A NOTE ON SPERNER’S LEMMA AND
ROBUST MACHINES

P. CRESCENZI AND R. SILVESTRI

Abstract. Sperner’s Lemma states that any admissible coloring of any
triangulation of the unit triangle has a 3-colored triangle. In this paper,
we first show that any algorithm to find this 3-colored triangle that
treats the coloring itself as an oracle must be in the worst case linear in
the size of the triangulation. Successively, we apply this lower bound to
solve three open questions on robust machines posed by Hartmanis and
Hemachandra.
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1. Introduction

It has been recently pointed out that in several well-known instances in math-
ematics the existence of a mathematical object is established by an ineffi-
cient constructive argument (see Megiddo & Papadimitriou 1991, Papadim-
itriou 1990). These include Brouwer’s Fixed Point Theorem, Sperner’s Lemma,
Chevalley’s Theorem, and Smith’s Theorem. For example, Brouwer’s Fixed
Point Theorem states that any continuous function f from the d-dimensional
simplex to itself has a fixed point (see Brouwer 1912). Computing such a fixed
point, however, is difficult: indeed, it was shown that any algorithm to find
an approximate fixed point accurate to p binary digits that treats f as an or-
acle must be in the worst case exponential in p (see Hirsh & Vavasis 1987,
Hirsh et al. 1989). Papadimitriou (1990) and Papadimitriou (1994) captured
this inefficient-existence-proof phenomenon by complexity classes containing
several important complete problems.

Sperner’s Lemma (see Sperner 1928, Shashkin 1991) states that any admis-
sible coloring of any triangulation of the unit triangle has a 3-colored triangle
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(see Figure 3.3). The proof of such a lemma is constructive, albeit by an al-
gorithm that takes O(n?) steps, where n denotes the size of the triangulation.
In this paper we show that any algorithm to find a 3-colored triangle in any
admissible coloring that treats the coloring itself as an oracle must be in the
worst case linear in n. Such a result is per se maybe not surprising: indeed,
the proof is based on techniques similar to those presented by Hirsh & Vavasis
(1987). More appealing, instead, is the fact the lower bound on the complexity
of Sperner’s Lemma can be usefully applied to study robust machines.

A robust property of a machine is a property that a machine has with every
oracle.! For example, if two machines Ny and N, span the entire ¥* for every
oracle (that is, (VA)[L(Ng) U L(N{') = £*]), we say that the two machines are
robustly ¥*-spanning. Robust machines have been deeply investigated in recent
years. For instance, Beigel (August 1988), Ko (1987) and Schéning (1985) used
robust machines for discriminating between the oracles that ‘help’ to solve a
problem and those that do not, while robustness is interpreted by Hemachandra
(1993) as a radical approach to fault-tolerant database access. Hartmanis &
Hemachandra (1990) ask what price a machine pays to have robust properties.
In particular, they prove the following three theorems:

1. Machines robustly X*-accepting accept for transparent reasons (a ma-
chine is robustly ¥*-accepting if for every oracle accepts all inputs).

THEOREM 1.1. Let N be a robustly ¥*-accepting oracle Turing machine.
Then, for all sparse oracles S, a function f computable in PNP®S exists
such that, for all x, f(x) prints an accepting computation path of N°(x).

2. Machines robustly X*-spanning have simple selector functions.

THEOREM 1.2. Let Ny and N; be two robustly ¥*-spanning oracle Tur-

ing machines. Then, for all sparse oracles S, a function f computable in
PNP®S exists such that, for all z, x € L(Nf(x)).

3. Machines robustly complementary and categorical accept easy languages
(two machines are robustly complementary if they accept complementary

'In this paper, all robust machines are assumed to be nondeterministic polynomial-time
oracle Turing machines.
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languages for every oracle, while a machine is robustly categorical if for
no oracle and no input it has more than one accepting path).

THEOREM 1.3. Let Ny and Ny be two robustly complementary and cat-

egorical oracle Turing machines. Then, for all sparse oracles S, L(Ny) €
P(UPUcoUP)@S )

Hartmanis & Hemachandra (1990) leave as an open problem the question
whether the above theorems can be proven with the sparseness condition re-
moved.

In this paper we solve this problem. In particular, by making use of the
lower bound on Sperner’s Lemma, we show that the answer is negative in the
case of Theorems 1.1 and 1.2, while, by making use of techniques similar to
those used by Hartmanis & Hemachandra (1990), we prove that the answer is
affirmative in the case of the third theorem.

