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Ramsey Numbers and an Approximation Algorithm 
for the Vertex Cover Problem 

Burkhard Monien and Ewald Speckeumeyer 
Universitit Paderbora, Fachboreich 17, Theoretische Informatik, Posffach 1621, 
D-4790 Paderborn, Federal Republic of Germany 

Summary. We show two results. First we derive an upper bound for the 
special Ramsey numbers rk(q), where rk(q) is the largest number of nodes a 
graph without odd cycles of length bounded by 2k+1 and without an 

k k+x k+2  
independent set of size q + l  can have. We prove rk(q)<__~-~-~q ~ 

+ k - ~ q .  
The proof is constructive and yields an algorithm for computing an inde- 
pendent set of that size. Using this algorithm we secondly describe an 
O(IVI.[E]) time bounded approximation algorithm for the vertex cover 

whose worst case ratio is A < 2 - ~ ,  for all graphs with problem, at most 

(2k+ 3)~(2k+2) nodes (e.g. A -< 1.8, ff IV] =< 146000). 

1. Introduction 

Let G=(V,E) be an undirected graph. A subset I~_V is called independent set 
of G iffEc~{{u,v}[u, vel, u~v}=O and a subset M~_V is called vertex cover of 
G iff Y{u, v}eE: ueM or yaM. By ~(G) and 2(G) we denote the cardinalities of 
a maximum independent set and a minimum vertex cover of G. 

In the first part of this paper we consider the following function of Ramsey 
type r~(q)..--max{n[3 graph G: lV(G)[ffin and todd(G)>2k+l and cc(G) __< q}, 
where todd(G) is the length of a shortest odd cycle in G. This function gives a 
lower bound for the cardinality ~(G) of a maximum independent set for graphs 
without odd cycles of length at most 2k + I. 

k ~+x k+2  
We will show that rk(q)<-~-~q--r-+~-~-~q holds for k ~ l  and q>0. The 

proof of this result is constructive and it yields an algorithm, which always 

computes an independent set of size at least n k+l for all graphs G with 
t~d(G) > 2k+ 1 and with n nodes, n > no for some sufficiently large no. 
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Erd~s considered a function similar to rk(q), which differs from ours in the 
stronger requirement that the graphs under consideration are not allowed to 
contain any cycle of length k or less. Let us denote his function by r~(q). Then 

1+1_~ 
ql+~L~ -l, c>0.  There is no esti- it is shown in [4] q 2k~_~(q)<_c. for some 

marion given for the constant c. 
In order to achieve the upper bound for our function r~(q) and to obtain a 

"good" constant (for q=O and 1 our solution of rk(q) is exact) we have to 
estimate a breadth first search approach very carefully. Note that our result 
yields the same upper bound for r~ as the one for ~ obtained in ['4]. This is 
remarkable since we prohibit only short cycles of odd length and allow short 
cycles of even length to occur. For a survey of other lower bounds for ~(G) see 
the paper of Griggs 19]. 

In the second part of this paper we use the above result in order to obtain 
an O(tVI.IE[) time bounded approximation algorithm for the vertex cover 
problem. The underlying idea of this algorithm consists of destroying first 
short cycles of odd length and using afterwards the lower bound for 0~(G) for 
graphs without short odd cycles. The algorithm also uses a technique described 
by Nemhauser and Trotter in 1"15"]. We will show that our algorithm always 

IMI _ .  1 
computes a vertex cover M such that ~ - -~-~-~-~-~ ,  for every graph G with at 

most (2k~-3)~(2k§ nodes. That means that the worst case ratio d of our 
algorithm is bounded by 

,I __< 1.67, if IV[__< 294 

:I__<1.75, if IV[__< 5832 

~d__< 1,8 if lvl-_< 146410 

/I-<1.9, if ]V]__<1,588-I0 Is. 

The proof in Sect. 3 will show that this estimation directly follows from our 
upper bound for the function r k. We will discuss also the border lines of our 
approach. 

Independently Bar-Yehuda and Even [3] found essentially the same meth- 
od and showed that it can be appfied in the weighted case too. Our in- 
troduction of the function r~ leads to an estimation achieving the same worst 
case ratio for nearly twice as large graphs than their estimation doe~ 

Our algorithm gives a partial answer to the challenging open problem 
whether there is an approximation algorithm for the vertex cover problem of 
worst case ratio A < 2. It is curious that up to now this problem has resisted all 
efforts to solve it, because any maximal matching defines a vertex cover, which 
is at most twice as large as an optimal one (see e.g. [5]). More results of the 
attempt to solve the above problem can be found in [2, 10, 141. In [14] we 
discussed also the worst case ratios which are achievable for graphs of 
bounded degree. 
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2. An Estimation for the Functions ra 

k k+l k+2  
Theorem 1. r k ( q ) ~ - ~ q  k +.~_~q holds for all k >- l, q>-_O. 

