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Abstract

We study the savings afforded by repeated use in two zero-error communication problems. We
show that for some random sources, communicating one instance requires arbitrarily-many bits,
but communicating multiple instances requires roughly one bit per instance. We also exhibit
sources where the number of bits required for a single instance is comparable to the source’s size,
but two instances require only a logarithmic number of additional bits. We relate this problem
to that of communicating information over a channel. Known results imply that some channels
can communicate exponentially more bits in two uses than they can in one use.

1 Introduction

Starting with graph definitions below, this section introduces the two coding problems, describes
the results obtained, and relates them to known ones. The proofs are given in Sections 2 and 3.
Section 4 outlines possible extensions.

A graph G consists of a set V of vertices and a collection E of edges, unordered pairs of distinct
vertices. If {x, x′} ∈ E, we say that x and x′ are connected in G. When E needs not be mentioned
explicitly, we write {x, x′} ∈ G. An independent set in G is a collection of its vertices, no two
connected. G’s independence number, α(G), is the size of its largest independent set. A coloring
of G is an assignment of colors to its vertices such that connected vertices are assigned different
colors. G’s chromatic number, χ(G), is the minimum number of colors in any of its colorings. The
n-th AND (or normal) power of G is the graph G∧· n whose vertex set is V n and where distinct
vertices (x1, . . . ,xn) and (x′1, . . . ,x

′
n) are connected if {xi, x′i} ∈ G for all i ∈ {1, . . . ,n} such that

xi 6= x′i.

1.1 Channel coding

A channel consists of a finite input set X , a (possibly infinite) output set Y, and a nonempty fan-out
set Sx ⊆ Y for every x ∈ X . In each channel use, a sender transmits an input x ∈ X and a receiver
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receives an arbitrary output in Sx. Following Shannon [19], we study the amount of information a
channel can communicate without error.

Associated with a channel C is a characteristic graph G. Its vertex set is X and two (distinct)
vertices are connected if their fan-out sets intersect, namely, both can result in the same output.
Note that every graph (V,E) is the characteristic graph of some channel: its input set is V , its
output set is E, and Sv consists of all edges containing v.

The largest number of inputs C can communicate without error in a single use is α(G), the
independence number of its characteristic graph. Intuitively, the sender and the receiver agree in
advance on an independent set I. The sender transmits only inputs in I. Every received output
belongs to the fan-out set of exactly one input in I, hence the receiver can correctly determine the
transmitted input. Conversely, it is easy to see that a set containing two connected vertices cannot
be communicated without error. The largest number of bits C can communicate without error in a
single use is therefore

γ(1) def= logα(G).

Note that this definition allows for a non-integral number of bits.

Example 1(a) In a completely-noisy channel every two fan-out sets intersect. G is the complete
graph over X where every two vertices are connected, α(G) = 1, and γ(1) = 0 indicating that in a
single use no information can be communicated without error.

In a noiseless channel no two fan-out sets intersect. G is the empty graph over X where no two
vertices are connected, α(G) = |X |, and γ(1) = log |X |.

In the Pentagon channel X = Y = Z5
def= {0, . . . ,4} and Si = {i, i+ 1 (mod 5)} for all i ∈ Z5. G

is the Pentagon graph whose vertex set is Z5 and where vertex i is connected to vertices i− 1 and
i+ 1 (mod 5). Clearly, {0, 2} is a largest-size independent set, hence α(G) = 2 and γ(1) = 1. 2

When the channel C is used n ∈ N2 times1, the sender transmits a sequence x1, . . . ,xn of inputs
and the receiver receives a sequence y1, . . . ,yn of outputs where each yi ∈ Sxi . Conceptually, n uses
of C can be viewed as a single use of a larger channel C(n). Its input set is X n, its output set is Yn,
and the fan-out set of x = (x1, . . . ,xn) ∈ X n is the Cartesian product Sx

def= Sx1 × . . .× Sxn .
Let G(n) denote the characteristic graph of C(n). Its vertex set is X n, and if x = (x1, . . . ,xn) and

x′
def= (x′1, . . . ,x

′
n) are distinct vertices then {x, x′} ∈ G(n) iff Sx and Sx′ intersect iff Sxi intersects

Sx′i for all i ∈ {1, . . . ,n} iff {xi, x′i} ∈ G for all i ∈ {1, . . . ,n} such that xi 6= x′i iff {x, x′} ∈ G∧· n, the
n-th AND power of G. Therefore,

G(n) = G∧· n

It follows that the largest number of bits C can communicate without error in n uses is

γ(n) def= logα(G∧· n).

If a set I is independent in G then I × I is independent in G∧· 2. Therefore, α(G∧· 2) ≥ (α(G))2

for every graph G and γ(2) ≥ 2γ(1) for every channel. Shannon showed that for some channels two
uses can result in further gains.

1Nk for a nonnegative integer k is the set of integers ≥ k.
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Example 1(b) For a completely-noisy channel we saw that G is the complete graph over X . Hence
G∧· n is the complete graph on X n, α(G∧· n) = 1, and γ(n) = 0 for all n ∈ N1.

For the noiseless channel we saw that G is the empty graph over X . Hence G∧· n is the empty
graph over X n, α(G∧· n) = |X |n, and γ(n) = n log |X |.

The Pentagon channel is more revealing. We saw that G is the Pentagon graph, whose in-
dependence number is 2. Shannon showed that {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)} is a largest-size
independent set in G∧· t, hence α(G∧· 2) = 5, implying that γ(2) > 2γ(1). Lovász [14] showed that
α(G∧· n) = 5n/2 for every even n (see also Haemers [10]). 2

Consider first the largest possible increase from α(G) to α(G∧· 2) and from γ(1) to γ(2). For
l ∈ N0 define

ρ2(l) def= max{α(G∧· 2) : α(G) ≤ l}

where ρ2(0) = 0. The subscript 2 refers to the two channel uses. Simple extensions of the Pentagon
graph show that for every even l, ρ2(l) ≥ 5

4 l
2. Hence, for arbitrarily large values of γ(1) there are

channels with γ(2) ≥ 2γ(1) + log 5
4 . However, more can be gained.

Kr is the complete graph over {1, . . . ,r}. A two-coloration of Kr is an assignment of one of two
given colors to every edge (there are no further restrictions on the color assignments). A set S of
vertices of Kr is monochromatic if all edges connecting vertices in S are assigned the same color.
The Ramsey number2 r2(l) of l ∈ N0 is the largest integer r for which there is a two-coloration of
Kr where all monochromatic sets have size ≤ l. For example, r2(0) = 0, r2(1) = 1, r2(2) = 5, and
r2(3) = 17. For higher values of α, only bounds are known; essentially:

2
1
2
l ≤ r2(l) < 22l. (1)

For these and many other results concerning Ramsey numbers, see Graham, Rothschild, and
Spencer [9]. In Subsection 2.1 we recount results of Erdős, McEliece, and Taylor [6] proving a gen-
eral correspondence between Ramsey numbers and independence numbers of AND graph powers3,
showing in particular that for every l ∈ N0,

ρ2(l) = r2(l).

It follows that some channels can convey exponentially more bits in two uses than they can in one:
for arbitrarily-large values of γ(1), there is a channel such that

γ(2) ≥ 2γ
(1)−1, (2)

and that this discrepancy is almost the highest possible: for every channel,

γ(2) < 2γ
(1)+1. (3)

2The Ramsey number of α ∈ N1 is often defined to be r2(l − 1) + 1, the smallest integer r such that every

two-coloration of Kr has a monochromatic set of size l.
3We proved these results independently and found out about [6] only after the paper was submitted. We kept the

results partly because they complement the results of Section 3 and partly because the possible extensions described

in Section 4 apply to them as well.
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For multiple uses, it is instructive to consider the per-use number of bits the channel can convey
without error. Shannon defined the (zero-error) n-use capacity of a channel C to be

C(n) =
γ(n)

n
=

logα(G∧· n)
n

.

By super-additivity, C(n) tends to a limit, C(∞), known as Shannon’s zero-error capacity of the
channel. It is the highest per-use number of bits the channel can convey without error.

