in Z);

3) F(dXB) = (F{())X;

4) « is B-homogeneous over Z=>F(&) is homogeneous over Zj

5) ot is B-homogeneous over Z, |Z| 2 3 = «is 1l-B-homogeneous.

Proof:
If V(X)n X # @, then olXy can be constructed as follows:

l. construct (F(&K))X,
2. add the corresponding unary connectives and replace the symbol ¢
by the corresponding constants.

Whence we obtain 3). Then using Lemma 1.1 we get 1). The implications 1)
=2), 1) = 5), 3) = 4) eare trivial. [
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Lemma 2.2 {Structure of B-homogeneous formulee). Let « (Xyy000yx)
be B-homogeneous over V = {xl,....,xn} , n23. Then at least one of
the following conditions holds:

1) o¢ = constant;

2 & = b(ﬁl’“"_ﬁk)’ be , k21, and fB11+++1 By are B-homoge-
neous;

3) K= plxgy P (Xpyeee YIx_1s W(x,y, 0110011, or with the reverse
order of variables, where ¢ is B-homogeneous, Y (u,v] = A (u,v]
or ¢ (u,v] =y (u, Iv], and y(u,v] is equivalent either to
u®vVv or uvv Oor TTuAvV or v;

4) o = P(xq, P(xpyeee Px,_ 90 ¥ (x))] see]], Or with the reverse
order of variables, where
(i) either Y(u,v]l=u®v and (¥(u) =u or Y(u)= "),
(ii) or y (u,v] = uvv and #y (u)=u,

(iii) or y (u,v]= Juav and 4 (u)= u;

5) ol= ¥ [Or(xl),..., Dr(xn)] , where for some cé€{0,1} ,
(i) either P [Yyseeeryp) = @y ® ... @y,
(ii) or Y[yl,...,yn]E c @(yl YV ese V yn) and J(y)Ey,
(iii) or P [Yyseerypgl=c @ (yp A ceu A ¥,) and d(y)= 1y.

Proof:

Let o be B-homogeneous over V. By Lemma 2.1, F(™) is homogeneous.
If F() = ¢, then ol is constant. Now assume that X is not constant.
Then by Theorem 1.3 at least one of the conditions 2)-5) holds for
F(ol}e I shall consider five cases.

l, X = a(4 ), where a is a unary comnective. Since o is not constant,
a=7T,end V(B)="V.Llet @#XSV, |X| =2, then oXy is either

a variable or a more complicated formula. If o« Xp is a variable, or

if the main connective of it is at least binary, then oKXy = 7148 Xge

If oKX = b(§r), blx) = 7(x), O(x) , 1(x) resp. then Big =
1(y#), O(p) resp. Thus

AXp = &Yy =Xz = B Yp,
hence ﬂ is homogeneous. This proves condition 2) of the lemma,

Henceforth I shall assume that the main connective of X is at least
binary.

2. F(e) = b(/fl,...,pk), fyse++y 3y homogeneous. Them

d= b(rl,.no’a‘k) and V(J‘i) =V(ﬂi) =V for i.= l,o-o,ko
Thus

dXB = b( rle”."rkXB)’
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whence ) q,s.e,}t) are B-homogeneous - condition 2).

3. Flo) =}0’(x1, )a'(xz,..., f’(xn,d-j]]where J'is homogeneous. (I
shall not consider the symmetric case where the variables are in the
reverse order.) Then ¢ can be decomposed as follows

(1) o= iy, PolXyyeee Polxy 1,9 1eul ],

The decomposition might not be unique because of unary connectives.
Therefore I postulate that the unary connective which is possible to
include either in Pi OT Pi41r i<n be included in ;. The unary
connective between ¥n and ¢ will be included in ¥n if and only if
there is the same connective between Y1 and ¥, . Now p 5,..., g, have
the main connective at least binary; the same is true about }01, since
this is the assumption above. The formula o({xl} , hence any o {x;}
too, has the main connective at least binary. This proves that

(2) pp0,v]= ... =y 40, v]I=v |
Hence, for i<n,
afxgyxp) = pi(xg, P (g, J) {xg,x0 1,
therefore 1y, = Po = eee = Ppye I shall denote these by ¥ and ¥
by ¥ . Since

F( ¢ (u,v] ) = ‘Pl(u,v] = F( vy (u,v])

and since

O({xl} = OL{Xn}r

the only difference between ¥(u,v] and ¥(u,v] might be the unary
connective at v . Recall that the decomposition (1) is chosen so that

if there is a unary connective at v in 4 (u,v] then the same is at
v in ¥ (u,v] . By (2) the connective can be only the negation. Thus

(3) plu,v] = ¥(u,v] or pluv] = (u, vl
Then, by (2),

(4) w#(0O,v] =v or ¥ (O,v] = 7iv respectively.

