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1 Introduction

In this paper, we examine an existential fragment of second order logic. In par-
ticular, we are interested in analyzing the expressive power of this logic over the
class of finite structures. Thus, this research is naturally connected to central
areas of finite model theory and descriptive complexity theory. On the one hand,
following Fagin’s theorem that ¥} = NP, fragments of ¥ have been studied ex-
tensively (e.g., see [2], [3], [8], [9]). A major goal of this line of research has been
to develop logical tools to separate the expressive power of different langauges,
in the hope that they will have applications to some of the important open
questions in complexity theory. From a slightly different perspective, Kolaitis
and Vardi ([15] and [16]) have investigated the existence of 0-1 laws for frag-
ments of X1 that are defined in terms of their first order quantifier prefix. On
the other hand, ‘existential’ fragments of different languages have been studied
in various contexts (e.g., [17], [24], [11]). The most well known such language
is undoubtedly the database language Datalog. Here, we do not have a formal
definition of ‘existential logic’, but the basic idea is that the syntax guarantees
that every class definable in the logic is closed under extensions. Observe that
in this sense, ¥1, ‘existential second order logic’, is not an existential logic.

In connection with the subjects mentioned above, SO(3), the topic of this
paper, seems to be interesting for a number of reasons. First, it 1s rather ex-
pressive. Already, I1}(3) strictly contains Datalog(—) and can express coNP-
complete problems. (It turns out that there is not a natural sublogic of SO(3)
that defines problems in NP. ¥1(3) is equivalent to the existential fragment of
first order logic, which is extremely weak.) More generally, for each n € w, there
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is a complete problem for Hgn_l_l, in the polynomial hierarchy, that is definable
in T13,, 1 (3). Second, we introduce a technique using a result from Ramsey the-
ory (see [22]) for proving non-definability results. In particular, we show that
there is a class C that 1s in NP and closed under extensions that is not definable
in full SO(3). While the use of Ramsey theory to prove non-definability is not
entirely new (e.g., see [14]), the context here is somewhat different. Our use of
the theorem of Nesettil and Rodl, though, was directly inspired by an idea of
Kolaitis and Vardi [15]. Finally, we believe that interesting new questions arise
in connection with SO(3). For example, apparently difficult open problems re-
garding separations between fragments of second order logic (see [8]) can be
reformulated in terms of SO(3), and may be more tractable in this context.

The dual logic SO(Y) was studied by Mal’tsev [20] and also by Kreisel and
Krivine [18], who proved independently that every SO(V) sentence is equiva-
lent to a set of universal FO sentences. More recently, SO(3) has also been
investigated in the context of finite model theory by Lacoste [19].

In Section 2, we provide definitions and establish some basic properties of
SO(3). In order to motivate the study of this language, we also present a
number of examples of properties that are definable in it. Section 3 contains
a number of general and basic model theoretic results about SO(3). First, we
establish the decidability of its satisfaction problem using a theorem due to
Nesettil and Rodl. We also discuss some consequences of the fact that SO(3)
has the finite submodel property, which is an immediate corollary of the result
of Mal’tsev and of Kreisel and Krivine mentioned above. In particular, this
property generalizes the compactness principle from Ramsey theory (see [10])
and implies that the language has some nice model theoretic properties, e.g. the
downward Lowenheim-Skolem property.

Sections 4 and 5 examine questions regarding definability in SO(3) that are
more in the spirit of finite model theory. In the Section 4, we prove some facts
about the expressive power of SO(3) over finite structures. In particular, we
show how the Nesetfil and Rodl theorem can be used to obtain non-definability
results. In the next section, we consider the finite variable fragments of SO(3),
and use the same machinery to prove that they form a strict hierarchy. We also
prove that for every purely relational finite model A whose signature contains a
relation symbol of arity > 4, the property of containing a submodel isomorphic
to A is not expressible by any SO(3) sentence containing less than |A| (reusable)
first order variables.

It is perhaps worth noting that in the proofs of the non-definability results
that use the Nesettil and Rodl theorem, we always (implicitly or explicitly) make
use of a built in order on the universe, so that the arguments simultaneously
prove the results over the class of ordered structures. In this sense, the situation
here for SO(3) contrasts sharply with the case of m.X}, where it is much more
difficult to obtain non-definability results over ordered structures (see [25]). On
the other hand, the proofs do not carry over to classes with a built in successor
relation (which is not definable from a linear order in SO(3)).
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2 Definitions and basic results

We first recall some standard concepts and fix our notation. We use FO(3)
[FO(V)] to refer to the set of existential [universal] first order formulas, and SO
for second order logic. sig(A) and sig(yp) denote the signature of a structure
and a formula, respectively. Given a signature o, the arity of o is the maximum
arity of any relation R € o. Unless noted otherwise, signatures are always finite
and relational. Given a structure A and a signature p, sig(A) N p = 0, we use
(A, p) or (A, p?) to denote an expansion of A that interprets each symbol from
p in A. Going in the other direction, if A is a ¢ model and 7Co, then A|r
denotes the 7-reduct of A.

We sometimes write A<, etc., to indicate a linear order on the universe of
A that is not part of the logical vocabulary. In this case, we will say that A.
is an ordered model or an ordered expansion of A. We will sometimes also call
models of the form (A<, p) ordered expansions of A. Tn some contexts, it will be
more convenient to include the symbol < in our signature o and to restrict our
attention to ¢ models with a built in order, that is, the class O, = {A | A| < is
a linear order}. For A a model, R4 the interpretation of a k-ary relation symbol
in A, and BCA, we write R4|B for the restriction of R4 to the universe of B,
that is, R4|B = R4 N B*. In particular, if (4, R4) is an R expansion of A, and
BCA, then (B, R*|B) is a submodel of (A, R4).

The following game provides a useful characterization of the satisfaction of
a formula in a model.

Definition 1 Let ¢ be a prenered second order sentence, ¢ = Qy...Qn0(T),
Q; a first or second order quantifier, 8 quantifier free. The p-game on A is an
n round game played by two players, 3 and ¥, on the unwerse of the structure.
In each round i, 3 plays iff Q; is existential. If Q; binds a relation symbol R
then the appropriate player adds an interpretation of R to A. If Q; binds a first
order variable x;, then the player plays a constant c¢; on some element of A.
The position of the p-game after m rounds is the expansion of A by the relevant
relations and constants.

3 wins the game after round n iff the resulting expansion of A satisfies 0(¢).

Proposition 1 For all second order sentences ¢ and all models A, 3 has a
winning strateqy in the p-game on A iff A = .



We now introduce the fragment of second order logic that is the subject of
this paper.

Definition 2 Let SO(3) be the set of SO sentences, in prenex normal form,
whose quantifier prefir is an arbitrary string of SO quantifiers followed by a
string of existential first order (FO) quantifiers. Let 1% (3)[S}(3)] be the frag-
ment of SO(3) that consists of those sentences whose second order quantifer pre-
fiz consists of n alternating blocks of quantifiers, beginning with ¥Y[3]. Monadic
SO(3), denoted m.SO(3), is the language in which all quantified SO relations
are unary. Other languages, such as SO(V) and m.11}(3), are defined in the
obvious manner.

The next proposition states the fundamental property of all classes defined

by SO(3) sentences.
Proposition 2 For all ¢ € SO(3), Mod(y) is closed under extensions.

In particular, SO(3) does not have the full expressive power of first order
logic. The following examples show that the expressive power of I} (3), and
hence also of SO(3), is incomparable with that of FO. Observe that X1(3) is
equivalent to FO(3), the existential fragment of first order logic.

Example 1 Over the signature o = {s,t, Exy}, let C be the class of (s,t)-
connected graphs, that is, C = {A | there is a path from s tot}. Then C is
defined by the following sentence.

