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Abstract. We consider the parameterized complexity of the following
problem under the framework introduced by Downey and Fellows[4]:
Given a graph G, an integer parameter k and a non-trivial hereditary
property Π , are there k vertices of G that induce a subgraph with prop-
erty Π? This problem has been proved NP-hard by Lewis and Yanna-
kakis[9]. We show that if Π includes all independent sets but not all
cliques or vice versa, then the problem is hard for the parameterized
class W [1] and is fixed parameter tractable otherwise. In the former
case, if the forbidden set of the property is finite, we show, in fact, that
the problem is W [1]-complete (see [4] for definitions). Our proofs, both of
the tractability as well as the hardness ones, involve clever use of Ramsey
numbers.

1 Introduction

Many computational problems typically involve two parameters n and k, e.g.
finding a vertex cover or a clique of size k in a graph G on n vertices. The
parameter k contributes to the complexity of the problem in two qualitatively
different ways. The parameterized versions of Vertex Cover and Undirected
Feedback Vertex Set problems can be solved in O(f(k)nα) time where n is
the input size, α is a constant independent of k and f is an arbitrary function
of k (against a naive Θ(nck) algorithm for some constant c). This “good behav-
ior”, which is extremely useful in practice for small values of k, is termed fixed
parameter tractability in the theory introduced by Downey and Fellows[2,3,4].

On the other hand, for problems like Clique and Dominating Set, the
best known algorithms for the parameterized versions have complexity Θ(nck)
for some constant c. These problems are known to be hard for the parameterized
complexity classes W [1] and W [2] respectively and are considered unlikely to
be fixed parameter tractable (denoted by FPT) (see [4] for the definitions and
more on the parameterized complexity theory). In this paper, we investigate
the parameterized complexity of finding induced subgraphs of any non-trivial
hereditary property in a given graph.
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A graph property Π is a collection of graphs. A graph property Π is non-
trivial if it holds for at least one graph and does not include all graphs. A
non-trivial graph property is said to be hereditary if a graph G is in property Π
implies that every induced subgraph of G is also in Π . A graph property is said
to be interesting [9] if the property is true (as well as false) for infinite families of
graphs. Lewis and Yannakakis[9] (see also [6]) showed that if Π is a non-trivial
and interesting hereditary property, then it is NP-hard to decide whether in a
given graph, k vertices can be deleted to obtain a graph which satisfies Π .

For a hereditary property Π , let F be the family of graphs not having the
property. The set of minimal members (minimal with respect to the operation
of taking induced subgraphs) of F is called the forbidden set for the property
Π . For example, the collection of all bipartite graphs is a hereditary property
whose forbidden set consists of all odd cycles. Conversely, given any family F of
graphs, we can define a hereditary property by declaring its forbidden set to be
the set of all minimal members of F .

Cai[1] has shown that the graph modification problem for a non-trivial hered-
itary property Π with a finite forbidden set is fixed parameter tractable (FPT).
This problem includes the node deletion problem addressed by Lewis and Yan-
nakakis (mentioned above). While the parameterized complexity of the question,
when Π is a hereditary property with an infinite forbidden set, is open, we ad-
dress the parametric dual problem in this paper. Given any property Π , let
P (G, k, Π) be the problem defined below.

Given: A simple undirected graph G(V, E)
Parameter: An integer k ≤ |V |
Question: Is there a subset V ′ ⊆ V with |V ′| = k such that the subgraph

of G induced by V ′ has property Π ?
This problem is the same as ‘|V | − k’ node deletion problem (i.e. can we

remove all but k vertices of G to get a graph with property Π) and hence NP-
hard. However the parameterized complexity of this problem doesn’t follow from
Cai’s result. We prove that if Π includes all independent sets, but not all cliques
or vice versa, then the problem P (G, k, Π) is W [1]-complete when the forbidden
set of Π is finite and W [1]-hard when the forbidden set is infinite. The proof is
by a parametric reduction from the Independent Set problem. If Π includes
all independent sets and all cliques, or excludes some independent sets and some
cliques then we show that the problem is fixed parameter tractable.