Since = F(J ) is homogeneous and o/ is B-homogeneous, the only

difference between chB and JYB, 1Xi=|¥i= 2, might be the main une-

ry connective. Using (2), (3) and (4), one can easily compute that

the parity of the number of negations before the last junction of d

is always the same. Hence JXB and JYB are isomorphic, which

proves that d is B-homogeneous. The rest of condition 3) follows from
p (0,v]l = v.
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4. Suppose condition 4) of Theorem 1.3 holds for F(« ). Then , using
quite a similar argument, one can prove condition 4) of the lemma,
The relation between ¥ and ¥ follows easily from B-homogeneity and
the assumption that o is nonconstant.

5. Suppose condition 5) of Theorem 3.1 holds for F(o&). Then

ol = f[Jl(xl)""’ d'n(xn)}. This decomposition is not unique again,
If I choose Jl""’ ‘;n 80 that their main connectives are not unary,
then, by l-B-homogeneity, Jl = 0"2 = .. T ‘fn' Thus I can drop out
the subscripts at ¢ . Since o« is nonconstant, d(x)= x or = x.
The assumption about F( o) implies that there are occurrences of
only one connective b of arity k=22 in ¥ » and they are always
in a contex

(5) coe b(cl,-o.,ci,/r{,Ci+2~,oo-,Cj, v, Cj+2,...,ck) see o
Every Boolean formula of two arguments is equivalent to a formula
(6) d(e;(x)o e,y(y)),

where any of the unary connectives d,e1e2 may be missing and
oe {®, v}. Choose such a formula for

b(cl,...,ci,x,ci+2...cj,y,cj+2,...,ck),
replace every occurrence of (5) in P by this formulae, and collect
consecutive unary connectives. Denote by ¥ the resulting formula.
n¢ contains only binary and unary connectives. Denote by
A= ¥ [J(xl),..., J(xn)].
Since y = '
A {%;} = o({xi}.
A similar argument shows that A {xi,xj}, l<i<jgn can be const-
ructed from o({xi,xj} using the same procedure by which I construc-
ted ﬂ from o . Thus /3 is B-homogeneous.

Now I shall consider three cases.

5.1. The binary connectives of ¥ sare @ . If there occurs & constant
unary connective in 4 , then some, hence by 1l-B-homogeneity every,
ﬁ{xi} must be constant. Since the binary connectives are (@, this

is possible only if there is a constant unary connective on every path
from & variable to the root. Then 4 , hence also « , is ccnstant -
contradiction. If there is no constant unary connective in 4, then
v (yl,...,yn), hence ¥ (y1,..+,¥,)y is equivalent to t@ ¥ ® ...
cee ®@y,, te{0,1}, i.e. condition 5), (i) of the lemma.
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5.2. The binary connectives of 4 are v and d(x) = x. Then
qp[xl,...,xn] is B-homogenecus, as it is equivalent to 4 . Let, for
1€i<j<gn,

(7) ’)"{Xi,xj} = f(gl(xi) v SZ(xj))'

where any of the unary connectives f, 81+8, may be missing. If f
is not missing, then it is also the main connective of <y (consider
¥ {xl,xn}). It was shown in part 1 of the proof that in such a case
after removing the main connective I get a B-homogenecus formula
again. Thus without loss of generality I can assume that f is miss-
ing.

Claim: The unary connectives may occur only at the variables of ¥y .

Suppose not. Take some junction such that there is exactly one unary
connective below it. Let 1i,j be such that the paths from e and
x. to the root meet gt it for the first time. Then f must occur

in (7) - contradiction.

1 cannot occur in ¥ since ¥ is not constant. Suppose Yy contains .
Then by 1-B-homogeneity it must contain at least two occurences of .
By B-homogeneity it must contain three such cccurrences., Bul then

£ must occur in (7) again - contradiction. Now we know that only O
may occur in < . But if QO was at one variable then it must be at
every one. This would be a contradiction since y is not constant.
Thus I have proved that 4 may contain & unary connective only as the
main connective. Hence we have 5), (ii) of the lemma.