¢ = VRxyJzyz((Ezy A ~Rzy) V (Rxy A Ryz A ~Rxzz) V Rst)

On any graph A, ¢ says that for every relation R4, if EACRA and R4 is tran-
sitively closed, then A }= Rst.

Generalizing this idea yields the following proposition, due to Blass and
Gurevich [4]. (For more information on Datalog, see also [17] or [1].)

Proposition 3 Every class C that is definable in Datalog(—) is defined by a
sentence in 11} (3).

In this paper, a graph is always a (possibly infinite) undirected loop-free
graph.

Example 2 For each n, the class of graphs that are not n-colorable is definable
in 11} (3). For ezample,

V Pz Pox Psz(dz—(Piz V Pyz V Psz) V Jzy \/ (Ezy A Piz A Pyy))
i<3

defines the class of non 3-colorable graphs.



Dawar [7] proved that, over the class of finite models, non 3-colorability
is not even definable in L%, infinitary finite variable logic, which is strictly
more expressive than least fixed point logic. On the other hand, since L%, (3),
the existential fragment of L%, can express non-recursive queries, SO(3) and
L¥ . (3) have incomparable expressive power.

In fact, many combinatorial properties can be expressed in SO(3), or even
I13(3). We provide two more examples. Given graphs F,G, H, let F — (G, H)
mean that if the edges of F' are colored ‘red’ and ‘blue’, then there must be
either an induced subgraph isomorphic to GG colored red or an induced sugbraph
isomorphic to H colored blue. It is known, for example, that if G and H are
triangles, then the class of graphs F such F' — (G, H) is coNP-complete (e.g.

see [5]).

Example 3 Let G and H be fized graphs of cardinality m and n respectively.
Then {F | F — (G, H)} is definable over the class of graphs by the following
13 (3) sentence.

VRxy3zo ... Zm—13Y0 .. Yn-1((0c(T) A /\ (Bzjz; — (Rziz; V Rejz;)))
i<j<m—1

Ver@ A N\ (Byiy; — ~(Ryiy; V Ry;ji))))
i<j<n—1
where 0¢(T) is a quantifier free formula such that for all graphs A, A |= 0g(a)
iff the induced subgraph on @ is isomorphic to G (likewise for Oy (y) and H).

The following proposition illustrates a connection between SO(3) and com-
plexity theory. A version of Proposition 4 was discovered independently by
Lacoste [19].

Proposition 4 For all n, there is a ¢ € m.H%n_l_l(El)[m.E%(nH)(El)] such that
C = Mod(yp) is I}, -complete [Eg(n_kl)-complete]‘

Proof. We show that the satisfaction problem for quantified Boolean formulas
with fixed number of quantifier alternations can be expressed in m.SO(3). Recall
that a quantified Boolean formula is a sentence of the form (Q1z1) ...(Q;z;)a,
where « is a propositional formula and each quantifier ); binds a propositional
variable z;. Let QBFj 3[QQ BF} v] be the set of true QBF formulas whose quan-
tifer prefix consists of k alternating quantifier blocks beginning with 3 [V] (see
[13]). It is well-known that QBFy 3 [QBFj 3] is a complete problem for the
class X [II7] in the polynomial hierarchy (PH).

First we show how we code formulas as models. Fix a number n € w, where
n will be the (maximum) number of quantifier blocks in the formulas that are
represented. Let o, = {Ezy,c, La, Lv,L.,Y1,...,Y,}, Ezy a binary relation,
¢ a constant, and all other symbols unary relations. A formula ¢ is coded



as a model A¥Y whose universe consists of two disjoint sets, 7% and V¥. T¥
represents the formula as a tree, while elements of V¥ correspond to quantified
variables in the formula. Let V¥ = {z; | #; occurs in ¢} and interpret ¥; as the
set of elements z; in V¥ such that z; occurs in the [ quantifier block. (Thus,
the interpretations of the predicates ¥; partition the set VV¥.) The quantifier
free matrix of ¢ is represented in the obvious way as a tree. Each element of
T corresponds to a subformula, and for any two such elements a1, as, there 1s
an edge Fajas iff as represents a maximal subformula of a;. In particular, the
leaves of the tree correspond to variable occurences and the root represents the
entire formula. The constant names the root, and each non-leaf is labeled by
exactly one of the predicates La, Ly, L, in the obvious way. Finally for each
element z; € V¥ and each leaf a € T¥, there is an edge Fz;a iff a represents an
occurence of the variable z;. (Thus, Fzy defines a tree only when restricted to
the set T%.)

We make the following two observations. First, since we do not represent
the order of variables within a quantifier block, nor the order of subformulas,
there are distinct formulas ¢ and @ such that A¥ = A’ But it is easy to see
that whenever this happens, then ¢ and 6 are logically equivalent. Second, it
is clear that for any ¢ the model A% can be constructed in polynomial time,
which gives us the necessary reduction. Thus it only remains to show that for
each odd n [even n], there is a formula ¢ € m.II}(3) [m.XL(3)] such that for
each quantified Boolean formula ¢ with quantifier prefix in I1,, [X,], A% | ¢ iff
¥ is in QBFTL,V [QBFn,H]

For n odd, let ¢ be the following sentence.

V$1355YSs .. WS, VT (\/ Jzy(Yiz A Exy A (Six & —Ty))

V3zyz(Prz A Exzy A Exzz A (Te & ~(Ty ATz)))
V3zyz(Py A Exy A Exz A (Te & -(Ty Vv Tz)))

V3zy(P-z A Ezy A (Te < Ty)) vV Tc)

Intuitively, we use the relations S; to assign truth values to the variables in
Y; and we use the relation T' (‘true’) to evaluate the truth of each subformula
under the assignment determined by the S; from the ‘bottom-up’, starting at
the variable occurences. One of the first four disjuncts is true iff 7" is an incorrect
evaluation, so the whole sentence says that either 7' is incorrect or Te, i.e. the
formula is true. [ |

One might wonder whether the expressive power of SO(3) [II}(3)] would
be increased by allowing existential FO quantifiers to occur anywhere in the
quantifier prefix. It turns out that this change would not make a difference.



It is well-known that any SO sentence ¢ can be transformed into another such
sentence in prefix normal form such that every SO quantifier is outside of every
FO quantifier. For the sake of completeness, we show that if ¢ is already in
prefix normal form, then this can done without increasing either the number of
SO quantifiers or alternations, and without introducing any new FO universal
quantifiers. It clearly suffices to show that any sentence of the form § = 3zQ.S5,
where @ is a second order quantifier, is equivalent to a sentence of the form
QS5'Azvy’, where ¢ and ' have identical quantifier prefixes. If @ is 3 then @
is obviously equivalent to 353z. On the other hand, if Q is V, then it is easy
to verify that 6 is equivalent to V.S'3z¢)’, where arity(S’) = arity(S) + 1 and
' is obtained by replacing each occurence of an atomic formula of the form
S(t1,...,tn) by the formula S'(¢1, ... ¢y, 2).

3 Decidability

In this section, we establish some basic facts about SO(3). First, we show that
there is a decision procedure that determines whether any sentence in SO(3)
is satisfiable. In particular, we use a generalization of Ramsey’s theorem first
proved in Nesetfil and Rédl [21] to show that there is a recursive function f(z)
such that for all ¢ € SO(3), ¢ is satisfiable iff it has a model of cardinality
< f(g). [Observe that validity of SO(3J) sentences is trivially decidable, since
each such ¢ is valid iff it is true in every model of size = 1.] We then discuss
some consequences of the theorem, due to Mal’tsev and to Kreisel and Krivine,
that SO(3) has the finite submodel property, that is, for all ¢ € SO(3) and
all A, if A = ¢, then there is a finite submodel B C A such that B | ¢.
This result generalizes the compactness principle from Ramsey theory (see [10])
and can be proved in much the same way (using the Tychonoff theorem from
topology), though their proofs are purely model theoretic. [The compactness
principle states that if an infinite graph G is not r-colorable, then there is a
finite subgraph H C G that is not r-colorable.]