Example 1(c) For a completely-noisy channel C(n) = 0 for all n ∈ {1, . . . ,∞}. For a noiseless
channel C(n) = log |X | for all n ∈ {1, . . . ,∞}. For the pentagon channel C(1) = 1 and, using
Lovász’s result, C(2) = C(4) = C(6) = . . . = C(∞) = log 5

2 ≈ 1.16. 2

Since C(∞) ≥ C(2), Inequality (2) shows that for some channels

C(∞) ≥ 2C
(1)−2.

It is natural to ask whether this discrepancy is the largest possible. In the extreme, one wonders
if there are channels that in one use convey only a constant number of bits, but in multiple uses
convey arbitrarily many bits per use. Namely, whether there is a constant c such that for every c′

there is a channel where
C(1) ≤ c but C(∞) ≥ c′.

We could not resolve this question. However, towards the end of Subsection 2.1 we show that it
generalizes an open problem proposed by P. Erdős. We note that the corresponding dual-source
coding question is resolved affirmatively in Subsection 3.1.

So far, we considered only the number of bits conveyed and ignored the channel size. A channel
where γ(1) ≈ log log |X | and γ(2) ≈ log |X | is more “interesting” than one where γ(1) ≈ log log log |X |
and γ(2) ≈ log log |X |, even though both display exponential increase in the number of transmissible
bits. To relate the number of bits communicated to the channel’s size, we define the (zero-error)
normalized n-use capacity of a channel C to be

C̃(n) =
C(n)

log |X |
=

logα(G∧· n)
n log |X |

.

For every n ∈ {1, . . . ,∞}, C̃(n) ranges from 0 for channels that can convey very little information
error free, to 1 for channels where almost all input sequences can be communicated error free,
thereby reflecting the channel’s “quality.”

Example 1(d) For a completely-noisy channel C̃(n) = 0 for all n ∈ {1, . . . ,∞}. For a noiseless
channel C̃(n) = 1 for all n ∈ {1, . . . ,∞}. For the pentagon channel C̃(1) = 1

log 5 ≈ .43 and
C̃(2) = C̃(4) = C̃(6) = . . . = C̃(∞) = 1

2 . 2

It is easy to see that α(G∧· 2) ≤ vα(G) for every v-vertex graph G. In Subsection 2.2 we use
probabilistic constructions of self-complementary Ramsey graphs to show that this bound can be
almost achieved even when α(G) is much smaller than v. For every v, multiple of 4, we exhibit a
v-vertex graph G such that

α(G) ≤ d2 log ve but α(G∧· 2) ≥ v.
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It follows that for every ε > 0 there is a channel such that

C̃(1) ≤ ε but C̃(∞) ≥ C̃(2) ≥ 1
2
.

For two uses, this is essentially the largest possible discrepancy: For every channel,

C̃(2) − C̃(1) ≤ 1
2
.

We do not know whether for every ε > 0 there is a channel such that C̃(1) ≤ ε but C̃(∞) ≥ 1− ε.
Namely, in one use almost no information can be transmitted, but in multiple use almost all input
sequences can be transmitted. In Section 4 we discuss an extension of our proofs that may lead to
such a result.

1.2 Dual-source coding

A dual source consists of a finite set X , a (possibly infinite) set Y, and a support set S ⊆ X ×Y. In
each dual-source instance, a sender PX is given an x ∈ X and a receiver PY is given a y ∈ Y such
that (x, y) ∈ S. Following Witsenhausen [21] and Ferguson and Bailey [8] we study the number
of bits that PX must transmit in the worst case in order for PY to learn x without error. (See
Orlitsky [17] for the case where PX and PY are allowed to interact.)

The fan-out of x ∈ X is the set Sx
def= {y : (x, y) ∈ S} of y’s that are jointly possible with x.

Associated with a dual source S is a characteristic graph G. Its vertex set is X , and two (distinct)
vertices x, x′ are connected if their fan-out sets intersect, namely, there is a y that is jointly possible
with both. Note that every graph (V,E) is the characteristic graph of some dual source: X = V ,
Y = E, and S = {(x, y) : x ∈ y}.

The smallest number of possible messages PX must transmit for a single instance of S is χ(G),
the chromatic number of S’s characteristic graph. Intuitively, PX and PY agree in advance on a
coloring of G. Given x, PX transmits its color. PY , having y, can determine x because there is
exactly one element of X with this color that is jointly possible with y. Conversely, it is easy to
see that if two connected vertices are assigned the same message, an error can result.

The smallest number of bits PX must transmit in the worst case for a single instance of S is

σ(1) def= logχ(G).

Note that this definition allows for a non-integral number of bits. The actual number of bits that
must be transmitted is dσ(1)e.

Example 2(a) In an uncorrelated dual source, every two fan-out sets intersect. G is the complete
graph over X , χ(G) = |X |, and σ(1) = log |X | indicating that x has to be specified completely for
the receiver to learn its value.

In a completely-correlated dual source no two fan-out sets intersect. The characteristic graph G
is the empty graph over X , χ(G) = 1, and σ(1) = 0 indicating that PY knows x and therefore no
bits need be transmitted.

5



The Pentagon dual source has X = Y = Z5 and S = {(x, y) : y = x or y = x + 1 (mod 5)}.
Figuratively, five countries are arranged around a circle. Occasionally, border disputes arise between
neighboring countries. PY knows two countries involved in a dispute and PX knows one of them, say
the one who wins the dispute. We are interested in the number of bits that PX must transmit in the
worst case for PY to know the winning country. G is the pentagon graph defined in Example 1(a).
Clearly, χ(G) = 3 and σ(1) = log 3, indicating that dlog 3e = 2 bits are needed for PY to learn the
winner. 2

In n ∈ N2 instances of the dual source S, PX knows x1, . . . ,xn while PY knows y1, . . . ,yn

such that each (xi, yi) ∈ S and wants to learn x1, . . . ,xn. Conceptually, these n instances can
be viewed as a single instance of a larger dual source S(n) whose support set is Sn ⊆ X n × Yn.
If x = (x1, . . . ,xn) ∈ X n, then Snx = {y : (x, y) ∈ Sn} = Sx1 × . . . × Sxn . Let G(n) denote the
characteristic graph of S(n). The argument used in the previous subsection for n channel uses
shows that

G(n) = G∧· n.

It follows that the number of bits that PX must transmit in the worst case to convey n instances
of S without error is

σ(n) def= logχ(G∧· n).

If G can be colored with χ colors, G∧· 2 can be colored with χ2 colors. Therefore, χ(G∧· 2) ≤
(χ(G))2 for every graph G, and σ(2) ≤ 2σ(1) for every dual source. Witsenhausen [21] showed that
for some dual sources, fewer bits suffice.

Example 2(b) For a completely-correlated source we saw that G is the complete graph over X .
Hence G∧· n is the complete graph on X n, χ(G∧· n) = |X |n, and σ(n) = n log |X | for all n ∈ N1.

For a completely-correlated dual source we saw that G is the empty graph over X . Hence G(n)

is the empty graph over X n, χ(G∧· n) = 1, and σ(n) = 0.
The Pentagon dual source is more interesting. We saw that G is the Pentagon graph, whose

chromatic number is 3. Using the corresponding results by Shannon and Lovász (Example 1(b)),
Witsenhausen showed that for every even n, χ(G∧· n) = 5n/2. In particular, χ(G) = 5, hence
σ(2) < 2σ(1). 2

Consider first the smallest possible increase from χ(G) to χ(G∧· 2) and from σ(1) to σ(2). Simple
extensions of the Pentagon graph shows that for every χ(G) divisible by 3, there is a graph with
χ(G∧· 2) ≤ 5

9(χ(G))2, hence for arbitrarily-large values of σ(1) there is a dual source where σ(2) ≤
2σ(1) − log 1.8. However, more bits can be saved.

Clearly, χ(G∧· 2) ≥ χ(G) for every graph G. Linial and Vazirani [12] showed that for arbitrarily-
large values of χ(G) there are graphs such that χ(G∧· 2) = O(χ(G)). In Subsection 3.2 we sig-
nificantly reduce the implied constant, showing that for arbitrarily-large values of χ(G) there are
graphs such that

χ(G∧· 2) ≤ d34 · χ(G)e.
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It follows that for arbitrarily-large values of σ(1) there are dual sources where two instances require
only few more bits than one instance:

σ(2) ≤ σ(1) + 6.