Proof. First we will deduce a recurrence relation bounding the size of rk. Let G 
=(V,E) be a graph without any odd cycle of length not greater than 2k+1  
whose maximum independent set has cardinality q. Let aeV be an arbitrary 
node 

Vo Vl V z V k 

Set V~.---{u~V; dist(a,u)=i}, O<=i<_k, where dist(u,v) is the length of the shor- 
test path from u to v. Set W~..-- U Vj. Since any odd cycle has length at 

j=imod2 
least 2k+3  all the sets V, O<=i<__k, are independent sets. The sets W~, O<_i<=k, 
are also independent sets since for every j there is no edge connecting nodes 
from V~ and Vp with p - < j -  2 or p->j + 2. 

Set yi..= [W~[ for i=0,  ...,k. 
Then there exists i, 0_-<i--_k-1, such that yi+l<--_ql/k'y i. Assume on the 

contrary that y~+~>qt/k.y~ holds for all i = 0 , . . . , k - L  Then y~>qilk for all i 
=0 , . . . ,k  and especially Yk>q. This is a contradiction since Wk forms an 
independent set and we have assumed that the maximum independent set of G 
has cardinality q. 

Now let i fulfill y~+~ <_qt/k.y~. Consider the following partition of G where 
is the graph induced by the following construction, 

P-'= V-(W~u~+I) .  W~ is an independent set and there exist no edges connect- 
ing nodes from W~ and ~, therefore every independent set of ~ has size at most 
q-y~. Furthermore ~ is a subgraph of G and has no odd cycles of length not 
greater than 2 k + 1. This implies IV[ -< r~(q - Y3. 

=~ [Vl= y~+ y~+ ~ +lP [ 

< y~ +rain {q~/k. y~, q} +r~(q-y.J. 

=~ rk(q)- < max {y+min{qZ/k.y,q}+rk(q--y)}.  
1__.y~e 

We will show the theorem for every fixed k by induction on q. rt(0)--0 and 
therefore the theorem holds for q--0. In order to do the induction step, we set 
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k k+__l k + 2  
f(q,y)=y+min{ql/k,  y,q}+.~..~(q_y) k +.k__~(q__y) 

k + 2  1 1/k k kkl 
=k + l q - - ~ ~ "  y + min {q " Y, qI +-~-~(q-  Y) 

and we have to determine the maximum of this function for l_<y__<q. For 
k-1 

q k < y < q the function is decreasing monotonically and therefore we have to 
k--1 

consider only the range i < y < q k . In this range f is differentiable and 

af _(q_ y)i/k..l..ql/k I g2 f 1 1 - k  

a"-y = -k+--"l' (Oy)2=-k (q-y)  ~ >-0. 

k - 1  

�9 Therefore any ext remum in the ra~kge 1-<_y_<-q * is a minimum and the 

max imum is taken at y = 1 or at y = q - r - .  
In order to prove our  theorem we have to show 

k k+z k + 2  1/k I 
f(q, 1)=-~-~(q-1) '* +-~-~q+q - -~ -~  

< k ~3_ k + 2  

and 
2-1 k k-1 k+1 ( k+2\ 1 k~l 

f(q,q ~ )=k_.~l (q_q' k )-r-+ ,l +-~'~)q--'~-~q 

k ~.Z k + 2  

+yTTq- 

(1) 

(2) 

First we prove (I). We set 

k k + l  k k + l  l lk  1 
g(q)----~]-(q-- I) ~ -- ~ " ~  q + q  --~'~ 

and we have to show that  g (q )<0  holds for all q->l.  g ( I ) - -0  and it is easy to 
see that  g(q) < 0 holds ff q is large enough. Now we have to consider extremal 
points. 

I 1 ~k- g,(q)__(q_l), /k_ql/~+_~q , 1 

ik Ik 1 ik 

,, k ,, / ^ l / k  I ̂ Ik " k ~.I 1 
=~ g(q)=~-~'(q-1) ~,~ - ~ q '  - ) k+ l  q -I-q k+ l  

I 
-- (t~i/k- I -- I) ~0, since ~>1. 
k+l 
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Now we have to prove (2). 

I k+l 
k ) k + q _ _ _ . _ = q  ~ <=v---=q k k_~(q_qk- I ~-1 k k+1 

g + l  k + l  
k + l  

ca. k(1-q -1/~) k +(k+l)q-1/k_q-21~<=k. 