3.1 Ramsey theoretic background

In this section, we present the theorem of NeSettil and Rodl which is the main
technical tool used in the proofs of Theorem 2, 5, and 6. We first introduce
some model theoretic preliminaries.

For each j,j > 0 a (complete atomic) j-o-type is the conjunction of a max-
imally consistent set of basic (i.e. atomic or negated atomic) formulas with
logical symbols from ¢ and variables from zq,...,z;. We restrict our attention
to ‘injective’ types, that is, those types that contain conjuncts z; # z;, for all
i <1’ < j, For each j, let ©F be the (finite) set of j-o-types. For each (injective)
J-tuple @ C A, we define the (complete atomic) j-o-type, tp(a) of @ to be the
unique 7(7) € ©F such that A = 7[a]. When A¢ is an ordered model, we will



only consider (types of) ‘monotone’ tuples, that is, those @ = (as, ..., a;) such
that for all i < ¢’ < j, a; < a;:. This allows us to associate a unique type with
each set of elements.

If R is a k-ary relation symbol and T is a k-tuple of variables, we say that
RZ is an R formula (or an i-R formula) if T = {z1, ..., z;}, for some i < k. For
example, Rrowzxry and Rxiwqoxy are R formulas, but Rzoxzxy is not. Observe
that for each relation symbol R, there are finitely many R formulas. For any
signature o, let ['? denote the the union of all R, formulas, R,, € o.

To state the result of Nesettil and Rodl, we need the following concepts.

Definition 3 7. A kind is a sequence A = (01,...,8;),8s € N, the set of
natural numbers.

2. A set system of kind A is a pair (X, M), with X an ordered finite set and
M= (My,...,M;) a sequence of sets such that for all s <t, if Y € M,
then YCX and |Y| = d,. We assume that XCN and inherits the natural
ordering.

3. (X, M) is irreducible iff for all 2,y € X, there is M € |JM such that
{z,y}CM.

4. B = (XB,MB) 1s a weak subsystem of A = (XA,MA), written BCy A,
iff XBECXA and for all s <t, MBCM2. B is an induced subsystem of
A, BCA, iff XBCX4 and for all s <t, MB = M2 N [XB]%.

5. Soc(A) is the set of all set systems of kind A. Let A be a set of irreducible
set systems of kind A, closed under isomorphism. Then,

Soc(A, A) = {A | A € Soc(A) and for all BCy A then B & A}

6. A system of colors of arity n is a sequence x = (c1,...,¢n),6m € N —
{0}. FEach ¢ € N 1is identified with its set of predecessors, that is, ¢ =
{0,1,...,¢c = 1}. A x-coloring of (X, M) is a function f, : [X]S" —
Upme<n €m such that for all Y € [X]™, f,(Y) € ¢n. A x-coloring f, of
(X, M) is homogeneous iff for all m and oll Y, ZC[X|™, if (Y,MY) =
(Z, M%), then f,(Y) = f(Z).

7. For B,C € Soc(A), and x a system of colors, we write C—XB iff every
x-coloring f, of C there is a B'CC, B’ = B, that is colored homogeneously

by fy|B'.

Theorem 1 (Neset¥il and R6dl [21]) Let A be a kind, x a system of colors,
and A a set of irreducible set systems. Then for all B € Soc(A,A), there is a
C € Soc(A, A) such that C—XB.



There 1s a straightforward way to view any ordered model as a set system.
Let o be a relational signature and recall that '? is the union of all R,,, formulas,
Rm € 0. Choose A = (61, ...,d)r-|) to be any kind such that there is a bijection
h(z) from I'? to {1,...,|["?|} such that for each i-R-formula § € I'?, é(4) = i.
Then each A, with signature o corresponds to the unique set system of kind A
over the same (ordered) universe, such that for each (monotone) i-tuple @, and
each i-R formula 6(%) € T, Ac |= 0[a] iff @ € Myg). In fact, it is clear that
this correspondence induces a natural bijection between ordered ¢ models and
set systems of kind A. Likewise, expansions of ordered models can be treated
as colorings of set systems. If p is a signature of arity k, then it corresponds
to a system of colors of arity k, (e1,...,cg), such that for each 7 < k,¢; is the
number of atomic formulas over p whose free variables are exactly {z1, ..., z;}.

By (implicitly) relying on these correspondences, we can apply the termi-
nology of set systems to ordered models. For example, we will often say that

an expansion (Ac, EA) is a homogeneous R-coloring of A.. Also, observe that
an ordered ¢ model A is irreducible iff for all a;,as € A, there is a k-ary
relation R € ¢ and a k-tuple bin A such that a1, as € b and Rb. Below we will
also say that an arbitrary (not ordered) model A is irreducible if it satisfies this
condition. On the other hand, when we are considering models in O,, with a
built in order, we define a model to be irreducible iff every pair of elements 1is
‘connected’ by some relation R € o \ {<}. (Otherwise, every A € O, would be
irreducible.) Finally, if A is a set of irreducible o models, then Soc(A) denotes
the set of [ordered] o models that do not contain any A € A as a weak submodel.

The following definition from Kolaitis and Vardi [15] plays a crucial role in
our proofs.

Definition 4 Let A, be an ordered model. For k € w, we say that Ac is k-P-
rich iff for every complete atomic k-P-type T(z1,...,zx), there is a monotone
k-tuple @ = (ay,...,a)CA such that A = r[a].

Since there are only finitely many k- P-types, it is obvious that for all & and
P, there are (finite) k- P-rich ordered models.

3.2 Decidability

Theorem 2 The satisfiability problem for the language SO(3) is decidable.
Specifically, there is a recursive function f(z) such that for all SO(3) sentences
@, if @ is satisfiable, then it has a model of cardinality < f(yp).

The theorem follows immediately from the following proposition.

Proposition 5 For every ¢ in SO(Y), there is a finite model A%, which can be
found effectively, such that ¢ is valid iff A = .

Proof of proposition. Let ¢ = IR,VS13R,...IR,11VZI(P, R, S,T), ¢ €
Y4n41(Y), where 6 is quantifier free, P is the (purely relational) signature of



o, R = Ui<n+1Ri and S = {J;,, Si. k is length(Z), and we assume that the
arity of every relation is < k. [The argument generalizes to allow the addition of
constants to the signature.] Let o = P, and, for 1 < m < n, ¢, = PU{J,<,, Si.
By Definition 1, ¢ is valid iff 3 wins the p-game on every structure. The basic
idea is to find a finite structure A¥ such that if 3 has a winning strategy on A%,
then this proves that he can win the p-game on every structure. The existence
of A% will be proved using the result of NesSettil and Rodl. In essence, we will
show that if 3 wins on A?¥, then he has a ‘uniform’ winning strategy that can
be used on every model.

Definition 5 An ordered model B = (A, R,S) is stepwise R,S homoge-
neous iff it is k-on-rich and for all m,0 < m < n, B? = Bc|on is homoge-
neously Ry,41-colored in the expansion B.. We wnll also say that a model A
with signature oo is stepwise R, S homogeneous if there is an ordered expansion
B. = (A<, R, S) that is stepwise R, S homogeneous.

We say that A has Property Q if A |= ¢ iff A has a stepwise R, S homoge-
neous submodel D such that (Do, R, S) = VZ0.

Claim 1 1. Suppose that B = (A<, R,S) is stepwise R, S homogeneous,
and that (A<, R, S) = VZ0. Then ¢ is valid.