Note, from our and Cai’s result, that the parameterized dual problems dealt
with, have complimentary parameterized complexity. This phenomenon has been
observed in a few other parameterized problems as well. In a graph G(V, E),
finding a vertex cover of size k is FPT whereas finding an independent set of size
k (or a vertex cover of size |V | − k) is W [1]-complete; In a given boolean 3-CNF
formula with m clauses, finding an assignment to the boolean variables that
satisfies at least k clauses is FPT whereas finding an assignment that satisfies
at least (m − k) clauses (i.e. all but at most k clauses) is known to be W [P ]-
hard [2] (k is the parameter in both these problems). The k-Irredundant Set
problem is W [1]-hard whereas Co-Irredundant set or (n− k) Irredundant
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Set problem is FPT [5]. Our result adds one other (general) problem to this
list.

Throughout the paper, by a graph we mean an undirected graph with no
loops or multiple edges. By a non-trivial graph, we mean a graph with at least
one edge. Given a graph G and A ⊆ V (G), by IG(A) we mean the subgraph
of G induced by vertices in A. For two graphs H and G, we use the notation
H ⊆ G to mean that H is isomorphic to an induced subgraph of G. For the
graph properties Π we will be concerned with in this paper, we assume that Π
is recursive; i.e. given a graph G on n vertices, one can decide whether or not G
has property Π in f(n) time for some function of n.

We had already defined the notion of fixed parameter tractable problems. To
understand the hardness result, we give below some definitions. See [4] for more
details.

A parameterized language L is a subset of Σ∗ × N where Σ is some finite
alphabet and N is the set of all natural numbers. For (x, k) ∈ L, k is the
parameter. We say that a parameterized problem A reduces to a parameterized
problem B, if there is an algorithm Φ which transforms (x, k) into (x′, g(k)) in
time f(k)|x|α where f, g : N → N are arbitrary functions and α is a constant
independent of k, so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B. The essential
property of parametric reductions is that if A reduces to B and if B is FPT,
then so is A.

Let F be a family of boolean circuits with and, or and not gates; We allow that
F may have many different circuits with a given number of inputs. Let the weight
of a boolean vector be the number of 1’s in the vector. To F we associate the pa-
rameterized circuit problem LF = {(C, k) : C accepts an input vector of weight
k}. Let the weft of a circuit be the maximum number of gates with fan-in more
than two, on an input-output path in the circuit.

A parameterized problem L belongs to W [t] if L reduces to the parameterized
circuit problem LF (t,h) for the family F (t, h) of boolean circuits with the weft
of the circuits in the family bounded by t, and the depth of the circuits in the
family bounded by a constant h. This naturally leads to a completeness program
based on a hierarchy of parameterized problem classes:

FPT ⊆ W [1] ⊆ W [2] ⊆ . . .

The parameterized analog of NP is W [1], and W [1]-hardness is the basic
evidence that a parameterized problem is unlikely to be FPT.

The next section deals with the hereditary properties for which the problem
is fixed parameter tractable, and Section 3 proves the W [1]-hardness result for
the remaining hereditary properties. Section 4 concludes with some remarks and
open problems.
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2 Hereditary Properties That Are FPT to Find

Lemma 1. If a hereditary property Π includes all independent sets and all
cliques, or excludes some independent sets as well as some cliques, then the
problem P (G, k, Π) is fixed parameter tractable.

Proof. For any positive integers p and q, there exists a minimum number R(p, q)
(the Ramsey number) such that any graph on at least R(p, q) vertices contains
either a clique of size p or an independent set of size q. It is well-known that
R(p, q) ≤ (

p+q−2
q−1

)
[8].

Assume that Π includes all cliques and independent sets. For any graph G
with |V (G)| ≥ R(k, k), G contains either a clique of size k or an independent set
of size k. Since all independent sets and all cliques have property Π , the answer
to the problem P (G, k, Π) in this case is ”yes”.

When |V (G)| ≤ R(k, k), we can use brute force by picking all k-elements sub-
sets of V (G) and checking whether the induced subgraph on the subset has prop-
erty Π . This will take time

(
R(k,k)

k

)
f(k) where f(k) is the time to decide whether

a given graph on k vertices has property Π . Thus the problem P (G, k, Π) is fixed
parameter tractable.

If Π excludes some cliques and some independent sets, let s and t respectively
be the sizes of the smallest clique and independent set which do not have property
Π . Since any graph with at least R(s, t) vertices has either a clique of size s or
an independent set of size t, no graph with at least R(s, t) vertices can have
property Π (since Π is hereditary). Hence any graph in Π has at most R(s, t)
vertices and hence Π contains only finitely many graphs. So if k > R(s, t), then
the answer to the P (G, k, Π) problem is NO for any graph G. If k ≤ R(s, t), then
check, for each k subset of the given vertex set, whether the induced subgraph
on the subset has property Π . This will take time

(
n
k

)
f(k) ≤ CnR(s,t) for an n

vertex graph, where C is time taken to check whether a graph of size at most
R(s, t) has property Π . Since s and t depend only on the property Π , and not
on k or n, and k ≤ R(s, t), the problem P (G, k, Π) is fixed parameter tractable
in this case also. 2

We list below a number of hereditary properties Π (dealt with in [11]) each of
which includes all independent sets and cliques, and hence for which the problem
P (G, k, Π) is fixed parameter tractable.