5.3. The binary connectives of < are v and J(x)= -1x. This is
dual to 5.2, hence

,Y,[yl,...,ynlsc @ (xyAeoe A X)), ce {0,1}%,

and 5) (iii) follows.(J

Corollary 2.3 Let oo be B-homogeneous over V, V(X)SV ={x1,...,xn}

n3 . Then, for some Boolean function of two arguments b ,
OL(xl,...,xn)E b(xl @ e e @ xn, xl YV 200 ¥ xn )o

Proof:

Use induction and Lemma 2.2. For example let

o= P (xy, P(Xyy.0ap(xy, d 101,

where ¢ is B-homogeneous and Y (u,vl1= uav.

Then by the induction sssumption



437

d = b(xl@ e @ Xpy X3 ¥ eee ¥ xn).

Hence
A= %A Xy A eee A TIXy Ablx; @ ... @ X 9X) ¥ eee v xn)E

= (xl VXSV ... vxn) A b(x1 ® ... ® Xp9X] Vo oeee v'xn).

Theorem 2.4 (Main Theorem.) For every base () , there exists a posi-
tive constant &, such that, for every f :{0,1}"— {0,1}, r23, if

L,(f) € £,n(log log n - log r),

then there exist 1< il <eew <’irgn and a Boolean function b of
two arguments such that

flxi:L eee xirs b(xil G cor @ xir , xil V  sse v xir) .
Proof :

1. Let N and r>3 be given. Let A (Xy,...,x;) be a k-formula,
which means that no variable occurs in g more than k-times, Then
every B-induced formula 2 Xp is again a k-formula. There exists a
constant C>0 such that the number of k~formulae with two variables
is at most £ = 2c‘k. Thus < is an upper bound to the number of non-
isomorphic formulae 4 Xy, where 1XIl= 2,

By the Ramsey theorem (see e.g. [7]), if

(1) map7*?

then there exists 2 = {xil,...,xi }s l1<iy< ... <i.<n, such that
r

the formulae B-induced by two element subsets of Z are isomorphic,
i.e. 4 is B-homogeneous over Z . By Lemma 2.1, Y& Zg is B-homo-
geneous over 2 and, by Corollary 2.3,

Pl X: eee X: ZTRZ,=b(x; ® ... @ x X: ¥V eee VX3 e
i i /3 B i, ir’ i ir

T

1t

(2) x < log logm ~ logr - log C
C+1

then

C.k #1logk +1logC + logr £(C+¥l).k + 1log C + log r £ log log m,
C.k rl,

= 2°*% , Cker £2logm= ¢ <m.

Hence (2)=> (1).

3. Let f: {0,115 {0,1}, N = L 5(f). Then there exists a formula
o (xl,...,xn) = f such that the total number of occurrences of va-



438

riebles in % is N. Thus there are m>n/2 variebles which have at
most 2N/n occurrences each, Let X be the set of these variables.
Denote by 4 = o Xp. Then g is a k-formula, where X =,2N/n,.By 1
and 2, in order to find the required restriction of f, it is enough
to have (2), i.e. solving the inegqualities,
1l

N£ .

2(C+1)

n . (log(log n-1) - log r - log C).

If £ >0 is sufficiently small, then the last inequality is implied
by
N<€E&.n. (log log n - log r),

for every N and p. ]

Remarks.

1. The theorem is true also for r = 2, but it is trivial, since, in-
stead of the bound for L (f), it is enough to have n=>3. (Find
xj,X5 1 # J, such that e(oi11 o1y = £(0d-1 1 0P"J).) on the other
hend r = 3 suffices for most applications.

2. For more precise estimates it is better to preserve the constant
term - log C in (2). A direct computation gives for the base N of
all at most binary connectives the following bound

le(f)g 2 .n . (log logn - logr ~ 17).
34

3. In the same manner as Hodes and Specker d4id, I can show that the
condition of the theorem can be strengthened to

£ xil eea xirE b(xil V oeee V xir)

for some unary Boolean function b , if O = {0,1,0,1, 1,v, A}. In
the light of the results of Khrapdenko [3],[4] and KriZevskij [6],
see also [10], this is uninteresting however.

§ 3 Some applications

Corollary 3.1 For every base ) there is a constant J, > 0 such

that, for every function f£:{0,1}%-— {0,1} and 1<k<n-3, if for
> n

every vector ¢ ¢ {0,1}

¥k = f(c) = 0, (resp. 1),

<
L.C5

X:ci

k+ 2= f(c) =1, (resp. 0),
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then
Ln(f) 2 o;;_. n . log logn . [l

The proof is almost identical with the proof of Symmetric Function
Lower Bound Theorem of [1]. Hence I give only a hint: if k<n/2, con-
sider a function obtained from f by substituting k-1 one’s in f;
if k>n/2, do the same with the dusl function. (See also the proof
of Theorem 4.2 below.’