2. For all A, if A has Property 2, then A \= ¢ iff ¢ is valid.

To prove 1., let M be an arbitrary og structure, and M. be any ordered
expansion. In the g-game on M, 3’s strategy is as follows. In round 2m—1, he
Ry, colors (Mo, R¥ SM .. SM ) according to the (homogeneous) R,, color-
ing of B?_l. That is, he chooses RM such that for all submodels No CM. of
size < k, and all OcCBZ™", if (Mc|N<,SM|N,...,SM_|IN.) = O then
(M |No,SM|N_,...,SM_IN. ,RM|IN.) = (C.,RE|C,). Since each such
B?‘l 18 k-om—1-rich, this strategy is well-defined. Finally, after round 2n + 1,
it is clear that the structure M, = (M, R, S) only realizes atomic k-(PURUR)-
types that are realized in B.. Therefore M |= VZ#0, as desired.

One direction of 2. is immediate, for if A & ¢, then ¢ is not valid. Sup-
pose that A | ¢. Then by the definition of Property €2, there is a stepwise
R, S homogeneous submodel D of A with an ordered expansion such that
(D<, R, S) EVz0. By 1., this implies that ¢ is valid.

It now suffices to show that there is a finite A with Property €. Then to
obtain such an A effectively, simply enumerate all finite structures, and check
them in order until finding one with the property.

Claim 2 There is a finite A? with Property €.

We inductively define a sequence of ordered models, A7, BZ, .. .,Ag,Bg
such that A% will be B%|ay. (Here B is the model whose ordered expansion
is Bg.) Let A7 be a k-op-rich structure. For all m < n, given A7, let BY

10



be such that BT esfm+1 A7 sig(BT) = 0,,. [Note that it is an immediate
consequence of the Nesetfil and Rodl theorem that B7' can be found effectively.
Since it is decidable, given two models B and A, whether B—fm+1 A one
simply enumerates all the finite models, By, ..., and searches until a By such
that BresPm+1 A is found.] Given B, define A’g_l to be BY|opm_1. Finally,
let A = B%og. Observe again that there is an algorithm for finding A%. Tt
may be helpful to note that the construction has the following properties.

1. Each A7 has signature oy, and is k-op,-rich.

2. For Il <m < n, AZ|o; is a submodel of Al<.

3. Each A7 is a submodel of BY.

4. For all m, A'f_l and B7 have the same universe.

We now show that A% has Property Q. If A? £ o, then ¢ is not valid and,
by Claim 1, there is no stepwise R,S homogeneous model that satisfies Vz#8.
Suppose that AZ |= ¢, where AZ = B |oo. We must demonstrate that there is a
stepwise R, S homogeneous expansion (D, R, S) of a submodel D¢ of AZ | such
that (D<, R, S) = Vz0. We define a sequence of models C’Q,DQ,C’Z,Z' <n+1
such that the C.’s are expansions of A¥ and the D.’s are submodels of A%,
such that for all i < j, D% C Di<.

Let CL = (A%, ﬁf) be an expansion of A% such that CL | VS;3R, ... V0.
By the construction, there is a Dl< gAﬁ,DL = A0<, such that EﬁDls is a
homogeneous Rj-coloring of DL. By the definition of A%, there is an S ex-
pansion of (DL,EﬁDL) isomorphic to BL. Let Cg = (Aﬁ,ﬁf,gf) be any
S1 expansion of CL such that (D1<,§f|D1<), is isomorphic to BL. Observe
that C’g E IR,VS, ... VZH. Let C’i be an R expansion of C’g such that
c I:ng ...VZ0. Let D2 be a submodel of DL iuch that (Di,§f|D2<) ~ AL
and R, |D% is a homogeneous coloring of (D%, S, |[D%). By iterating this pro-
cedure, we get a submodel DZ"’1 of AZ such that (D’<1+1,EA|D'<‘+1,§A|D’<‘+1)
is stepwise R, S homogeneous.

This proves the claim and also the proposition. [ |

Observe that the proposition immediately implies that SO(3) has the finite
model property.

It would be interesting to know whether this result could be strengthened in
some way, e.g., by extending it to stronger logics. Certain known results estab-
lish that for some natural extensions of SO(3), the satisfiablity problem becomes
undecidable. Blass and Gurevich [4] proved that if one allows function symbols
in the signature, then already for IT] (3) both the satisfiability and validity prob-
lems are undecidable. They also observe that IT} (3) does have the finite model
property, which they attribute to Mal’tsev. Another question is whether the
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implication problem for SO(3) is decidable. That is, given 6, ¢ € SO(3), does
6 imply ¢? Shmueli [26] proved a stronger negative result, that for Datalog,
a sublogic of TI}(3), the implication problem is undecidable. This immediately
implies that already the satifiability problem for the language B.IT}(3), the set
of Boolean combinations of II} (3) sentences, is undecidable. On the other hand,
it is easy to show that B.SO(3) still has the finite submodel property (see The-
orem 3 below). Clearly together these results imply that there is no recursive
function f(z) such that for all ¢ € B.IT}(3), ¢ is satisfiable iff it has a model of

size < f(p).

The finite submodel property
The following theorem says that SO(3) has the finite submodel property.

Theorem 3 (Mal'tsev [20]; Kreisel and Krivine [18]) Let ¢ be a sentence in
SO(3). For dll A, if A |= ¢, then there is a finite submodel B C A such that

B E .

They both actually prove the result stated below, which immediately yields
the preceding theorem. For the sake of completeness, we include the proof of
Kreisel and Krivine.

Proposition 6 For all ¢ € SO(Y), ¢ is equivalent to a set of FO(Y) sentences.

Proof. We argue by induction on the number of SO quantifiers. If there are
none, then the claim is obvious. Suppose, then, that ¢ = @, R, ... Q1 R1Vz0,
where each Q; is either 3 or V, and @ is quantifier free. Let PU{R;,..., Ry}
be the set of relation symbols occuring in #. For all m,0 < m < n, let o, =
PU{Rms1,...,Rn}, (so that o, = P). For all m, let L™ be the set of FO
sentences containing only relation symbols from ,,. Let 7° = {63,6,...} be
an enumeration of the set {¢ | ¥ € FO(V) N L% and V0 = ¢}. Clearly Vz0 is
equivalent to 7°°.

For the induction step, suppose that @, _1R,_1...Q1R1VYZ# is equivalent to
an infinite set, 771 = {63_1, 9?_1, ...} of sentences in FO(V) N £"~1. Without
loss of generality, we can assume that 77~ is closed under logical consequence.
We consider two cases.

One, Q, is 3. Then for all models A, A = IR, (A, 0;

a (B,Rf) such that A C B and (B,RF) E A, 071, (Here we implicitly
use the fact that Mod(p) is closed under substructures). By the compactness
theorem, such a (B, R2) exists iff for all § € T"~' N L" A |= 6. Therefore let
™ =Tn"1nL".

Two, Q, is V. We know that ¢ is equivalent to VR, (/A;c, =1y, which is
equivalent to /\iEw(VRHH?_l). It is easy to see that each conjunct, YR,07 ! is
equivalent to a sentence 67 € FO(V) N L™ such that ¢r(67) = qr(6771). [gr is
quantifier rank.] Therefore let 7" = {6,607, ...}. [ |

971y iff there is
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We now observe some easy corollaries which indicate the strength of the
finite submodel property. The first is a form of (logical) compactness. Here we
do consider infinite signatures.

Corollary 1 Let T be a set of SO(3) sentences over a purely relational vocab-
ulary of cardinality k. If each v € T 1s satisfiable, then there is a model A of
cardinality maz(k,w) such that A =T.

Proof. By Theorem 2 or 3, for each satisfiable 4 € T', there is a finite A, such
that A, = v. Let A be the disjoint union of these structures, A = UWEF Ayl

The next observation provides some additional information. (Allowing con-
stants, the question becomes trivial.)