Corollary 1. Given any simple undirected graph G, and an integer k, it is fixed
parameter tractable to decide whether there is a set of k vertices in G that induces
(a) a perfect graph, (b) an interval graph (c) a chordal graph, (d) a split graph,
(e) an asteroidal triple free (AT-free) graph, (f) a comparability graph, or (g) a
permutation graph. (See [11] or [7] for the definitions of these graphs.)

3 Hereditary Properties That Are W-Hard to Find

In this section, we show that the problem P (G, k, Π) is W [1]-hard if Π includes
all independent sets but not all cliques or vice versa.
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For a graph G, let G denote the edge complement of G. For a property Π ,
let Π = {G | G has property Π}. We note that Π is hereditary if and only if Π
is hereditary, and Π includes all independent sets but not all cliques if and only
if Π includes all cliques but not all independent sets. Thus it suffices to prove
W [1]-hardness when Π includes all independent sets, but not all cliques.

First we will show that, the problem is in W [1] if the forbidden set for Π is
finite.

Lemma 2. Let Π be a non-trivial hereditary property having a finite forbidden
set F ={H1, H2, . . . , Hs}. Then the problem P (G, k, Π) is in W [1].

Proof. Let ν = max(|Hi|). Let A1, . . . , Aq be all the subsets of V (G) such that
for every 1 ≤ j ≤ q, IG(Aj) is isomorphic to some Hi. The sets Aj ’s can be
determined in O(f(ν)nν) time by trying every subset of V (G) of size at most ν.
Here f is some function of ν alone.

Consider the boolean formula
∧q

j=1(
∨

u∈Aj
xu)

If this formula has a satisfying assignment with weight (the number of true
variables in the assignment) k, then the subset X of V (G) defined by X = {u ∈
V |xu = 1} is a subset of V (G) of cardinality k such that Aj 6⊆ X for any j. This
implies that G has an induced subgraph of size k with property Π .

Conversely if G has an induced subgraph of size k with property Π , then set-
ting xu = 1 for vertices u in the induced subgraph gives a satisfying assignment
with weight k. Since q ≤ nν+1 and |Ai| ≤ ν (a constant) for all i, it follows from
the definitions that the problem is in W [1]. 2

We now show that the problem is W [1]-hard when one of the graphs in the
forbidden set of Π is a complete bipartite graph.

Lemma 3. Let Π be a hereditary property that includes all independent sets but
not all cliques, having a finite forbidden set F ={H1, H2, . . . , Hs}. Assume that
some Hi, say H1 is a complete bipartite graph. Then the problem P (G, k, Π) is
W [1]-complete.

Proof. In Lemma 2 we have shown that the problem is in W [1].
Let Π be as specified in the Lemma. Let t = max(|V1|, |V2|) where V1

⋃
V2

is bipartition of H1. If t = 1, H1 = K2, and the given problem P is identical
to the k-independent set problem, hence W [1]-hard. So assume t ≥ 2. Note that
H1 ⊆ Kt,t. Let Hs be the clique of smallest size that is not in Π , hence in the
forbidden set F .

Now we will show that the problem is W [1]-hard by a reduction from the
Independent Set Problem. Let G1 be a graph in which we are interested in finding
an independent set of size k1. For every vertex u ∈ G1 we take r independent
vertices ( r to be specified later) u1, . . . , ur in G. If (u, v) is an edge in G1, we
add all r2 edges (ui, vj) in G. G has no other edges.
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We claim that that G1 has an independent set of size k1 if and only if G has
rk1 vertices that induce a subgraph with property Π .

Suppose G1 has an independent set {ui|1 ≤ i ≤ k1} of size k1. Then the set
of rk1 vertices {uj

i | 1 ≤ i ≤ k1, 1 ≤ j ≤ r} is an independent set in G and hence
has property Π .