For multiple uses, it is instructive to consider the per-instance number of bits required to convey
the x’s without error. Witsenhausen defined the (zero-error) n-instance rate of a dual source S to
be

R(n) =
σ(n)

n
=

logχ(G∧· n)
n

.

By sub additivity, R(n) tends to R(∞), Witsenhausen’s zero-error rate of S. It is the lowest per-
instance number of bits that must be transmitted in the worst case to convey the x’s to PY .

Example 2(c) For an uncorrelated dual source R(n) = log |X | for all n ∈ {1, . . . ,∞}. For a
completely-correlated dual source R(n) = 0 for all n ∈ {1, . . . ,∞}. For the pentagon dual source
R(1) = log 3 ≈ 1.58 and R(2) = R(4) = R(6) = . . . = R(∞) = log 5

2 ≈ 1.16. 2

Also in Subsection 3.1, we show that for every ε, t > 0 there is a graph G such that for every n,

χ(G) ≥ εt but χ(G∧· n) ≤
⌈
(2 + ε)n+1nt ln 2

⌉
.

For large t and small ε, χ(G∧· n) grows significantly slower than (χ(G))n. It follows that for every
ε > 0 and arbitrarily-large σ(1) there are sources where

R(1) ≥ σ(1) but R(∞) ≤ 1 + ε.

Namely, one instance requires arbitrarily many bits, but multiple instances require about one bit
per instance. Subsection 3.2 shows another family of graphs for which slightly weaker results hold.
For interactive communication, where the communicators are allowed to communicate back and
forth, similar results were established by Feder, Kushilevitz, and Naor [7], and by Naor, Orlitsky,
and Shor [16].

The graphs used to derive the above results have χ(G) which is merely logarithmic in the graph’s
size and therefore the implied source has σ(1) which are only about log log |X |. The same holds
for the afore-mentioned interactive-communication results. Dual sources requiring a large number
of bits are of more interest. In fact, recent interest in the number of bits required for multiple
instances (see also Subsection 1.3) was partly motivated by Karchmer, Raz, and Wigderson [11]
who related certain open problems in computational complexity to the number of bits required to
communicate multiple instances of problems with high communication complexity.

In Subsection 3.3 we show that χ(G∧· 2) can be about χ(G) even when χ(G) is close to the the
graph’s size, and therefore that σ(2) can be about σ(1) even when σ(1) is close to log |X |. Using
probabilistic constructions of self-complementary Ramsey graphs that are also Cayley graphs we
show that for every prime power v ≡ 1 mod 4 there is a v-vertex graph G such that4

χ(G) ≥ v

(1 + o(1))16 log2 v
but χ(G∧· 2) ≤ v. (4)

4Throughout this paper the o(1) term diminishes to zero as the relevant parameters (here, v) tend to infinity.
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It follows that for arbitrarily-high values of χ(G) and v such that χ(G) ≥ v
(1+o(1))16 log2 v

there is a
graph G where:

χ(G∧· 2) ≤ (1 + o(1))16χ(G) log2 χ(G). (5)

Therefore, for arbitrarily-high values of σ(1) and |X | such that σ(1) ≥ log |X |−2 log log |X |−4−o(1),
there are dual sources where

σ(2) ≤ σ(1) + 2 log σ(1) + 4 + o(1).

To relate the number of bits transmitted to the source’s size and to account for the number of
instances, we define the (zero-error) normalized n-instance rate of a dual source S to be

R̃(n) =
R(n)

log |X |
=

logχ(G∧· n)
n log |X |

.

For every n ∈ {1, . . . ,∞}, R̃(n) ranges from 1 for dual sources where x and y are unrelated, to
0 for dual sources where y determines x, thereby reflecting the “difficulty” of conveying x to PY .

Example 2(d) For an uncorrelated dual source R̃(n) = 1 for all n ∈ {1, . . . ,∞}. For a completely-
correlated dual source R̃(n) = 0 for all n ∈ {1, . . . ,∞}. For the pentagon dual source R̃(1) = log 3

log 5 ≈
.683 and R̃(2) = R̃(4) = R̃(6) = . . . = R̃(∞) = .5. 2

Inequalities (4) imply that for every ε > 0 there is a dual source such that

R̃(1) ≥ 1− ε but R̃(∞) ≤ R̃(2) ≤ 1
2
.

For two instances, this difference is essentially the largest possible. Clearly, χ(G∧· 2) ≥ χ(G) for
every graph G. Hence, for all dual sources,

R̃(2) − R̃(1) ≤ 1
2
.

We do not know whether for every ε > 0 there is a dual source such that R̃(1) ≥ 1 − ε but
R̃(∞) ≤ ε. Namely, a single instance requires almost complete specification of X, while multiple
instances require very little information. In Section 4 we discuss an extension of our proofs that
may lead to such a result.

1.3 Relations to OR graph powers and to communication complexity

Besides the aforementioned applications, this work was motivated by two problems that, while
similar in appearance, yield very different results.

The n-th OR (or co-normal, or inclusive) power of a graph G with vertex set V is the graph
G∨· n whose vertex set is V n and where distinct vertices (x1, . . . ,xn) and (x′1, . . . ,x

′
n) are connected

if distinct xi and x′i are connected in G for some i ∈ {1, . . . ,n}. Clearly, χ(G∨· 2) ≤ (χ(G))2 for
every graph G. Linial and Vazirani [12] showed that for every v-vertex graph G,

χ(G∨· 2) ≥ χ(G)(χ(G)− 1)
log v

(6)
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and that graphs related to directed line graphs achieve this bound up to a constant factor. Con-
trasting (5) and (6) for graphs G with relatively high χ(G), we see that the chromatic number of
G’s OR square is always around (χ(G))2 while the chromatic number of G’s AND square may be
much closer to χ(G).

Another contrast relates to the communication setup. In dual-source coding we assume that
(x, y) is always in S. Karchmer, Raz, and Wigderson [11] considered a similar problem which for
identification purposes we call communication complexity (see also Yao [22]). (x, y) can attain any
value in X × Y. However, PY needs to learn x only if (x, y) ∈ S. When (x, y) 6∈ S, PY can be
wrong on the value of x. Let L(n) be the per-instance number of bits required in the worst case
(over all inputs in X × Y) for n independent instances of the problem.

For a single instance L(1) = R(1). Any protocol for a communication-complexity problem can
be used unaltered for the corresponding dual-source coding problem. Conversely, any protocol
for a dual-source problem can be easily modified to work for the corresponding communication-
complexity problem. Simply stop communicating after R(1) bits have been transmitted.5

For n instances L(n) can be interpreted in two ways:

1. PY needs to find x1, . . . ,xn iff (xi, yi) ∈ S for all i. Under this interpretation, L(n) = R(n).
Hence our results show that for some sets S, L(2) ≈ 1

2L
(1), namely two independent instances

require about the same transmission as one.

2. PY needs to learn xi for exactly those i’s where (xi, yi) ∈ S, and can be wrong about xi for
the other i’s. This interpretation may require more bits. Feder, Kushilevitz, and Naor [7]
showed that in that case, L(n) ≥ L(1)− log log |X | for all n. Namely, hardly any savings arises
from multiple instances.

To contrast the two interpretations consider two instances (x1, y1) and (x2, y2). If PY always needs
to learn the xi’s such that (xi, yi) ∈ S then roughly 2L(1) bits are needed. But if PY needs to learn
the xi’s such that (xi, yi) ∈ S only if both (x1, y1) and (x2, y2) are in S, then roughly L(1) bits may
suffice for both instances.

2 Channel coding

2.1 Ramsey numbers

Erdős, McEliece, and Taylor [6] related Ramsey numbers to independence numbers of AND graph
products. The results are more general than claimed in the introduction and require additional
definitions.