Observation 1 For all infinite cardinals k, A, if 2% < X, then there is a consis-
tent set of SO(3) [in fact, FO(3)] sentences S containing no constants, of size
A, that has no model of cardinality k.

Proof. Suppose that &, A are infinite cardinals such that 2% < A. Let 0 = {P, |
a < A} be a set of unary relation symbols, and let S = {Jz(Pyz A =Psz) | a <
B < A}. Given any model A such that |A] = &, let Ay, = {a € A| A |E P,a}.
Because there are only 2% subsets of A, there are o, such that A, = Ag.
Therefore A £ Jz(Poz A 2 Pgz). [ |

The following result improving Corollary 1, and the converse of the preceding
Observation, 1s due to Joel David Hamkins.

Theorem 4 (Hamkins) For all infinite cardinals &, A, if 2% > A, then every set
of satisfiable SO(3) sentences, without constants, of cardinality A has a model
of cardinality «.

Proof. First observe that, without loss of generality, we can assume that A = 2%,
that o is a vocabulary consisting of A many n-ary relations for each n, and that
S is the set of all consistent SO(3) sentences over o. Second, by the finite model
property for SO(3), each ¢ € S is implied by some consistent FO(3J) sentence,
so it suffices to show that there is a model of cardinality x satisfying each such
FO(3) sentence.

Observe also that it suffices to show that for each n, the set of consistent
sentences {¢ | ¢ = Jzo...za—1(\;;2i # 2; A Y(T))}, where $(T) is a con-
Jjunction of atomic and negative atomic formulas, has a model A,, of size k. For
then the model A = |J,, An, the disjoint union of all the A,, has the desired
property. Furthermore, we claim that it suffices to prove the result for n = 1.
To generalize to each larger n, we treat the universe as a set of kK many pairwise
disjoint n-tuples, and view each atomic formula with free variables from among
Zg,...,ZTnp_1 as a unary predicate on each such n-tuple.

We now prove the case for n = 1. To simplify the notation, we identfy A with
%2, the set of all functions from « into {0,1}. Let af(z), f € A, be the set of
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all atomic formulas with one free variable, that is, a;(z) = P(z,...,z), where
P is any relation in ¢. Each element of A; will be a function in *2, and the
interpretation of each atomic formula a; is determined as follows. For each aj
and each a € A1, A | ay(a) iff a(f) = 1. (Recall that a is actually a function
on A.) All that remains is to show that there is a set A; C *2, of size k, such
that for each finite set of functions fi,...f;,91,...,9m In A, there is an a € A,
such that for all ¢ < l,a(f;) =1 and all j < m,a(g;) = 0. [Note that this is
equivalent to the topological fact that *2 has a dense subset of size x. This is
the key idea in the proof.]
Let Ay C *2 be the following set.

{a € *2| 3 finite set U € k such that Vf, g € X if f|U = g|U then a(f) = a(g)}

It is clear that |A| = k. Let fi1,...fi,91,...,9m be as above, and let U C & be
a finite set such that for each pair f;, g; there is an element v € U such that
fi(u) # g;(u). Then it is easy to see that there is an a € A; that is ‘closed under
functions restricted to U’ such that for all ¢, a(f;) = 1 and for all j,a(g;) =0. B

We write A 550(3) B [(A,E) 550(3) (B,E)] iff for all p e SO(H) [g(f) S
SO, A E ¢ if B = ¢ [A & 0(a) iff B = 0(b)]. Also, for B C A, let
B =<s0(3) A iff for all tuples b C B and all formulas 6(z) € SO(3), A = 6(b)
iff B |= 6(b). Likewise, define A =ro@) B and B <po@3) A. By the finite
submodel property, it is clear that for all A and B, A =s0@3) B iff A =po(3) B
[A <so@) B iff A <po@z) B]. In particular, every complete SO(3) U SO(V)
theory is equivalent to a set of FO(3)UFO(V) sentences. This also yields the
following, by using the analagous result for first order logic.

Corollary 2 [Downward Lowenheim-Skolem property] Let A be an infinite
model, with signature o of size k. Then there is a BCA,|B| < k such that
B <s0(3) A.

We now turn briefly to discuss SO(Y) and compactness. By Proposition 6
and the compactness theorem for first order logic, the logic SO(Y) satisfies the
following form of the compactness theorem. Any set T' of SO(V) sentences is
satisfiable iff only every finite subset of I' is satisfiable. Another statement of
(logical) compactness asserts that if for all pairs of sets of sentences T', A if T |=
A then there are finite I'CT and A’CA such that T’ | A’. (Recall that T = A
iff for all models A, if A satisfies every v € T, then it satisfies some § € A.) These
two notions are clearly equivalent for logics that are closed under negation, but
not for SO(3) and SO(V). This follows immediately from Compton’s result [6]
that already Datlog(—) fails to have this form of compactness. For example, over
o = {s,t, Exy}, let A consist of the single sentence § €FO(3), § = Jzyz(Etz V
(y # z AN Ezy A Ezz)), and let T = {vg,v1,...}, where v € T1}(3) says that
there is a path from s to ¢ and for all ¢ > 1, v; €FO(3) says that there is a path
of length i rooted at s. Then clearly T = A, though this does not hold for any
finite T'CT.
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4 Definability and non-definability

4.1 Non-definability via Ramsey theory

Following Fagin’s theorem that X1 = NP, there has been a great deal of work
in finite model theory that shows that various properties that are known to be
in NP (that is, in ¥1) are not definable in certain fragments of X1 (e.g. see [2],
[3], and [9]). These fragments are defined in terms of a restriction on the use of
SO quantification, and the results are generally proved using either a modified
Ehrenfeucht-Fraissé game, or some version of Hanf’s lemma. In this section, we
continue our investigation of the languages T1}(3) and SO(3), which limit the
use of FO quantification. The main result, which uses the theorem of NeSetFil
and Rodl, is that there is a property expressible in ¥ that is closed under
extensions but not definable in SO(3). This result can also be viewed as saying
that a certain existential preservation theorem fails for £} and for SO.

We first define the X1 property that is closed under extensions that we will
prove is not expressible in SO(3). Let ¢ = {Fzy, Rey}. A (directed) cycle' in
a model is a sequence of distinct elements (aq,...,a,),n > 2, such that for all
m < n, Eapmams1; Fayag; and for all ¢ # j, Raja;. It is clear that the class
of models that contain a cycle’ is closed under extensions and definable in 1.
Notice also that every cycle’ is irreducible; this is why we need the relation Rzy.
This will allow us to apply the stronger form of the Nesettil and Rodl theorem
over classes of the form Soe(A), where A will be the class of all (expansions of)
cycle’s in O,.

Theorem 5 There is a class C € X1 that is closed under extensions that is not

definable by any SO(3) sentence.

Proof. As in the proof of Theorem 2, it is easier to work with SO(V), so we
will show that the class of cycle’-free models is not in SO(V). In fact, in order
to be able to apply the Nesetfil and Rodl theorem more directly, we will prove
this claim over the class O,, 7 = ¢ U {<}, which obviously implies the general
result. More precisely, letting C = {A | A € O, and A contains a cycle’} and
C = O, \ C, we prove that there is no ¢ € SO(V) such that Mod(¢) N O, = C.
We require the following definition, a refinement of the notion of k- P-rich.

Definition 6 Let T be a signature containing <, p a signature disjoint from T,
and k €w. Forall A€ O, and all B € Oy,, we say that B is k-p-A-rich iff

1. for all C' € Ory,,|C| =k, if C|t is isomorphic to a submodel of A, then
C' 1s isomorphic to a submodel of B;

2. for all B'CB such that B'|t is irreducible, there is an A'CA such that
A= B'|r.