A function f:{o,l}“-—* {0,1} is called symmetric, if £(¢) depends

only on y .c;. The symmetric threshould functions T} , defined by
n
n -3 - s
@) =1 i 33 ok,

are examples of symmetric functions. Corollary 3.1 can be applied to
’.["k1 if 1< k<n-l, however a more general theorem holds.

Corollary 3.2 For all but sixteen symmetric functions
£ :{0,1}"— (0,1},

Lo(£) 2 di. n. loglogn . ]

Such a corollary (but with the old bound) was derived by Khrap&enko
[5]. The sixteen functions are

ey ®(eAlx; ® ..o @ xn)) ® (:’03 AXp Ao AX ) @
@(04/\(11\7 coe V Xn )), cl,cE’C3,C4E to,l}c

I shall show a less direct application of Theorem 2.4. Let n = m.k
and let C denote a m x k matrix of 0's and 1°s. Define

gm’k(C) = 1 iff there asre at least two rows with odd numbers of 1,
or equivalently,

g5(A) = TR (1@ cee @egyy Coy @ eer * @y 4 veny Cp @ oo

cee @cmk).

Proposition 3.3 For any base n , L_n_(.gm’k) 2 o’;,_. m. k. log log m.

Proof:
Let & (X39,+00,%y) = 8™F be a formula over 0 . Let 1 ¢j<k,

and consider the Jj~th column. Then

o({xlj,xzj,...,xmj} = Tg‘ (xlj,...,x )y

mJ
thus it is of complexity at least
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d,

'n+ o - log log m.

Hence there are at least so many occurrences of variables of the j=th
column in o . Summing over all the columns I get the bound. O

Notice that I get a nonlinear bound even if k is "large" (say

k = nl’a), when the theorem cannot be used directly. (The same bound
can be proved for the function £598  sonsidered in [1], but they
have a better bound for it).

§ 4 Asymptotical optimality of the bound

The following example arose during a discussion with S. Pol jak.

I shall useffor exponentiation, i.e. mtn is m™; following the usual
convention I shall omit brackets in expressions like m*t(ntk).

Define by induction for m,k2>1:

m 2m +
dl,m (X 4%y eeeyXpys) =(\{xi) &aVz)® ... @ (H\/2 X:);

mel * (m-1)m+1 *

Xyur, m{F1r%¥ore e s Xppopes1) ) = X, f1r L2 o0 Barosx )

where for i =1,..., mt2tk

Ai ™%, n %(i-1).mt2te41, X(i-1).mi2fk + 2 ... Fi.m2tk *

Thus every variable X4y i<m{24k occurs in oLy n exactly once.
Define, for n = 2424r ’

X = o, N
n i/El i,2t24(r-1) .

Hence o(n has n varisbles, every variable occurs in it

r = log log n times., Therefore the complexity of o(n is n.log log n.
The reader is recommended to try to visualize Oin as a labeled tree,
see Fig. 2.

Lemma 4.1 For every ¢ ¢ {10,1}"

1,

- v = -
X:ci = 1= dh (e

#

- —->
Yooy = 3= (&)
Proof:
First it is easy to show using induction

0.
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(1) ).e;=0=> oy p (T =0;

(2) Z:ci

1 = o(k’m (<) = 1.

The first implication of the lemma follows from (2). The second one
will be proved by induction over r = log log n. If r = 1, then
= 4 and

0C4 = d1,2 = (% v xz) @ (x3 v x4).
Thus the implication can be verified easily. Let r>1 and suppose

that the implication holds for oy, £ = 2424(r-1).
Let 2 €{0,1}® be given, where
¢, =c¢; =e¢; =1, i,<i,<1
iy i, i, vt T2 3
c; = 0 otherwise.
Divide ¢ 1into ¢ blocks of length ¢ , where the j-th block is

=43

J =
ev = (cjl W1 0 Cgp a2 0 trrs S50 e

Now I shall consider three cases.