An edge coloration of a graph is an assignment of a color to each edge (no restrictions imposed
on the colors). An edge coloration using at most n colors is an n-coloration. A set of vertices is
i-monochromatic for color i in a coloration if all edges connecting vertices in the set are assigned

5This argument does not apply to the average number of bits.
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color i. The Ramsey number r(l1, . . . ,ln) of n ∈ N1 and l1, . . . ,ln ∈ N0 is the largest integer r
for which there is an n-coloration of the complete graph Kr using colors from {1, . . . ,n} where for
every color i all i-monochromatic sets have size ≤ li. In particular, r(l) = l for every l ∈ N0, and
r(l1, . . . ,ln) = 0 whenever some li = 0. Also, r(l, l) is simply r2(l) defined in the introduction. In
general, we abbreviate

rn(l) def= r(

n︷ ︸︸ ︷
l, . . . ,l).

The AND product of n graphs G1 = (V1, E1), . . . ,Gn = (Vn, En) is the graph G1 ∧· · · · ∧· Gn
whose vertex set is the Cartesian product V1× · · · × Vn and where distinct vertices (v1, . . . ,vn) and
(v′1, . . . ,v

′
n) are connected iff {vi, v′i} ∈ Ei for all i ∈ {1, . . . ,n} such that vi 6= v′i. Note that G∧· n is

the n-fold AND product of G with itself. Define:

ρ(l1, . . . ,ln) def= max{α(G1 ∧· · · · ∧· Gn) : α(Gi) ≤ li for all i ∈ {1, . . . ,n}}.

ρ(

n︷ ︸︸ ︷
l, . . . ,l) is not directly related to n-use capacities. Rather, we are interested in

ρn(l) def= max{α(G∧· n) : α(G) ≤ l}.

Theorem 1 below shows that ρ(l1, . . . ,ln) = r(l1, . . . ,ln). Theorem 2 shows that ρn(l) =
ρ(l, . . . ,l). Therefore, for every n ∈ N1 and l ∈ N0,

ρn(l) = rn(l).

The proofs are most succinct when instead of independent sets and AND products, we consider
cliques and OR products.

A clique in a graph is a set of vertices, every two connected. The clique number, ω(G), of a
graph G is the size of its largest clique. The complement of a graph G is the graph G which has
the same vertex set as G and where distinct vertices are connected iff they are not connected in G.
Clearly, ω(G) = α(G) for every graph G.

The OR product of n graphs G1 = (V1, E1), . . . ,Gn = (Vn, En) is the graph G1 ∨· · · · ∨· Gn
whose vertex set is the Cartesian product V1× · · · × Vn and where distinct vertices (v1, . . . ,vn) and
(v′1, . . . ,v

′
n) are connected iff {vi, v′i} ∈ Ei for some i ∈ {1, . . . ,n} such that vi 6= v′i. The n-fold OR

product of a graph G with itself is its n-th OR power, denoted G∨· n. It is easy to see that for every
G1, . . . ,Gn,

G1 ∨· · · · ∨· Gn = G1 ∧· · · · ∧· Gn.

It follows that ρ(l1, . . . ,ln) can be interpreted as:

ρ(l1, . . . ,ln) = max{ω(G1 ∨· · · · ∨· Gn) : ω(Gi) ≤ li for all 1 ≤ i ≤ n}. (7)

Theorem 1 ([6]) For every n ∈ N1 and l1, . . . ,ln ∈ N0,

ρ(l1, . . . ,ln) = r(l1, . . . ,ln).

10



Proof: ρ(l1, . . . ,ln) ≥ r(l1, . . . ,ln). Let r def= r(l1, . . . ,ln). By definition, there is a coloration of Kr

with colors from {1, . . . ,n} where for all i ∈ {1, . . . ,n}, all i-monochromatic sets have size ≤ li. Let
Gi be the graph defined over {1, . . . ,r} and where distinct vertices a and b are connected if the
edge {a, b} is colored i in the given coloration. Every clique of Gi is i-monochromatic in Kr, hence
ω(Gi) ≤ li. On the other hand, the set {(1, . . . ,1), . . . ,(r, . . . ,r)} is a clique in G1 ∨· · · · ∨· Gn.

r(l1, . . . ,ln) ≥ ρ(l1, . . . ,ln). Let ρ = ρ(l1, . . . ,ln). Then there are graphs G1, . . . ,Gn such that
ω(Gi) ≤ li and G1 ∨· · · · ∨· Gn contains a size-ρ clique S = {(x1

1, . . . ,x
1
n), . . . ,(xρ1, . . . ,x

ρ
n)}. Color Kρ

with colors from {1, . . . ,n} by assigning each edge {a, b} the first color i such that xai 6= xbi and
{xai , xbi} ∈ Gi. Since S is clique, every edge of Kρ is colored. Every i-monochromatic set has size
≤ li, because if M ⊆ {1, . . . ,r} is i-monochromatic then {xmi : m ∈M} is a clique in Gi. 2

When l1 = . . . = ln, the product can be taken over a single graph:

Theorem 2 ([6]) For every n ∈ N1 and l ∈ N0,

ρn(l) = ρ(

n︷ ︸︸ ︷
l, . . . ,l).

Proof: Let ρ = ρ(l, . . . ,l). As in (7), ρn(l) = max{ω(G∨· n) : ω(G) ≤ l}. It therefore suffices to
show a graph G such that ω(G) ≤ l and ω(G∨· n) ≥ ρ.

By definition, there are graphs G1, . . . ,Gn each with clique number ≤ l such that G1 ∨· · · · ∨· Gn
contains a size-ρ clique S = {(x1,1, . . . ,x1,n), . . . ,(xρ,1, . . . ,xρ,n)}. Let the graph G have the vertex-
set {1, . . . ,ρ} × {1, . . . ,n}. Vertex (a, i) is connected to all vertices (b, i) where {xa,i, xb,i} ∈ Gi; it
is not connected to any other (b, i) or any (b, j) for j 6= i. Clearly, ω(G) ≤ max{ω(Gi)} ≤ l. Yet,
it is easy to verify that the set {((a, 1), . . . ,(a, n)) : a ∈ {1, . . . ,ρ}} is a clique in G∨· n. 2

Note that any graph achieving ρn(l) must have at least (ρn(l))1/n vertices. The graphs constructed
in the proof have size nρn(l).

Theorems 1 and 2 imply that for every n ∈ N1 and l ∈ N0,

ρn(l) = ρ(l, . . . ,l) = r(l, . . . ,l) = rn(l).

In particular, ρ2(l) = r2(l), hence results on Ramsey numbers can be used to bound the largest
increase from γ(1) to γ(2).

(A special case of) the well known theorem of Ramsey [18] asserts that any v-vertex graph G

contains a logarithmic-size clique or independent set:

max{α(G), ω(G)} > 1
2

log v. (8)

Erdős [5] showed that up to a constant factor this bound is tight. For every v ≥ 2 there is a v-vertex
graph G containing neither a clique nor an independent set of size > 2 log v:

max{α(G), ω(G)} ≤ 2 log v. (9)

11



A graph whose independence and clique numbers are both polylogarithmic in the number of vertices
is called a Ramsey graph.

These results imply the bounds in Inequality (1): for every l ∈ N0,

2
1
2
l ≤ r2(l) < 22l.

Which in turn imply the bounds in (2) and (3).
We have therefore demonstrated channels whose infinite-use capacity is exponentially larger

than their single-use capacity: C(∞) ≥ 2C
(1)−2. We would like to know whether there are channels

where C(∞) is arbitrarily higher than C(1). In view of the correspondence between ρn(l) and rn(l),

max{C(n) : C(1) ≤ c} = max{ logα(G∧· n)
n

: α(G) ≤ 2c} =
log ρn(2c)

n
=

log rn(2c)
n

.

Therefore, there is an arbitrary gap between C(1) and C(∞) iff for some constant c′(= 2c) the
Ramsey number rn(c′) grows faster than any exponential in n:

rn(c′) ≥ 2ng(n) where lim sup
n→∞

g(n) =∞.

This generalizes an open problem proposed by Erdős (see, e.g., Graham, Rothschild, and Spencer [9],
page 146), asking whether rn(2) grows faster than any exponential in n.

2.2 Self-complementary Ramsey graphs

We are interested in large increases in the number of transmissible bits for channels conveying rela-
tively many bits. Later in this section, we prove the following discrepancy between the independence
number of a graph and its normal square. The ensuing corollary follows immediately.