It is easy to see that for any ordered A, there are finite k-p-A-rich structures.

The basic idea of the proof is as follows. We argue by contradiction. Suppose
that ¢ € SO(V) defines C, and let k be the number of FO quantifiers in ¢. First
we define a model A? € C, using a construction similar to that in the proof of
Theorem 2, such that the existence of a winning strategy for 3 in the p-game on
A% implies that 3 has a ‘homogeneous’ winning strategy on a sufficiently ‘k-rich’
expansion of a submodel Ay of A¥. As before, there will be something like a
‘stepwise R, S homogeneous expansion’ of AY that satsifies the FO part, Vz0,
of ¢. We then choose B € C to be a simple cycle’ of length k£ + 1, containing
no shorter cycle’s. By the ‘richness’ of A7, every submodel B'CB of size k is
isomorphic to a submodel of AY. Using his homogeneous winning strategy on
AY 3 can also win the ¢-game on B. Thus B E ¢, contradicting the assumption
that ¢ defines C.

To simplify the proof, we assume that ¢ € T}(V),» = VSIRYZI, and k =
length(Z). [To generalize the argument, one just iterates the construction of
A¥ as in the proof of Theorem 2.] Let £ = {B | B € C and |B| = k}; and let
Af be a model in C such that every B € £ is isomorphic to a submodel of Af.
For example, one can take the disjoint union of all B € C, up to isomorphism,
and then extend {<} to be a total order. Observe that here every irreducible
submodel of Af is a submodel of some B € &, so that Af is indeed cycle’-free.

Let (A‘f,?Al),A‘f € C, be a k-S-Ag-rich model. Let A= {A|AisaTUS
model and A|r € O; is a cycle’}. Observe that every A € A is an irreducible
model, so we can apply the NeSetFil and Rodl theorem to Soc(A) (implicitly
invoking the correspondence between models and set systems). Observe that
(Af,S) € Soc(A). In fact, Soc(A) is just the class of all S expansions of cycle’
free models in C. Therefore, by the Nesetfil and Rodl theorem, there is an
(A“”,?A) € Soc(A) such that (A“”,?A)‘—)R(Af,g). Note that A¥ € €. This
completes the construction.

By hypothesis, since A? € C, A¥ |= ¢ and (A%, ?A) = JRVT0. Let (A%, §A, EA)
be an R expansion such that (A“’,?A,EA) E Vz0. By the construction of A%,
there is a submodel A;CA?, (A1,§A|A1) &~ (Af,?Al), such that EA|A1 homo-
geneously colors (A1,§A|A1). Since VZ6 is preserved under substructures, also
(A1, 541, R | A1) = vao.

Finally, let B € C be a cycle’ of length k& + 1. We claim that B = ¢,
that is, B = VSIRVZH. Let (B,?B) be any expansion of B. Observe that
every B'CB,|B'| = k, is in £, and hence isomorphic to a submodel of Af.

As (Af,?A) is k-Ag-S-rich, (B’,§B|B’) is also isomorphic to a submodel of
(A1,§A|A1). Then, since §A|A1 is a homogeneous coloring of (A1,§A|A1), it
determines a unique R expansion (B,?B,EB) such that for every B’CB with
|B'| =k, (B, §B|B’, R’ |B') is isomorphic to a submodel of (A1,§A|A1, §A|A1).
Therefore (B,?B,EB) E Vzd, and (B,?B) = 3IRVZO. As 57 was an arbitrary
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S expansion of B, this proves that B = VSIRVYZ0, contradicting the assumption
that ¢ defines C. ]

We now observe a few corollaries of the above proof. Recall that a homo-
morphism from A to B is a function f : A — B such that for all k-ary relations
R € sig(A) and all k-tuples @ in A, if A = Ra, then B = R(f(a)). (Here, f is
not required to be either injective or surjective.) Obviously any class closed un-
der homomorphisms is also closed under extensions. Again, let ¢ = { Ezy, Rzy}
and let C' = {A | A contains a cycle’ or A = JzEza}. It is easy to see that €’
is closed under homomorphisms and definable in 1. By the preceding proof,
C' is not definable in SO(J). Therefore we have the following strengthening of
the previous theorem.

Corollary 3 There is a class C € B} that is closed under homomorphisms that
is not definable by any SO(3) sentence.

Examining the proof of Theorem 5, it is clear that we only used the following
properties of the class C of structures containing cycle’s. One, it is closed under
extensions and contains arbitrarily large ‘minimal models’; i.e., models A such
that for all proper submodels BCA, B ¢ C. Two, every A € C has an irreducible
submodel BCA that is also in C. (Equivalently, every minimal model of C is
irreducible.) Therefore the proof yields the following result.

Corollary 4 Let C be any class of models that is closed under extensions and
contains arbitrarily large minimal submodels, such that every minimal model s
irreducible. Then C is not defined by any SO(3) sentence.

The proof of Theorem 5 also suffices to establish a strict hierarchy in SO(3)
based on the number of FO quantifiers. (In the next section, we prove a strength-
ening of this result, that requires some new definitions and further argument.)
Define SO(k - 3) to be the set of SO(3) sentences containing at most k& FO
quantifiers. [This in not FO quantifier rank.] The argument shows that if A
is a cycle’ of size k+ 1, Ca = {B | ACB}, and ¢ € SO(k - V) is true in every
B € Cy4, then also A |= . Since the only property of A that is used is that it
is irreducible, we have essentially shown that for any irreducible A, |A| = k + 1,
C4 can not be defined in SO(k - 3). (In fact, we even have that for all consistent
@ €SO(k -3), Mod(¢) € Ca.) Clearly, though, C4 is definable in FO(k + 1 -3).

Corollary 5 For all k € w,SO(k - 3) # SO(k + 1-3). Therefore the fragments

SO(k - 3), k € w, form a hierarchy of strictly increasing expressive power.

More generally, by the same argument, we can establish that every consistent
SO(k - 3) sentence has a model which contains no irreducible submodels of size
> k. On the other hand, even over the empty signature, for all £ > 2 and all n,
there is a consistent ¢, € m.I1}(k - 3) all of whose models are of size > n. For
example, ¢, =VR1z...VR,zl, € m.H%('Z -3), where 6, says that two elements
realize the same atomic 1-R-type, has models of exactly those cardinalities that
are > 27,
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4.2 Definability in m.SO(3)

Proposition 7 There is a ¢ in 11}(3) that is not equivalent to any sentence in

m.SO(3).

Proof. Let o = {Ezy,s,m,t}. Let C be the class of models such that there
are paths from s to m and from m to t of the same length. It is easy to see
that C can be computed by a Datalog program, and hence is definable in T1} (3).
In fact, C 1s defined by the following sentence, with the minimal possible SO
quantifier prefix.

VRzy(—Rsm V Jzyzw(Rxy A Exz A Eyw A ~Rzw) V Rmi)

Let D be the class of finite models A such that E4 is a simple directed path
from s to ¢, and let D’ C D be the subset consisting of those A such that m is the
midpoint of the path. Suppose, for contradiction, that € is defined by a m.SO(3)
sentence . Then, over the class D, # defines D’. Now, view each A € D as a
word, in the sense of formal language theory, over the alphabet {m, o}, (which
contains exactly one occurence of the letter m). By Buchi’s theorem, (see [12])
every m.SO sentence defines a regular language over ‘word models’, as above.
But D’ is not a regular language, so it cannot be defined by any m.SO sentence.

[One can also prove the result using a simple m.SO pebble game instead of
Buchi’s theorem.] [ |

The next proposition separates the first two levels of the m.SO(3) hierarchy.
Proposition 8 There is a class C that is definable in m.X5(3)—m.111(3).