Conversely let S be a set of rk1 vertices in G which induces a subgraph with
property Π . This means IG(S) does not contain any Hi, in particular it does
not contain H1. Group the rk1 vertices according to whether they correspond
to the same vertex in G1 or not. Let X1, . . . , Xh, Y1, . . . , Yp be the groups and
u1, . . . , uh, v1, . . . , vp be the corresponding vertices in G1 such that |Xi| ≥ t ∀ i
and |Yj | < t ∀ j. Observe that {u1, . . . , uh} must be independent in G1 because
if we have an edge (ui, uj), H1 ⊆ Kt,t ⊆ IG(Xi, Xj) ⊆ IG(S), a contradiction.
If h ≥ k1 we have found an independent set of size at least k1 in G1. There-
fore assume that h ≤ k1 − 1. Then

∑h
i=1 |Xi| ≤ r(k1 − 1) which implies that∑p

j=1 |Yj | ≥ r or p ≥ r/(t− 1). Since vertices in distinct groups (one vertex per
group) in G and the corresponding vertices in G1 induce isomorphic subgraphs,
the vertices v1, . . . , vp induce a subgraph of G1 with property Π (since Π is
hereditary). Since this subgraph has property Π , it does not contain Hs as an
induced subgraph. We choose r large enough so that any graph on r/(t − 1)
vertices that does not contain a clique of size |Hs| has an independent set of size
k1. With this choice of r, it follows that G1 does contain an independent set of
size k1. The number r depends only on |Hs| and the parameter k1 and not on
n1 = |V (G1)|. So the reduction is achieved in O(f(k1)n1

α) time where f is some
function of k1 and α is some fixed constant independent of k1. 2

Next, we will show that the problem is W [1]-hard even if none of the graphs
in the forbidden set is complete-bipartite.

Theorem 1. Let Π be a hereditary property that includes all independent sets
but not all cliques, having a finite forbidden set F ={H1, H2, . . . , Hs}. Then the
problem P (G, k, Π) is W [1]-complete.

Proof. The fact that the problem is in W [1] has already been proved in Lemma
2. Assume that none of the graphs Hi in the forbidden set of Π is complete-
bipartite. Let Hs be the clique of smallest size that is not in Π , hence in the
forbidden set F .

For a graph Hi in F , select (if possible) a subset of vertices Z such that the
vertices in Z are independent and every vertex in Z is connected to every vertex
in Hi\Z. Let {Hij |1 ≤ j ≤ si} be the set of graphs obtained from Hi by removing
such a set Z for every possible choice of Z. Since Hi is not complete-bipartite,
every Hij is a non-trivial graph. Let F1= F ⋃{Hij |1 ≤ i ≤ s, 1 ≤ j ≤ si}. Note
that F1 contains a clique of size |Hs| − 1 because a set Z, consisting of a single
vertex, can be removed from the clique Hs. Let Π1 be the hereditary property
defined by the forbidden set F1. Observe that Π1 also includes all independent
sets but not all cliques. Let P1 be the problem P (G1, k1, Π1).

We will prove that P1 is W [1]-hard later. Now, we will reduce P1 to the
problem P (G, k, Π) at hand.
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Given G1, we construct a graph G as follows. Let V (G) = V (G1)
⋃

D where
D is a set of r independent vertices (r to be specified later). Every vertex in
V (G1) is connected to every vertex in D. Let ν = maxi(|Hi|).

We claim that G1 has an induced subgraph of size k1 with property Π1 if
and only if G has k1 + r vertices that induce a subgraph with property Π .

Let A be a subset of V (G1), |A| = k1 such that IG1(A) ∈ Π1. Let S = A
⋃

D.
Suppose on the contrary that IG(S) contains some Hi as a subgraph. If this Hi

contains some vertices from D, we throw away these independent vertices. The
remaining portion of Hi, which is some Hij , 1 ≤ j ≤ si, must lie in IG(A). But
this is a contradiction because IG(A) = IG1(A) and by hypothesis, IG1(A) has
property Π1 and it cannot contain any Hij . Similarly Hi cannot lie entirely in
IG(A) because F ⊆ F1, so IG(A) does not contain any Hi as induced subgraph.
Therefore IG(S) does not contain any Hi, hence it has property Π and |S| =
k1 + r.