Theorem 3 For every v ∈ 4N1 (= {4, 8, 12, . . .}) there is a v-vertex graph G such that

α(G) ≤ 2dlog ve and α(G∧· 2) ≥ v. 2

Corollary 1 For every ε > 0 there is a channel such that

C̃(1) ≤ ε and C̃(∞) ≥ C̃(2) ≥ 1
2
. 2

For two channel uses, this discrepancy is essentially the largest possible:

Lemma 1 For every channel and integer n,

C̃(n) − C̃(1) ≤ (1− 1
n

)(1− C̃(1)).

Proof: For every v-vertex graph G and integer n, α(G∧· n) ≤ vn−1 ·α(G). Hence C̃(n) ≤ (1− 1
n)+

1
n C̃

(1) and the lemma follows. 2
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Results in the previous subsection imply that for every ε > 0 there is a channel such that C̃(1) ≤ ε
and C̃(2) ≥ 1

2−ε. In that sense Theorem 3 represents only a mild improvement. However, the theo-
rem’s proof, given in the rest of the section, constructs more symmetric self-complementary Ramsey
graphs that can be generalized to yield results needed for dual-source coding (Subsection 3.3) where
the improvements yielded by this method are substantial.

A graph G is self complementary if it is isomorphic to its complement. Namely, if there is
a permutation π of its vertices such that for every pair x, x′ of distinct vertices, {x, x′} ∈ G iff
{π(x), π(x′)} 6∈ G.

Lemma 2 Every self-complementary graph G on v vertices has α(G∧· 2) ≥ v.
Proof: Let G = (V,E) be self complementary with π mapping G onto its complement. Then
the set {(x, π(x)) : x ∈ V } is independent in G∧· 2 because if x 6= x′ then {x, x′} ∈ G implies that
{π(x), π(x′)} 6∈ G. 2

To establish Theorem 3 it therefore suffices to prove:

Lemma 3 For every v ∈ 4N1 there is a self-complementary graph G on v vertices satisfying
α(G) < 2dlog ve.
Proof: Let v = 4a where a ∈ N1 and let Zv, the additive group modulo v, be the graph’s vertex-
set. All operations involving vertices are performed in Zv, where 4a = 0. Define an equivalence
relation on “potential edges:” {x, y} ∼ {x′, y′} if {x′, y′} = {x+ ia, y+ ia} for some i ∈ {0, 1, 2, 3}.
Let

E{x,y}
def= {{x, y}, {x+ a, y + a}, {x+ 2a, y + 2a}, {x+ 3a, y + 3a}}

denote the equivalence class of {x, y}. Note that if y = x + 2a then E{x,y} consists of only two
elements: {x, y} and {x+ a, y + a}.

Choose the edge-set E randomly. For each equivalence class E{x,y} such that y = x + 2a,
randomly and independently select precisely one of the two edges {x, y} and {x+ a, y+ a} to be in
E. For each equivalence class E{x,y} such that y 6∈ {x, x+ 2a}, randomly and independently select
precisely two of its four edges to be in E: either the two edges {x, y} and {x+ 2a, y + 2a}, or the
two edges {x+ a, y + a} and {x+ 3a, y + 3a}.

The resulting graph is clearly self-complementary under the permutation π(x) def= x + a. We
prove that with positive probability its independence number is less than t

def= 2dlog ve.
Let T be a fixed t-element subset of Zv and let {xi, yi} for i ∈ {1, . . . ,

(t
2

)
} be the pairs of distinct

T -elements in some (arbitrary) order. T is independent if none of these pairs is in E. We calculate
the probability of that event. If T contains some vertices of the form x, y, x+a, y+a it is certainly
not independent, hence we restrict our attention to sets T that do not contain such vertices. Let i
denote the number of pairs of vertices of the form x, x + 2a that belong to T . Then 0 ≤ i ≤ t/2,
and T contains t−2i additional vertices. It is not difficult to check that for each such T with i ≥ 2,
there are

(t
2

)
− 2

(i
2

)
pairs of vertices of T whose choices as edges in E are mutually independent.

For i ≤ 1, all the
(t
2

)
choices are independent. It follows that the expected number of independent
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sets of size t is at most (
v

t

)
2−(t2) +

t/2∑
i=2

(
v/2
i

)(
v

t− 2i

)
2−(t2)+i(i−1)

≤ vt

t!
2−(t2) +

t/2∑
i=2

1
2ii!(t− 2i)!

vt−i 2−(t2)+(t/2)(i−1)

=
2t/2

t!
(v/2t/2)t +

t/2∑
i=2

1
2ii!(t− 2i)!

(v/2t/2)t−i

≤ 2t/2

t!
+

t/2∑
i=2

1
2ii!(t− 2i)!

< 1.

Therefore, with positive probability there is no independent set of size t, as required. 2

Remarks:

1. The graphs constructed by the lemma have the same independence and clique numbers,
showing that the bound in Inequality (9) is achievable even by self-complementary Ramsey
graphs.

2. It can be shown that the random v-vertex graph G constructed in the proof has χ(G∧· 2) =
Θ(v2/ log2 v) almost surely (i.e., with probability that tends to one as v tends to infinity).
Therefore G cannot be used in the next section where we need self-complementary graphs
with large chromatic numbers which are close to those of their squares.

3 Dual-source coding

3.1 Kneser graphs

The Kneser graph K = K(u, t) consists of all
(u
t

)
t-element subsets of {1, . . . ,u}. Two vertices

are connected iff they are disjoint. Every vertex can be colored with one of its elements, hence
χ(K) ≤ u. But fewer colors suffice. Among two disjoint t-element subsets of {1, . . . ,u}, at least
one contains an element ≤ u− 2t+ 1. Therefore, the mapping which assigns to every S the smaller
of u − 2t + 2 and min(S) also colors K. Lovász [13] showed that the number of colors cannot be
reduced:

χ(K) = u− 2t+ 2.

Example 3(a) (Neighborhood games) u basketball players, numbered 1, . . . ,u, meet at a neigh-
borhood court. Two t-player teams (t ≤ bu/2c) soon form and play each other. PY knows the
two teams (namely, two disjoint sets {i1, . . . ,it} and {j1, . . . ,jt}) while PX knows the winning team
(say, {j1, . . . ,jt}) and would like to convey that information to PY .
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The vertices of the characteristic graph G are all t-element subsets of {1, . . . ,u}. Two vertices
are connected iff they are disjoint. G is therefore the Kneser graph K(u, t), and

σ(1) = log(u− 2t+ 2). 2

We show that AND and OR powers of Kneser graphs can be colored with relatively few colors.

Theorem 4

χ(K∧· n) ≤ χ(K∨· n) ≤
⌈(

u

t

)n
· n · ln

(
u

t

)⌉
.

Proof: The vertices of K∨· n are all
(u
t

)n team-sequences (S1, . . . ,Sn) where each Sj is a t-element
subset of {1, . . . ,u}. Distinct vertices (S1, . . . ,Sn) and (S′1, . . . ,S

′
n) are connected iff Sj and S′j are

disjoint for some j ∈ {1, . . . ,n}.
A player-sequence z = (z1, . . . ,zn) ∈ {1, . . . ,u}n represents a team-sequence S def= S1, . . . ,Sn,

written z ∈ S, if zj ∈ Sj for all j ∈ {1, . . . ,n}. Any assignment of a representing player-sequence
to each vertex colors K∨· n. We show that with positive probability, a randomly chosen set of

m =

⌈(
u

t

)n
· n · ln

(
u

t

)⌉

player-sequences z1, . . . ,zm represents every vertex, namely, for every team-sequence S there is an
i ∈ {1, . . . ,m} such that zi ∈ S.

Choose the n players in a player-sequence z = z1, . . . ,zn uniformly and independently from
{1, . . . ,u}. Consider any (fixed for now) team-sequence S = (S1, . . . ,Sn). For every j ∈ {1, . . . ,n},
Pr(zj ∈ Sj) = t

u . Hence, Pr(z ∈ S) = ( tu)n. Equivalently, Pr(z 6∈ S) = 1− ( tu)n. Let z1, . . . ,zm be
independent copies of z. Then, Pr(∀i ∈ {1, . . . ,n}, zi 6∈ S) =

(
1− ( tu)n

)m
, and, since there are

(u
t

)
different team sequences,

Pr(∃S such that ∀i ∈ {1, . . . ,n}, zi 6∈ S) ≤
(
u

t

)n(
1−

(
t

u

)n)m
<

(
u

t

)n
e−m( tu)n .