Proof. Let o = {Ezy, c1,cs,d1,ds}, and let C be the class of models over &
such that there are disjoint paths from ¢; to ¢y and from d; to ds. It is known
that this class is NP-complete. We first show that it is definable in m.X3(3).
Let ¢ be the following sentence,

HSHTVPVQ(Cl 75 d1 A SCl A le/\

("PCl V _|Qd1 V E'(Ell‘Q(PiEl A E(L‘ll‘Q A SCL‘Q A _|TCE2 A _|P332)V

31‘11‘2(62;15‘1 A E;Z‘laiz A T;l‘z A _|SI2 A _|QI2) V (P82 A Qtz)))

Tt is easy to check that A |= ¢ iff there is an expansion (A, S, T) such that there
are paths P from ¢ to ¢y [@ from dy to ds], all of whose elements are in S A =T
[T A=S].

We prove that C is not in m.IT{(3) by showing that C is not definable in
m.21(V). Suppose that ¢y = JRVZH, with n = length(R) and k = length(%).
It suffices to show that there is an A € C and is a B € C such that if A = 1,
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then B |= 1. Let the universe of A be {c1,¢s,d1,d2,0,1,...,2" -3k + 2}, and
the universe of B be AU {e}. Let E4 be

{(e1,0),(2* -3k +2,¢5)}U{(i,§) |i,j ENand j =i+ 1}

U{(dy,i) | 1<i<2" 3k+1}U{(i,ds) | 1<i< 2" 3k+1},

and EB = EAU{(d1,e¢), (e,d2)}. In A, ¢; and ¢y are connected by a single path
of length 2™ - 3k 4+ 3, and dy and dy are connected by 27 - 3k + 1 paths of length
2 that each intersect the only path from ¢; to ¢o. B contains a disjoint path
from d; to ds, through e. Hence A € C and B € C.

Suppose that A |= 1 and A’ = (A, R) is an expansion such that A’ = Vz0.
It suffices to show that there is an expansion B’ = (B, R) such that every k-
(0 UR)-type that is realized in B’ is also realized in A’. There are 2" 1-R-types,
so there is one such type, 7, that is realized at least 3k + 1 times among the
elements {1,...,2" -3k + 1} of A. Let B’ = (B, R) be the expansion of B such
that it contains (A4, R) as a submodel, and tp(e) = 7.

Let b= (by,...,b) be a k-tuple in B. If each b; is in A, then b realizes the
same type in A" and B’, since the types are atomic and A’/CB’. So suppose that
some b; is the element e and assume, without loss of generality, that i = 1, b
is injective and b does not contain any element named by a constant. By our
construction, there is a &’ in {1,...,2" -3k + 1} of type 7 that is not equal to

or adjacent to any of the b; € b. It is easy to see that _El = (b, ba, ..., bg) and b
realize the same type. As observed above, the type of b is also realized [by b] in
A’ as desired. [ ]

Observe that in the preceding proof, we could have used the simpler property
‘there is an element a and a path from s to ¢ that does not contain a’.

5 Finite variable SO(3)

In this section we examine a hierarchy in SO(3) based on the number of FO
variables that occur in a formula. Finite variable logic L* has been studied
extensively in the context of finite model theory. In some earlier papers ([24],
[23]) we investigated the existential fragment L*(3). Here we consider SO(3*),
second order L*(3), and prove that the fragments SO(3*), k € w, form a strict
hierarchy of increasing expressive power. We also show that if A is a ¢ model,
and ¢ includes a relation symbol of arity > 4, then the property of containing
a submodel isomorphic to A is not definable in SO(EllAl_l).

We recall the following definitions. Let L* be the set those FO formulas all
of whose variables, both free and bound, are among z1,...,z;. We let Lk(fl)
be the set of existential formulas of I*, that is, the closure of the set of basic
L* formulas under A,V, and 3. Observe that L*(3)CFO(3), though it is easy
to see that for all £ > 2 and all n, L*(3) ¢FO(n - 3). (For example, below it is
shown how to say that there is a path of arbitrarily long length in L?(3).) Let
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L*7(3) be the set of L*(3) formulas with quantifier rank < n. For all A and B,
A=<k Bff for all p € LF"(3), if A = ¢, then B = .

This relation may be characterized by the following variant of the Ehrenfeucht-
Fraissé game. The n-round Hk—game from A to B is played between a Spoiler
and a Duplicator, with &k pairs of pebbles (a1, £1), ..., (g, fk). In each round,
the Spoiler first plays a pebble a; (which might already have been played) on an
element in A, and the Duplicator responds by placing the corresponding pebble,
i, on an element in B. We say that the Duplicator has a winning strategy in
the game if she can play so that after each round m, m < n, the current posi-
tion of the pebbles on A and B determines a partial isomorphism. The following
proposition expresses the connection between this game and logical definability.

Proposition 9 (Kolaitis and Vardi [17]) For all structures A and B, the
following conditions are equivalent.

1. A<k B

2. The Duplicator has a winning strategy in the n-round Elk-game from A to
B.

Definition 7 For k € w, let SO(3*) be the closure of L*(3) under SO quan-
tification. That is, L*(3)CSO(3*) and for all o € SO(F*), IRp € SO(3*) and
YRy € SO(F*).

As in the FO case, observe that SO(F*¥)CSO(3) and SO(k - I)CSO(3*). On
the other hand, we do not know whether the latter inclusion is proper. The
strictness of the SO(3*) hierarchy will follow from our proof that every consistent
SO(3*) sentence has a model that contains no irreducible submodel of size k+1.

In [23], a model A is defined to be k-universal if for all consistent sentences
0 € L¥,,(3), infinitary L*(3), A = 6. Equivalently, A is k-universal just in case
for all B, B<% _ A. (The existence of finite k-universal models was observed in
[24]. Note that this implies that for all k£ and all signatures o, there is an n € w
such that every consistent L*(3) sentence over o has a model of cardinality n.)
Here we need a notion of k-universal over ordered structures, stratified in terms

of quantifier rank.

Definition 8 Let o be a signature containing <. For A € O, we say that A
is kS-universal iff for all B € O,, B<F"A.

It is easy to show that for all k, n, and o, there are finite k< -universal models
that contain no irreducible submodels of size k+ 1. [For example, one can modify
the construction of the k,-universal models B} from the proof of Proposition 13
in [24] to allow for the built in order.] In contrast to L*(3), we observe below
that for all n, there is a sentence @, € TI}(3%), containing a single (binary)
second order variable, that only has models of size > n. In particular, this
implies that even for a very restricted set of sentences in 50(32), there is no
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finite universal model that satisfies every sentence in the set. [We do not know
whether there are finite universal models for fragments of m.SO(3*) containing
a fixed number of SO variables.]

Observation 2 For all n, there is a p, € 50(32), containing a single binary
second order variable, that only has models of cardinality > n.

Proof. Tt is well known that for all n, there is a sentence 6, in L?(3), that
says that there is a directed path of length 2. [For the sake of completeness,
we show that for all n, there is a formula ¥, (z) € L?(3) that says that there
is a path of length n starting at z. Then let 6, = 3z, (2). Inductively define
P1(z) = JyRey and Y41 (2) = Jy(Rzy A (3z(z = y A ¢n(2)))).] For n > 2, let
en = YRey(3zy(z # y A (Rzy < Ryz)) V ,_1). Finally, observe that for all
models (A, R4), if (A, R*) | —3zy(z # y A (Rry < Ryz)), then (A, R4) |
0,_1 iff R4 is a linear order of length > n — 1 or R* contains a loop or a cycle
of length 3, in which case (A, R?) contains an infinite path. [ ]

Theorem 6 For all k,SO(3*) # SO(3F*F1). Therefore the fragments SO(F*), k €

w, form a hierarchy of strictly increasing expressive power.