Conversely, suppose we can choose a set S, |S| = k1 + r such that IG(S)
does not contain any Hi. Since |D| = r we must choose at least k1 vertices from
V (G1). Let A ⊆ S

⋂
V (G1) with cardinality k1. If IG(A) does not contain any

Hij , we are through. Otherwise let Hi0j0 ⊆ IG(A) for some i0, j0. Now Hi0j0

is obtained from Hi0 by deleting an independent set of size at most ν. Hence
S can contain at most ν − 1 vertices from D, otherwise we could add sufficient
number of vertices from D to the graph Hi0j0 to get a copy of Hi0 which is not
possible. Hence |S ⋂

D| < ν which implies that |S ⋂
V (G1)| > k1 + r − ν. Thus

IG1(S
⋂

V (G1)) is an induced subgraph of G1 of size at least k1 + r − ν that
does not contain any Hi, in particular it does not contain Hs which is a clique
of size say µ. We can select r (as before, by Ramsey Theorem ) such that any
graph on k1 + r− ν vertices that does not contain a µ-clique has an independent
set of size k1. Hence G1 has an independent set of size k1 which has property
Π1. The number r depends only on the family F and parameter k1 and not on
n1 = |V (G1)|. So the reduction is achieved in O(g(k1)n1

β) time where g is some
function of k1 and β is a constant. Also |V (G)| = |V (G1)|+ r, so the size of the
input problem increases only by a constant.

We will be through provided the problem P1 is W [1]−hard. If any of the Hij

is complete-bipartite, then it follows from Lemma 3. Otherwise, we repeatedly
apply the construction, given at the beginning of the proof, of removing set
Z of vertices from each graph in the forbidden set, to get families F2, F3, . . .
and corresponding problems P2, P3, . . . such that there is a parametric reduction
from Pm+1 to to Pm. Since Fm+1 contains a smaller clique than a clique in
Fm, eventually some family Fm0 contains a clique of size 2 (the graph K2)
or a complete-bipartite graph. In the former case, the problem Pm0 is same as
parameterized independent set problem, so W [1]-hard. In the latter case Pm0 is
W [1]-hard by Lemma 3. 2

We can extend Theorem 1 to the case when the forbidden set is infinite.
However we could prove the problem only W [1]-hard; we don’t know the precise
class in the W -hierarchy the problem belongs to.
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Theorem 2. Let Π be a hereditary property that includes all independent sets
but not all cliques (or vice versa). Then the problem P (G, k, Π) is W [1]-hard.

Proof. Every hereditary property is defined by a (possibly infinite) forbidden
set [9] and so let the forbidden family for Π be F = {H1, H2, . . .}. The proof
is almost the same as in Theorem 1. Note that Lemma 3 does not depend on
finiteness of the forbidden family. Also the only point where the finiteness of F
is used in Theorem 1 is in the argument that if IG(A) does contain some Hi0j0

then S can contain at most ν − 1 vertices from the set D. This argument can
be modified as follows. Since IG(A) contains some Hi0j0 , |V (Hi0j0)| ≤ |A| = k1.
Also Hi0j0 is obtained from some Hi by removing an independent set adjacent
to all other vertices of Hi. (If there are more than one such His from which Hi0j0

is obtained, we choose an arbitrary Hi.) Let ν1 = max (|V (Hi)| − |V (Hij)|)
where the maximum is taken over all Hij such that |V (Hij)| ≤ k1. Hence if
IG(A) does contain some Hi0j0 , we can add at most ν1 vertices from D to get
Hi0 . So S must contain less than ν1 vertices from D. The choice of r will have
to be modified accordingly. 2

Corollary 2 follows from Theorem 2 since the collection of forests is a hered-
itary property with the forbidden set as the set of all cycles. This collection
includes all independent sets and does not include any clique of size ≥ 3.

Corollary 2. The following problem is W [1]-hard:
Given (G, k), does G have k vertices that induce a forest?

This problem is the parametric dual of the Undirected Feedback Vertex
Set problem which is known to be fixed parameter tractable [4].

Corollary 3. Following problem is W [1]-complete:
Given (G, k), does there exist an induced subgraph of G with k vertices that is
bipartite ?

Proof. Hardness follows from Theorem 2 since all independent sets are bipartite
and no clique of size at least 3 is bipartite.

To show that the problem is in W [1], given the graph G, consider the boolean
formula

∧
u∈V (G)(xu ∨ yu)

∧
(u,v)∈E(G)((xu ∨ xv)

∧
(yu ∨ yv))

We claim that G has an induced bipartite subgraph of size k if and only if
the above formula has a satisfying assignment with weight k. Suppose G has an
induced bipartite subgraph with k vertices with partition V1 and V2. Now for each
vertex in V1 assign xu = 1, yu = 0, for each vertex in V2 assign xu = 0, yu = 1
and assign xu = yu = 0 for the remaining vertices. It is easy to see that this
assignment is a weight k satisfying assignment for the above formula.