By the choice of m, this probability is < 1, hence every team-sequence contains a representative.
2

To obtain small differences between the chromatic number of a graph and its AND/OR squares,
let u = 3.25 · t. Then

χ(K) ≥ 1.25 · t while χ(K∨· 2) ≤ d42.4 · te.

Hence for arbitrarily large values of χ(K),

χ(K∨· 2) ≤ 34χ(K).

For asymptotically many instances,

lim
n→∞

(
χ(K∨· n)

)1/n
≤ u

t
.
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McEliece and Posner [15], and Berge and Simonowitz [4] showed that

lim
n→∞

(
χ(G∨· n)

)1/n
= χ∗(G),

the fractional chromatic number of a graph G. Letting u = (2 + ε)t, we see that there can be an
arbitrarily-high discrepancy between the standard and fractional chromatic numbers of a graph:
for every χ, ε > 0 there is a graph such that

χ(G) ≥ χ but χ∗(G) ≤ 2 + ε.

Namely, χ(G) is arbitrarily high, but χ(G∨· n) grows like (2 + ε)n.
Following are some implications of these results on independent instances of Example 3(a).

Example 3(b) In a happening neighborhood, n sports are played. Each sport engages u distinct
players, and a game involves two teams of t players each. On a certain day, n games take place,
one in each sport. PY knows the 2n playing teams while PX knows the n that won. How many bits
must PX transmit now?

Recall that σ(1) = log(u− 2t+ 2). Theorem 4 shows that

σ(n) ≤ dn log
u

t
+ log n+ log ln

(
u

t

)
e.

Setting u = 3.25t, we see that for arbitrarily high σ(1) there are sources with

σ(2) ≤ σ(1) + 5.1,

namely, at most six additional bits are needed for two sports over the number needed for one. For
many instances, let u = (2 + ε)t. Then

R(1) ≥ log (εt) but R(∞) ≤ log(2 + ε) ≤ 1 + ε.

For small, but fixed, ε and increasing t, a single instance requires arbitrarily many bits while
multiple instances require roughly one bit per instance. 2

We conclude this subsection with three observations on the optimality of the results.

1. We showed that χ∗(K) ≤ u
t . We now prove equality. By the Erdős-Ko-Rado Theorem,

α(K) =
(u−1
t−1

)
. Hence,

α(K∨· n) =

(
u− 1
t− 1

)n
,

and therefore,

χ(K∨· n) ≥
(
u

t

)n
,

implying that
χ∗(K) =

u

t
.
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In fact, the same limit holds for AND products as well. Lovász [14] showed that for every n,

α(K∧· n) =

(
u− 1
t− 1

)n
,

hence
χ(K∧· n) ≥

(
u

t

)n
.

Combined with Theorem 4, we obtain

lim
n→∞

(
χ(K∧· n)

)1/n =
u

t
.

2. For t ≥ 2, χ∗(K) is not achieved by any finite power n. If it were, we would have a partition
of
({1,...,u}

t

)n
into maximal independent sets in K∨· n. Each such set is a Cartesian product

S1 × . . . × Sn where every Si is a maximal independent set in K, hence consists of all t-
element subsets containing a representative element zi. Let S = S1 × , . . . , × Sn and S′ =
S′1 × , . . . , × S′n be two maximal independent sets and let z1, . . . ,zn and z′1, . . . ,z

′
n be the

representative sequences. For every i ∈ {1, . . . ,n}, let Ti be a t-element set containing zi and
z′i, then T1 × . . .× Tn ∈ S,S′ and therefore S and S′ intersect.

3. If χ(G) > 2 then

χ∗(G) ≥ 2
1− 1/|G|

> 2.

To see this, note that if G is a cycle of odd length ` then α(G) = `−1
2 . Therefore α(G∨· n) =(

`−1
2

)n
and

χ∗(G) ≥ 2
1− 1/`

(in fact, equality holds). A general G with χ(G) > 2 contains a cycle C of odd length ` ≤ |G|.
Therefore,

χ∗(G) ≥ χ∗(C) ≥ 2
1− 1/|G|

.

Similarly, Lovász showed that the Shannon capacity of an odd cycle of length ` is at most
` cos(π/`)/(1 + cos(π/`)) = l(0.5− Ω(1/`2)). It follows that if χ(G) > 2 then

lim
n→∞

(
χ(G∧· n)

)1/n ≥ 2 + Ω(1/|G|2).

3.2 Directed line graphs

Let H be a directed graph. The directed line graph of H is the graph G whose vertices are the edges
of H and where two vertices (a, b) and (c, d) are connected iff b = c or a = d. Linial and Vazirani [12]
showed that for directed line graphs, χ(G∧· 2) = O(χ(G)). We improve the implied constant and
extend the colorings to higher graph powers, showing directed line graphs with arbitrarily-high
chromatic numbers such that for all n ∈ N1,

χ(G∧· n) ≤ χ(G∨· n) ≤ d2 ln 2 · n4n · χ(G)e.
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We consider directed line graphs derived when H is a complete graph. As described following
example 4(b), the arguments can be easily extended to all directed line graphs.

Example 4(a) (Luggage) PY is a passenger who recently completed a flight from a to c with a
plane change at b, and PX is the airline’s employee who wants to write a letter informing PY which
of the two flight segments (a, b) or (b, c) his luggage got lost on. How short can PX ’s letter be?

We assume: the airline serves t airports; PX knows only the segment the luggage was lost on
(not the other segment); all segments connect two distinct airports; all connections are possible
(including those where a = c); communication is only from PX to PY ; both PX and PY know the
“official” protocol for communicating lost-luggage segments.

The vertices of the characteristic graph G are all t(t−1) ordered pairs (a, b) of distinct elements
in {1, . . . ,t}. Vertex (a, b) is connected to all vertices (b, c) and to all vertices (d, a). G is therefore
the directed line graph of the complete graph Kt. We repeat a known proof (see, e.g., Alon [2]),
showing that

χ(G) = m

where
m

def= min{µ : ( µ
dµ/2e) ≥ t} ≈ log t+ .5 log log t+ .5 log π + .5.

It follows that for all t ∈ N2, the number of bits PX must convey in the worst case is

log log t ≤ σ(1) ≤ log log t+ 1.

χ(G) ≤ m: A length-m binary sequence is balanced if it contains dm/2e ones. By choice of m
one can assign to each f ∈ {1, . . . ,t} a unique balanced sequence f1, . . . ,fm. Color vertex (a, b)
with the first coordinate j such that aj = 0 and bj = 1. The condition aj = 0, bj = 1 is mutually
exclusive of the condition bj = 0, cj = 1, and of the condition dj = 0, aj = 1 guaranteeing that
adjacent vertices are assigned different coordinates.

χ(G) ≥ m: let Aa be the set of colors assigned to the vertices (a, b) for b ∈ {1, . . . ,t} − {a}. If
the number of colors is smaller than m, then by Sperner’s Lemma [20] there are a and b such that
Aa ⊆ Ab. But then there is a c such that (a, b) is assigned the same color as (b, c). 2

The next example shows that multiple instances require few additional bits. Note that the
coloring described is valid also for OR graph powers.

Example 4(b) Consider n independent instances of the dual source in Example 4(a). PY takes n
connecting flights. All flight combinations are possible. Due to great misfortune, his luggage gets
lost on one segment of each flight. PX wants to inform PY all segments where his luggage was lost.
How long should the letter be?

The vertices of G∨· n are all (t(t− 1))n n-tuples ((a1, b1), . . . ,(an, bn)) of ordered pairs of distinct
elements in {1, . . . ,t}. Two distinct vertices ((a1, b1), . . . ,(an, bn)) and ((a′1, b

′
1), . . . ,(a′n, b

′
n)) are

connected if for some i, (ai, bi) and (a′i, b
′
i) are distinct and connected in G, namely ai = b′i or

bi = a′i

18



The coloring in Example 4(a) implies that χ(G∨· n) ≤ mn where m ≈ log t was defined therein.
But arguments similar to those used in Example 3(b) show that

χ(G∧· n) ≤ χ(G∨· n) ≤ d2n4n ln te. (10)

In particular, for n = 2,
χ(G∧· 2) ≤ d64 ln te

and
χ∗(G) = lim

n→∞

(
χ(G∨· n)

)1/n
≤ 4.