1. Ci.» C3 9 C4 belong to the same block, say the j-th block. By

i
(1), }2) for e;ery 1<igr, m = 2424(r-1),
— oA =1 > 4y
di,m(c ) = cxi-l,m (‘xi-l,m(c )y X (c Yyees di-l,m(c N=
= 0y p(0yeens0y &y ,m(E’J),O,...,O)Efxi_l,m(c')).

Hence

L (F) =%y 5 (F) A 0y (@),

which is equal to O by the induction assumption.

2. cil, ciz, °i3 belong to different blocks, say to jl-th, j2—th,
j3—th ; jl<j2<j3. By (1), (2), for every l1l<is<r, m = 2t2f(r-i),

o« BV = d g (0,...,0,0 m(c'j:!*), 0,...,0, oci_l’m(?jzi,
0,...,0, & i-l,m(_; .3),0,...,0)5 s g (@,

where

5 = dj2 = dj3 = 1; dj = 0 otherwise.
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Hence
- —>
o (&) = oy () A e@),
which is equal to O by the induction hypothesis.
3. Exactly two of cil, ciz, °i3 belong to the same block. Then
R
041,8(: ) =0, hence & (c)=0. [

Theorem 4.2 Let ) = {@®,Vv,A}, then for every m2>1, there
exists f£:{0,1}™s {0,1} such that
L,(f) € n."log log m'

and for no 1<€i<j<k<m end no b,

(3) f'xixjxkz b(x; @ X5 @ xp, x5 v X5 v oxy Y.

Proof:

Let m be given, let r = "log logm’ , n = 2t24r, and let o be
the formula above. Let

F=o {Xg,ee0,xp) o

Then the complexity of f is £ m.r. The righthand side of (3) gives
the same value for (1,0,0) =and (1,1,1), hence by Lemma 4.1 (3)
cannot heold.J

In fact I have proved a little bit more: the bound in Corollary 3.1
is asymptotically best.

§ 5 Related results

1. A generalization of Hodes-Specker theorem to d-ary logiec, d=>2,
was considered by Vilfan[11] . Let D = {0,1,..., d@-1} be the set of
logical values. A proper chain C(Xy,¢0.,%X,,c) is,in my notation,
every expression

P(xy, p(x5yeee p{x,e] «.01],y
or with the reverse order of veriables, where c¢D and
PO, ¢ (x,511=p (x,51.

(For d = 2 the last condition is equivalent to " )D(O,X]E X or
)o(o,x] is constant”.) The generalization says, roughly speaking,
this: If the complexity of £:D%— D is "small”", then there exist
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X: geesyXs such that
11’ ’ 1r
£l xil oo xir EEb(cl(xil"'"xir’cl)’”"Cz(xil""’xir’cf))'

where Ci are some proper chains. The actual bound, which is in-
stead of "small", is again worse than n . 1oé* n. Vilfan derives
Hodea-Specker theorem from his generalization only for the base of
all at most binary connectives, but this restriction is unessential.
Because of the similarity with Theorem 1.3, I believe that Vilfan's
theorem can be derived from it with a bound assymptotically equal
to n.log log logn for fixed r and 4 .

3. A related theorem was proved by Fischer, Meyer and Paterson [1].
Their theorem can be expressed as follows: There exists a constant
M >0 such that if the complexity of f£:{0,1}®— {0,1} over the
base of all binary connectives is

(1) m.n.(log n - logr),

then there exists a central restriction flA X; ee. %5 (i.e. the
number of substituted 1’s equals to the number 3f substituted 0°s

possibly + 1), such that

1 1

f|A X5 eee X3 =By @ ... @ x5 ),
1 r 1 r

for some unary Boolean function b. If we replaced (1) by a bound

£ . n (log log n - log r), then such a theorem would be a consequen-
ce of Theorem 2.4. For comparison consider the symmetric threshould
functions. The theorem of Fischer et al. gives better bounds for
TE , where log n<Kk«n - logn, for k=legn or k&n - 1logn
both theorems give assymptitically the same bound, and for the other
values my theorem is better.

4. Still it is an open problem what is the complexity in a general
base of such a simple function as Tg « By the results of Kridevskij
and others the complexity of Tg is asymptotically n.log n for the
base () = {0,1,71, A, v}, see also {10]. This is also the lowest
known upper bound for any base. In this paper I have approached to
this bound from below. However observe that formula & of § fﬂgan
be easily transformed into a formula Bn such that for every c ,

if E:c- £ 4, then .
1T T e @) = 13 (@),
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and the complexity of B is assymptotically n.log log n. This can
be generalized further, namely 4 can be replaced by an arbitrary
constant.
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