This time we define the function 

k + l  

h(x)=k.(I-x)  k + ( k + l ) . x _ x 2 _ k  

and we have to show that h(x)<-O holds for O_<x__<l. h(O)=h(1)--O hold and 
we have to consider still the extremal points. 

h'(x)-- - (k  + l)(1-x):/k +(k + l ) - 2 x  

2 
i.e. h ' (~)- -  0 =~ (1 - ~)~/~ = 1 - T + ' - / ;  

h(~)=k(1-~) ( 1 - k - ~  ~) +(k + l) ~ -  ~2-k  

, 

2k 
1) 1)<0. [] 

=~" (k-~-i - (~ -  

In the proof of Theorem 1 we even have shown the following stronger 
result. If an independent set of size q is determined for a graph G without odd 
cycles of length 2k + 1 or less by the breadth first search approach described in 

k k+1 k+2  
the first part of the proof, then G has at most ~--~--i- q ~ +~--i- q nodes, our 

estimation of r~(q). 
The algorithm A1 based upon this approach for determining an inde- 

pendent set can be formulated as follows. 

Input: Graph G=(V,E) with t,da(G)>2k+l; 

1. determine the smallest number qeN satisfying 

k ~--  k + 2 .  
I V l <- -~--~f q + -~-~-f q , 

Z r.--#;  
3. delete all isolated nodes from G and add them to I; 
4. while G ~O do 

begin 
4.1 choose ae V(G) and determine the sets W o, WI, ..., W i, Wi+ I 

until lW~+d____q~/~.l~l or i = k - 1 ;  
4.2 I :=IuW~; G:= G-(W~uW~+~); 
4.3 delete all isolated nodes from G and add them to I; 

end; 
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Ou~ut: Independent set I; 

By breadth first search statement 4.1 can be performed within time OOEI) 
and so the whole while-loop is time bounded by O(I VI-lED. 

Lemma 1. Algorithm ,41, which works for every graph G--(V,E) with toaa(G)> 2k 
+1 within time O(IVl.lEI) computes an independent set I ~_V of size at least q, 

k ~ k+2 
where q is the smallest number satisfying IVl<=-~-~-~q + - ~ q .  

3. Approximating the Vertex Cover Problem 

Our algorithm for approximating the vertex cover problem is based especially 
upon the algorithm AI from Corollary 1 and a result of Nemhauser and 
Trotter shown in [1~. 

If C is an odd cycle in G with n = 21 + 1 nodes then every vertex cover of G 
contains at least l+ 1 nodes from C, i.e. taking all nodes from C into a vertex 

2 / + 1 = 2  - 1 
cover of G leads to a local ratio of at most I + 1 l + 1" 

Nemhauser and Trotter describe an algorithm for computing an inde- 
pendent set for node weighted graphs, We will shortly reformulate their algo- 
rithm into an algorithm for computing a vertex cover for unweighted graphs. 

Input: Graph G--(V, E); 

i. compute the bipartite graph H from G by setting 

V(H):--VuV, where P'.={~IveV} and E(H):={{u,~}[{u,v}eE}; 

2. determine a minimum vertex cover M_c V(H) of H; 
3. set V~. .={v~V[veMA~M},  

V2 := {v~VIv~M A ~eM}, and 
V3:= {v~Vleither w M  or ~r 

Output: v1, v2, vs; 

Theorem 2. [15]. The Nemhauser-Trotter algorithm computes within time 
O( IVY-lED a partition of V into Vx, V2, V3 such that 

a) V2 is a minimum vertex cover for the graph induced by V1 u V2, 
b) there are no edges {u,v} with ueV1 and veVz, and 
c) 2(G')>�89 where G' is the graph induced by Vs. 

Computing a minimum vertex cover for a bipartite graph mainly relies on 
computing a maximum matching, see [12]. This can be done within time 

o ( V ~ .  IEI), see e.g. [6]. 
We can now formulate the following algorithm VC for computing a vertex 

cove r .  
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Input: Graph G = (V, E); 

1. determine the smallest a m b e r  kel~I such that IVl<-(2k+3)k.(2k+2); M : = 0 ;  
2. while there is an odd cycle C of length __<2k+l in G do 

be#n 
M..--M~JV(C); G:=G- V(C); 
delete all isolated vertices from G 

end; 
3. apply the Nemhauser-Trotter-algorithm to G yielding a partition Vx, 11"2, 1"3 

of V(G) as described in Theorem 2; 

M:=MoV2; G':=G-(VtuV2); 
4. apply the algorithm AI to G', which computes an independent set I c V(G') 

for G' as described in Lemma 1; 

M".=V(G') - I ;  M : = M u M ' ;  

Output: Vertex Cover M; 

Theorem 3. The algorithm VC works for every graph G=(V,E) within time 
�9 [M[ < 2  1 O(JVI-IE]) and computes a vertex cover Me_ V such that 2-'~-- -~+'1 '  where k 

is the smallest integer satisfying I gl < (2k + 3) ~. (2k + 2). 