It follows that while arbitrarily many bits are needed for one flight, at most six additional bits are
needed for two flights, and asymptotically, at most two bits are needed per flight.

2

Examples 4(a) and 4(b) can be easily extended to directed line graphs G of arbitrary directed
graphs H. χ(G) ≥ logχ(H) because6 any proper coloring of G can be converted to a proper coloring
of H with subsets of the colors. Simply assign to each vertex the set of all colors of directed edges
that emanate from it. χ(G∨· n) ≤ d2n4n lnχ(H)e follows directly from the colorings described in
the examples. Instead of assigning sequences to the vertices of H, assign them to the colors in an
optimal coloring of H.

3.3 Self-complementary Cayley graphs that are also Ramsey graphs

We are interested in high-rate dual sources where the second instance requires only few additional
bits. We prove the following discrepancy between the chromatic number of a graph and its AND
square. The ensuing corollary follows immediately.

Theorem 5 For every prime power v ≡ 1 mod 4 there is a v-vertex graph G such that

χ(G) ≥ v

(1 + o(1))16 log2 v
and χ(G∧· 2) ≤ v. 2

Corollary 2 For every ε > 0 there is a dual source such that

R̃(1) ≥ 1− ε and R̃(∞) ≤ R̃(2) ≤ 1
2
. 2

For two instances, this discrepancy is essentially the largest possible:

Lemma 4 For every dual source and integer n,

R̃(1) − R̃(n) ≤
(

1− 1
n

)
R̃(1).

Proof: For every graph G and integer n, χ(G∧· n) ≥ χ(G). Hence R̃(n) ≥ R̃(1)

n and the lemma
follows. 2

6Colorings of H ignore the orientation of the edges.
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Note that while the theorem and its corollary apply only to one and two instances, the implied
decrease in the normalized rate is substantially higher than that described in the previous section.
There, both R̃(1) and R̃(2) tend to 0 as the source’s size grows.

The proof of Theorem 5, given in the rest of the section, is based on the existence of self-
complementary Cayley graphs with small independence numbers. It is similar to the method used
by Agarwal, Alon, Aronov, and Suri [1] but requires some additional ideas.

Let A be a finite Abelian group. A set K ⊆ A is symmetric if −K = K. The Cayley graph
over A with respect to a symmetric set K has A as its vertex set and distinct vertices a, b ∈ A are
connected iff a− b (hence also b− a) is in K. All operations involving vertices are performed in A.

Lemma 5 Every self-complementary Cayley graph G over A has χ(G∧· 2) ≤ |A|.
Proof: Let π be a bijection mapping G onto its complement. The mapping

c(x, y) def= x− π(y)

has range cardinality |A|. We show that it colors G∧· 2.
Suppose that c(x, y) = c(x′, y′). We prove that either (x, y) = (x′, y′) or {(x, y), (x′, y′)} 6∈ G∧· 2.

By the definition of c,
x− x′ = π(y)− π(y′). (11)

There are two possibilities. If x = x′ then π(y) = π(y′) and the vertices (x, y) and (x′, y′) coincide.
Otherwise, x 6= x′, implying that y 6= y′, and by (11), the definition of G, and self-complementarity,
{x, x′} ∈ G iff {π(y), π(y′)} ∈ G iff {y, y′} 6∈ G, showing that (x, y) and (x′, y′) are not connected
in G∧· 2. 2

To prove Theorem 5 it therefore suffices to show that for every prime power v ≡ 1 mod 4, there
is a self-complementary Cayley graph over Fv, the finite field of order v, with chromatic number
≥ v

(1+o(1))16 log2 v
. This follows once we prove the subsection’s main result:

Theorem 6 For every prime power v ≡ 1 mod 4 there is a self-complementary Cayley graph
over Fv with independence number ≤ (1 + o(1))16 log2 v. 2

Remark: It would be interesting to determine if the theorem can be strengthened to show that
there are self-complementary Cayley graphs of order v with independence number proportional to
log v.

The proof resembles that of Lemma 3, but is more involved. A crucial part of Lemma 3’s proof
relied on the construction of a random graph where each random choice determined at most four
edges. At most half the vertex pairs in any set of vertices were “positively correlated with previous
pairs” in the sense that if one was an edge, the other was more likely to be one too. For Cayley
graphs, every element of K (or lack thereof) determines |A| different edges. Therefore there are
many more correlations. We first prove a result whose proof is fashioned after that of Lemma 3,
then extend it to the result we need.
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A difference of a set T ⊆ A is an element a− b such that a, b ∈ T . We let T − T denote the set
{a− b : a, b ∈ T} of differences of T . Clearly, T −T contains at most |T |(|T |− 1) nonzero elements.
If T − T contains ≥ 1

2 |T |
2 distinct non-zero elements, it is said to have many-differences.

Lemma 6 For every prime power v ≡ 1 mod 4 there is a self-complementary Cayley graph over
Fv containing no d4 log ve-element independent set with many differences.
Proof: The (cyclic) multiplicative group F ∗v contains an element a of order 4. Let {1, a, a2, a3} =
{1, a,−1,−a} be the subgroup generated by a in F ∗v . We construct a random symmetric set K ⊆ F ∗v
as follows. For each coset x ·{1, a,−1,−a} = {x, xa,−x,−xa}, randomly and independently choose
either the two elements x and −x or the two elements xa and −xa to be elements of K, where
these two possible choices are equally likely. Let G be the (random) Cayley graph over Fv with
respect to K.

G is self complementary since the bijection π : Fv 7→ Fv defined by π(x) = ax is an isomorphism
between G and its complement. We show that with positive probability G contains no d4 log ve-
element independent set with many differences.

Fix a t-element independent set with many differences. If T −T contains nonzero elements t1, t2
with t1 = at2 then (exactly) one of them is in K and T is certainly not independent. Otherwise,
the probability that none of the ≥ 1

4 t
2 distinct pairs of non-zero elements x,−x in T − T belongs

to K is ≤ 2−
1
4
t2 .

It follows that the probability that there is a t-element independent set with many differences
is ≤

(v
t

)
2−

1
4
t2 . Since t def= d4 log ve, this probability is < 1. 2

To prove Theorem 6, we show that any large set in an Abelian group contains a large subset
with many-differences. Therefore, if a graph over an Abelian group contains a large independent
set, it contains a large independent set with many-differences. We first prove a simple lemma that
provides a slightly weaker estimate than the one needed to prove the theorem, and then improve it
to get the assertion of the theorem.

Lemma 7 Every s-element set in an Abelian group of odd order contains a b(2s)1/3c-element
subset whose non-zero differences are all distinct.
Proof: Let S be an s-element set in an Abelian group of odd order and let N0 3 t ≤ (2s)1/3 − 1.
We show that for every t-element subset T of S there exists x ∈ S \ T such that x − T is disjoint
from (T − T ) ∪ (T − x). The lemma follows by sequential construction.

For T ⊆ S with |T | = t, define T def= {a + b − c : a, b, c ∈ T} ∪ {(a + b)/2 : a, b ∈ T} where g/2
is the element x such that x + x = g (exists and is unique because the group is of odd order). If
x− T intersects (T − T ) ∪ (T − x) then x ∈ T . But,

|T | ≤ t+

(
t

2

)
+ t(t− 1) +

(
t

2

)
(t− 2) =

t(t2 + 1)
2

< s.

Hence there exists x ∈ S \ T . Clearly, x ∈ S \ T , and x− T is disjoint from (T − T )∪ (T − x). 2
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The estimate (2s)1/3 can be improved to Ω(s1/3(log s)1/3) using the methods of Alon, Lefmann,
and Rődl [3], but it is not known if it can be improved to Ω(s1/2). However, as long as t is around
√
s, S contains a t-element subset with a relatively large number of differences:

Lemma 8 Let S be an s-element set in an Abelian group of odd order. Then for every t ≤ s, S
contains a t-element subset T such that

|T − T | ≥ t(t− 1)
(

1− t− 2
s− 2

− (t− 2)(t− 3)
2(s− 3)

)
+ 1.