Conversely, if the above formula has a weight k satisfying assignment, the
vertices u such that xu = 1, yu = 0 or xu = 0, yu = 1 induce a bipartite subgraph
of G with k vertices.

The corollary follows as the above formula can be simulated by a W [1]-circuit
(i.e. a circuit with bounded depth, and weft 1). 2
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Corollary 4 can be proved along similar lines of Corollary 3.

Corollary 4. Following problem is W [1]-complete: Given (G, k) and a constant
l, does there exist an l-colorable induced subgraph of size k?

Finally we address the parametric dual of the problem addressed in Corollary
3. Given a graph G, and an integer k, are there k vertices in G whose removal
makes the graph bipartite? We will call this problem ‘n− k bipartite’.

The precise parameterized complexity of this problem is unknown since
though bipartiteness is a hereditary property, it has an infinite forbidden set,
and so the problem is not covered by Cai’s result [1].

The ‘edge’ counterpart of the problem, given a graph G with m edges, and
an integer k, are there k edges whose removal makes the graph bipartite, is the
same as asking for a cut in the graph of size m − k. It is known[10] that there
exists a parameterized reduction from this problem to the following problem,
which we call ‘all but k 2-SAT’.

Given: A Boolean 2 CNF formula F
Parameter: An integer k
Question: Is there an assignment to the variables of F that satisfies all but

at most k clauses of F?
We show that there is also a parameterized reduction from the ‘n−k bipartite

problem’ to the ‘all but k 2-SAT’ problem.

Theorem 3. There is a parameterized reduction from the ‘n− k bipartite prob-
lem’ to the ‘all but k 2-SAT’ problem.

Proof. Given a graph G, for every vertex, we set two variables (xu, yu) and con-
struct clauses in the same manner as in the proof of Corollary 3. The clauses are
as follows:

Set 1:

xu ∨ yu ∀ u ∈ V (G)
xu ∨ xv ; yu ∨ yv ∀(u, v) ∈ E(G)

Each clause in Set 1 is repeated k + 1 times.

Set 2: xu ∨ yu ∀ u ∈ V (G).

We show that it is possible to remove k vertices to make the given graph bipartite
if and only if there is an assignment to the variables in the above formula that
makes all but at most k clauses true.

If there is an assignment that makes all but at most k clauses true, then
the clauses in Set 1 must be true because each of them occurs k + 1 times.
This ensures that the variables xu, yu corresponding to the vertices are assigned
respectively 0,0 or 0,1 or 1,0 and each edge e = (u, v) has xu = xv = yu = yv = 0
or xu = 0, yu = 1 and xv = 1, yu = 0 or vice versa. The vertices s for which
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xs = ys = 0 are removed to get a bipartite graph. At most k clauses in Set 2 are
false. This ensures that at most k vertices are removed.

Conversely if there exist k vertices whose removal results in a bipartite graph
with partition V1

⋃
V2, consider the assignment corresponding to each vertex u

in the graph, xu = yu = 0 if the vertex u is removed, xu = 1, yu = 0 if u ∈ V1

and xu = 0, yu = 1 if u ∈ V2.
It is easy to see that this assignment makes all but at most k clauses of the

formula true.
Note that the reduction is actually a polynomial time reduction. 2

4 Concluding Remarks

We have characterized the hereditary properties for which finding an induced
subgraph with k vertices having the property in a given graph is W [1]- hard. In
particular, using Ramsey Theorem, we have shown that if the property includes
all independent sets and all cliques or if it excludes some independent sets as
well as cliques, then the problem is fixed parameter tractable. However, for some
of these specific properties, we believe that a more efficient fixed parameter
algorithms (not based on Ramsey numbers) is possible.

It remains an open problem to determine the parameterized complexity of
both the problems stated in Theorem 3 (the ‘n − k bipartite problem’ and the
‘all but k 2-SAT’ problem). More generally, the parameterized complexity of the
node-deletion problem for a hereditary property with an infinite forbidden set is
open.

Finally we remark that our results prove that the parametric dual of the prob-
lem considered by Cai[1] (and was proved FPT) is W [1]-hard. This observation
adds weight to the conjecture (first made in [10]) that typically parametric dual
problems have complimentary parameterized complexity. It would be interesting
to explore this in a more general setting.
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