Proof. We first consider the running time of the algorithm VC. The execution 

times of the statements 3. and 4. are bounded by O( I]/T'~. IEI) and O(IVI-lED by 
Theorem 2 and Lemma 1. The deletion of all odd cycles of length at most 2k 
+ 1 can be performed within time O(IVI-[El). For a breadth first search starting 
from an arbitrarily chosen node a finds in time O(IE[) a cycle C of odd length 
at most 2k+ 1 or it finds that there is no odd cycle C through a of that length 
(see [13]). This search has to be performed at most IVl times. 

It should be clear that the set M computed by the algorithm VC is a vertex 
cover of G. In order to prove the worst case ratio of the algorithm VC we use 
the following simple fact: If Ux, U2 is a partition of the vertex set of a graph G 
=(V,E) and Mi_cUi is a vertex cover of the graph G~ induced by U~ with 
Imil< ^ 

MG,I=p for i=1,2 such that M a contains all nodes from Ua, which are 

connected by an edge with some node from U2, then Mx uM2 is a vertex cover 
IM1uM2I 

of G and -</~. 

During every while loop of statement 2 an odd cycle C of length at most 
2 k + I is deleted from G and all nodes from C are put into the vertex cover M. 
I.e. we have chosen Me:= V(G~) as a vertex cover for the graph Gc induced by 

vertex set of C and we know that 2(G~)~[V(c'_ d[+1"~" . Thus the 
2 

IMcl IV(G,)I =2--  2 2 .~2 I 
,~(G,)=IVCG,)I+I IV(G,)I+I -<2 2 k + l + l  -k+---~" 

2 
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By Theorem 2 we know that V2 is a minimum vertex cover for the graph 

Gx induced by VIuV2. Then 11121 =1. Furthermore there are no edges be- 
2(61) 

tween vertices of I"1 and Vs. It remains to show that the vertex cover M' 
computed by statement 4 of VC for the graph G', induced by the vertex set Vs, 

M' �9 I I 1 
sattsfies ~ < 2  By the consideration above we have proved our 

- k + l "  
theorem. 

Set V',= Vs. Then M ' =  V ' - I ,  where I is the independent set of G' com- 
puted by the algorithm AI and III >q, where q is the smallest integer such that 

k k§ k+2  
I V'l -<-~-~ q-r- +-~-~ q = :~p(q) 

by Lemma 1, i.e. IM'l-<lV'l-q. We have assumed IV'l<lVl-<(2k+3)~(2k+2) 
and q~(4)=(2k+3)k(2k+2) holds for ~=(2k+3) k. Therefore q-<(2k+3) k holds 
and this implies: 

IM' l .< lV' l -q  = ~ _  2q 
~(6" )  = �89 - Iv'1 

-<2 2q = 2 _ k "  2(k+ 1) 
k k+t k+2  q~lk+kfr2 

k + l q  k + y ~ - ~ q  

2(k + 1) 1 
<2 k(2k+3)+k+2--2--k+--T [] 

We want to discuss the border lines of this algorithmic method. The proof 
of the last theorem shows that we can guarantee a worst case ratio of d < 2 

1 
-k+-'-'l for all graphs G=(V,E) with IVl<__n(k), where n(k) fulfills the condition 

that every graph without odd cycles of length 2k+ 1 or less has an independent 
IVl 

set of cardinality at least ~ .  Our estimation n(k) = (2 k + 3)k(2 k + 2) is based 

on the bound for rk in Theorem 1. It is very unlikely that our bounds are 
optimal. We can compare our results with the optimal ones only for the case k 
= 1. Our function rl (q) is equal to the well studied Ramsey-function R(3, q) and 

, I  2 
it is known that R(3,q)<-C.l-~ a holds, [1]. Moreover our estimation of n(1) 

yields that every triangle-free graph with at most 20 nodes always has an 
independent set containing one quarter of its nodes, whereas we know by 
results shown in [81 that 32 is the correct number with this property. For the 
case k=2  we got in [14] a result which is a little bit better than the one 
presented in this paper. 

Acknowledgement. We want to thank R. Schulz who brought t o  o u r  attention some results from 
graph theory [7, 11] and helped in simplifying the proof of Theorem L 
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