The theorem follows immediately from the following proposition.

Proposition 10 For all consistent ¢ € SO(3*), ¢ has a model containing no
wreducible submodel of size k + 1.

Proof of proposition. As in the previous proofs, it is easier to consider SO(V*)
rather than SO(3*). Thus, we will show that for all ¢ € SO(V*), if ¢ is true
in every A that does not contain an irreducible submodel of size £ + 1, then
@ i1s valid. To simplify the notation, we will again assume that ¢ € H%(Vk);
to generalize the argument one simply iterates the construction here as in the
proof of Theorem 2.

To apply the Nesetfil and Rodl theorem, we will prove the proposition over
the class of models with a built in order. That is, let ¢ = VSIR0, 6 € LF"(V),
and sig(p) = P = PoU{<}. We show that if ¢ holds in every A € O% with no
irreducible submodel of size k 4 1, then ¢ is valid over O%.

Let A’ = (A,?A) be a kS-universal P U S model containing no irreducible
submodel of size k + 1. Observe that A’ is also k-(Pg U S)-rich. We want
to show that there is an R expansion of A’ such that (A,?A,FA) E 6 and

RA homogeneously colors (A,gA). Here we argue precisely as in the proof of
Theorem 5. o .

Let A = {B | sig(B) = PUJS and B|P € O is an irreducible submodel
of size k + 1}. Applying the Nesetfil and Rodl theorem to the class Soc(A) of
Op,5 models, there is an A} = (Al,gAl), A} € Soc(A), such that A’l%RA’.
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By the definition of Soe(A), A1 contains no irreducible submodel of size
k4 1, so by hypothesis A; = VSIRA. Thus, (Al,gAl) = 3R, and there is
an expansion such that (A1,§A1,§Al) E 6. By the definition of A}, there is
a submodel (B1,§A1|Bl)g(A1,§Al), isomorphic to A’ = (A,gA)7 such that
EA1|Bl homogeneously R colors (Bl,§A1|B1). Since 6 € L*(V) is preserved
under substructures, Bf = (Bl,§A1 |Bl,ﬁA1|Bl) = 6.

This completes the construction that we need. We now want to prove that
for all C € Op, C = VS3R6. Let (C’,?C) be an arbitrary S expansion of C. Tt
suffices to show that there is an R expansion of (C, §C) that satisfies 6. Since BY
is k-(Py U?)—rich_and homogeneously R colored, we can take C" = (C, ?C, Ec)
to be the unique R expansion determined by By, [as in the proof of Theorem 5].

Suppose, for the sake of contradiction, that (C’,?C,EC) E —6. Since -6 €
LFr(3) and Bf k= 6, by Proposition 9 the Spoiler wins the n—ro&nd_flk—game
from C” to B”. On the other hand, BY|P U S is a k;S-universal P U S model,
so we know that it is instead the Duplicator who has a winning strategy in
the n-round Hk—gam_e from C"|P U S to B"|PUS. Now, observe that for all
submodels MCBY|P U S, NCC"|P U S, with |[M| = |[N| < k, if M = N,
then (M, FA1|M) = (N, EC|N). This is because the interpretation of 5 was
determined by the ‘homogenous’ interpretation EAI | Bi. Therefore every partial
isomorphism from C”|P U S to BY|P U S between submodels of size j,j < k,
is also a partial isomorphism between their respective R expanded structures.
Thus the Duplicator’s winning strategy on these structures is simultaneously
a winning strategy for the game played on their R expansions, C” and B”,
thereby contradicting the supposition that C” = =. So C |= ¢, which proves
that ¢ is indeed valid over O. ]

Corollary 6 Let A be any irreducible model of size k. Then C4 = {B | ACB}
s not definable in SO(Hk_l) (even with a built in order).

This result suggests the following question: Is it true that for all finite models
A, the class C4 = {B | ACB} is not definable in SO(34!171)? Using the previous
theorem, we can show that if the signature of A contains a relation symbol of
arity > 4, then the answer is yes.

We first sketch the basic idea of the proof, which is quite simple. By the
preceding Corollary, the property of containing a subgraph isomorphic to K, the
complete graph on [ vertices, is not definable in SO(Ell_l). By ‘symmetry’, it is
easy to see that the same holds if we replace K; by its complement K, the empty
graph on [ vertices. For if some sentence ¢ defined the latter property, then the
sentence p, obtained by adding a negation sign in front of every occurence of
Ezy in ¢, would define the former [and vice-versa]. Generalizing this idea, we
have that if the ‘complement’ of a structure A is irreducible, then also C4 is
not definable in SO(EI'Al_l). It now suffices to observe that for all A, if the
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signature of A contains a relation symbol of arity n,n > 4, then either A or its
complement 1s irreducible.

Definition 9 Let A be any model with signature o. Then the complement of A,
denoted A 1s the o model with the same universe as A, such that for all m-ary

R € o and all m-tuples @ in A, A |= Ra iff A = ~Ra.
The next lemma is straightforward.
Lemma 1 For all A, C4 is definable in SO(F*) iff C 15 definable in SO(3F*).

Lemma 2 Let A be a model such that sig(A) contains a n-ary relation symbol
R, n> 4. Then either A or A is irreducible.

Proof. Assume that A is not irreducible, so there are ay,as € A such that
for all n-tuples € containing both a; and as, A = —Ré. A is irreducible iff
for all by, by there is a n-tuple @, with by,b5 € @, A = =Ré. For each by, by
in A, choose d to be any n-tuple containing a;,as, by, and by. By hypothesis,
A |= =Rd, so that A |= Rd. Therefore A must be irreducible, as desired. [ |

The theorem follows immediately from Corollary 6 and Lemmas 1 and 2.

Theorem 7 For all A such that sig(A) contains a n-ary relation symbol, n > 4,
Ca = {B| ACBY} is not definable in SO(34171).

It is clear that the theorem fails for models with unary signatures. The
above method does not seem to be sufficient to resolve the case of signatures of
arity 2 or 3.

We remark that the corresponding statement for classes of the form Dy =
{B | BCA} is false. Let ¢ = {Fzy} and let A be a finite ¢ model of size
2n,n > 2, such that £4 is an equivalence relation with 2 classes of size n. It
is easy to show that D4 can be defined by a L™+ (V) sentence with quantifier
rank n + 1. This idea generalizes easily to any (non-empty) signature.

6 Final remarks

We have begun investigating the existential logic SO(3). One direction for fu-
ture research would be to consider stronger fragments of SO that still only define
classes closed under extensions. Allowing function symbols is one possibility.
Another is to introduce SO quantification over certain restricted classes of rela-
tions. For example, extend SO(3) by adding the quantifiers 3o Rzy and Yo Ry,
to be interpreted as ‘there is a linear order Rxy’ and ‘for all linear orders Rxy’.
More generally, let D be any class of models closed under substructures such
that for all A € D and all cardinalities k > |A|, there is an extension B in D,
A C B. Then the logic SOp(3), incorporating the ‘generalized’ SO quantifiers
Jp and Vp, also only defines classes that are closed under extensions.

In a somewhat different spirit, one could investigate the SO(3) theories of
fixed infinite structures, for example, to determine whether they are decidable.
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Open questions

We have no results concerning the SO(3) hierarchy that are independent of
complexity theoretic assumptions. The following seems to be the most natural
problem.

Prove I} (3) # SO(3).

More generally, 1t would be nice to show that the H%n_}_l(ﬂ) hierarchy is strict.

There are many open, and difficult, questions about fragments of ] (see
Fagin [8]). Perhaps the analogous questions for IT} (3) [£1(V)] are more tractable.
For example,

Is there a property of graphs that is expressible in ITj(3) that is
not defined by any IT} (3) sentence that contains only binary second
order variables?
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