In particular, if t = c
√
s for some constant c, then S contains a t-element subset T such that

|T − T | ≥ t2
(

1− c2

2

)
(1 + o(1)),

where, again, the o(1) term diminishes to 0 as s (and t) tend to infinity.
Proof: For a set T , let n4(T ) denote the number of unordered pairs {(t1, t2), (t3, t4)} of ordered
pairs of elements of T so that all four elements ti are distinct and t1 − t2 = t3 − t4. Similarly, let
n3(T ) denote the number of ordered triples (t1, t2, t3) of elements of T so that all three elements ti
are distinct and t1 − t2 = t2 − t3.

There are |T |(|T | − 1) ordered pairs (t1, t2) of distinct elements of T , and each of them supplies
a nonzero element t1 − t2 of T − T . Moreover, it is not difficult to check that if the same group
element t1 − t2 is obtained r > 1 times as a difference of this form, then the contribution of pairs
containing (t1, t2) and of triples containing t1 and t2 to n4(T )+n3(T ) is at least r−1. It follows that
the number of distinct nonzero elements in T − T is at least η(T ) def= |T |(|T | − 1)− n3(T )− n4(T ).

Let T be a random t-element subset of S. Then η(T ) is a random variable with expectation
t(t− 1)− E(n3(T ))− E(n4(T )). By linearity of expectation,

E(n3(T )) = n3(S)
t(t− 1)(t− 2)
s(s− 1)(s− 2)

and
E(n4(T )) = n4(S)

t(t− 1)(t− 2)(t− 3)
s(s− 1)(s− 2)(s− 3)

.

However, n3(S) ≤ s(s − 1), since for any two distinct elements s1 and s2 of S there is at most
one ordered triple (s1, s2, w) that contributes to n3(S) (as the group is of odd order). Similarly,
for every three distinct elements s1, s2, s3 ∈ S, there is at most one unordered pair of the form
{(s1, s2), (s3, w)} that contributes to n4(S), and each such pair is counted twice in this manner,
implying that n4(S) ≤ s(s− 1)(s− 2)/2. Therefore, the expectation of η(T ) is at least

t(t− 1)− s(s− 1)
t(t− 1)(t− 2)
s(s− 1)(s− 2)

− s(s− 1)(s− 2)
2

t(t− 1)(t− 2)(t− 3)
s(s− 1)(s− 2)(s− 3)

= t(t− 1)
(

1− t− 2
s− 2

− (t− 2)(t− 3)
2(s− 3)

)
.

It follows that there is a choice of a subset T with η(T ) having at least the above value. Any such
T satisfies the conclusion of the lemma. 2
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We can now prove Theorem 6. By Lemma 8, every (1+o(1))t2-element set in an Abelian group
contains a t-element subset with many differences (the o(1) term is easily derived from that in the
lemma and diminishes to zero as t tends to infinity). By Lemma 6, there is a self-complementary
Cayley graph G over Fv having no d4 log ve-element independent sets with many differences. G

cannot contain any independent set of size (1 +o(1))16 log2 v. If it did, this set would by the above
contain a d4 log ve-element subset T with many differences. T , a subset of an independent set,
would be independent itself, contradicting the choice of G.

4 Possible improvements and codes correcting certain errors

We have proved that for every ε > 0 there is a channel such that C̃(∞) − C̃(1) ≥ 1
2 − ε and a dual

source such that R̃(1)− R̃(∞) ≥ 1
2 − ε. In an (unsuccessful) attempt to improve these discrepancies,

we consider error-correcting codes that can correct only certain kinds of errors.
Throughout this section, v is a prime power, F (= Fv) is the field of order v, K(= −K) is a

symmetric subset of F , G is the Cayley graph of (the additive group) F with respect to K, and
G∧· n is the nth AND power of G. Fn is the vector space of n-tuples of elements of F , each a
length-n word over F . A word over F is a K-word if at least one of its coordinates is not in K∪{0},
namely, it is nonzero and has a nonzero coordinate which is not in K.

Lemma 9 Let x, x′ ∈ Fn. If x− x′ is a K-word, then {x, x′} 6∈ G∧· n.
Proof: Let x def= (x1, . . . ,xn) and x′

def= (x′1, . . . ,x
′
n). Then, there is an i ∈ {1, . . . ,n} such that

0 6= (xi − x′i) 6∈ K. Hence {xi, x′i} 6∈ G, implying that {x, x′} 6∈ G∧· n. 2

A collection of length-n words over F is a length-n code over F and each of the words is a
codeword. The code is linear if it is a vector subspace of Fn. A linear code over F has size vk

for some integer k ≥ 0 called the code’s dimension. A linear code is a K-code if all its nonzero
codewords are K-words7.

Lemma 10 If there is a length-n linear K-code of dimension k then

α(G∧· n) ≥ vk.

Proof: We show that every length-n linear K-code is independent (as a set) in G∧· n. Take two
distinct codewords. Their difference is a nonzero codeword, hence a K-word. By Lemma 9, they
are not connected in G∧· n. 2

Using standard linear-algebra, we can strengthen the lemma. Every k-dimensional linear code
over F has an (n−k)×n parity-check matrix H such that x is a codeword iff H ·x = 0 (x is viewed
as a column vector).

7The definition can be generalized. The K-weight of a word is its number of coordinates that are not in K ∪ {0}.
The minimum K-weight of a linear code is the minimum weight of any nonzero codeword. A K-code is therefore a

code of minimum K-weight 1. Other minimum K-weights can be considered as well, but are not of use here. Note

also that if K is the empty set or {0}, the minimum K-weight of a code is its minimum distance.
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Lemma 11 If there is a length-n linear K-code of dimension k then

χ(G∧· n) ≤ vn−k.

Proof: Let H be an (n−k)×n parity-check matrix for the claimed code. The mapping x 7→ H ·x
has range of cardinality vn−k. We show that it colors G∧· n. If H · x = H · x′ then

H · (x− x′) = 0

and therefore x− x′ is a codeword. Lemma 9 says that if x 6= x′, then {x, x′} 6∈ G∧· n 2

Corollary 3 If there is a length-n linear K-code of dimension k then:

1. The channel whose characteristic graph is G has n-use normalized capacity:

C̃(n) ≥ k

n
.

2. The dual source whose characteristic graph is G has n-instance normalized rate:

R̃(n) ≤ 1− k

n
. 2

To establish C̃(n) − C̃(1) and R̃(1) − R̃(n) discrepancies of α − ε where 0 < α ≤ 1 and ε is
arbitrarily small, it therefore suffices to find a field F of large order v and a symmetric set K ⊆ F
such that:

(1) G’s independence number is poly-logarithmic in v.

(2) There is a length-n linear K-code of dimension ≥ αn.

Condition (1) implies that C̃(1) ≤ ε and that R̃(1) ≥ 1 − ε. Condition (2) and Corollary 3 imply
that C̃(n) ≥ α and R̃(n) ≤ 1− α.

Example 5 In Subsection 3.3 we proved that R̃(1) − R̃(n) ≥ 1
2 − ε. For an element a of order

4 in the multiplicative group of F , we (probabilistically) constructed a symmetric set K ⊆ F such
that:

(a) G’s independence number was ≤ (1 + o(1))16 log2 v.

(b) For all nonzero x, x ∈ K iff ax 6∈ K.

Condition (a) implies (1) above. Condition (b) appears slightly different from (2). We used it to
infer that G is self complementary, hence χ(G∧· 2) ≤ v and R̃(2) ≤ 1

2 . However, Condition (b) has
a simple K-code interpretation. Since 0 6= x ∈ K implies ax 6∈ K, the set {(x, ax) : x ∈ F} is a
linear K-code. It has length 2 and dimension 1, hence R̃(2) ≤ 1

2 . 2

We have not found a symmetric set K satisfying Conditions (1) and (2) for α > 1/2, and the
problem of deciding if such a set exists remains open.
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