A preliminary version of this paper was presented at Structure in Complexity
Theory, Eighth Annual IEEE Conference, 1993.

1.1. Notations. Throughout this paper, we will use standard notations in
complexity theory (see, for example, Balcdzar et al. 1988).

A query-algorithm is an algorithm which is based on queries about the bits
of its input. Such an algorithm starts with a bit-position iy (which depends on
the length n of the input) and asks for its value by. Based on n, iy, and by, it
computes a new bit-position 71, asks for its value by, and continues until it re-
turns an output. We permit a query-algorithm unlimited computational power
in terms of operating on the queries ¢; and their values b;. The limit on the
computational power of the algorithm comes from the amount of information
it has about the input, that is, the number of queries made before it halts. A
query-algorithm is said to be f(n)-bounded if, for every input of length n, it
halts after at most f(n) queries.

2. Robustly Y*-spanning machines

In this section we shall prove modulo the existence of suitable functions that
Theorem 1.2 cannot be proven with the sparseness condition removed.

Let ¥ = {0,1}. A total function f : ¥* — ¥ is said to have inefficient short
witnesses if two polynomial-time decidable predicates wy and w; and three
constants h, k, and ¢ exist such that:
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1. For any « of length n, if f(z) =1 then a I-witness for x exists, that is, a
k-tuple of bit-positions iy, ..., 4 exists such that wy(n, i, 2, ..., ik, ;)
is true.

2. For any z of length n, if f(x) = 0 then a 0-witness for x exists, that is, a
h-tuple of bit-positions ji, .. ., j, exists such that wo(n, j1, 2, .., Jn, T, )
is true.

3. For any c¢y/n-bounded query algorithm and for any n, a word z of length
n exists such that the algorithm on input x either outputs 1 and no 1-
witness for z exists or outputs 0 and no 0-witness for = exists. Note that
this condition intuitively justifies the term ‘inefficient’: indeed, it states
that many bits have to be known in order to find a witness.

(Actually, the above conditions are stronger than necessary in order to prove
the next theorem: we preferred to trade optimality for clarity.)

By assuming the existence of functions with inefficient short witnesses,
which will be proved in the next section, we are now in a position to prove

the main result of this section.

THEOREM 2.1. Two robustly ¥*-spanning machines Ny and N, and an oracle
E exist such that, for any (0,1)-function f computable in PNY®F 4 word x
exists such that:

)

v & L(Nf,)-

PRrROOF. Let f be a function with inefficient short witnesses and let wg, w,
and h, k, ¢ be the corresponding two polynomial-time decidable predicates and
the corresponding three constants, respectively. Note that, for any oracle A
and for any n > 0, the characteristic function of A N X" can be viewed as an
input of length 2" for f which will be denoted as 2.

The two machines Ny and N; are defined as follows:

1. On input x and for any oracle A, each computation path of Nj'(x)

guesses a k-tuple i1,...,i; of bit-positions of a|’i|7 queries the oracle
A about the values by,...,b; of these bit-positions and tests whether
wy(21%!,31, by, ... g, br) is true. If so, then it accepts, otherwise it rejects.

2. On input z and for any oracle A, each computation path of Ng'(z)

guesses a h-tuple 71,...,7, of bit-positions of aﬁ,‘, queries the oracle
A about the values by,...,b, of these bit-positions and tests whether
wo(21*!, 51, b1, ..., jn, by) is true. If so, then it accepts, otherwise it re-

jects.
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From the first two properties of f it follows that
(VAL(NG) U LIV = 7]

The oracle E will be derived by diagonalization. Let 77,75, ... be an enu-
meration of deterministic oracle Turing machines so that the running time of
T; is bounded by the polynomial p;(n) = n' + 4. The diagonalization process
consists in associating with each 7; in the enumeration an integer n; such that
either T)""#7(0") = 1 and ¢ has no l-witness or 7" #7(0™) = 0 and o
has no O0-witness. This, in turn, implies that no polynomial-time deterministic
Turing machine with oracle NP @ E exists which is able to select the right
machine between Ny and V.

The oracle E is constructed in stages. Let E(i) denote the finite set of
words included in F after the ith stage and let n; be an upper bound on the
length of the words of E(i). At the beginning we set E(0) = {) and ng = 0.
The set E(7) is then computed as follows:

Let n; = min{m : p; 1(n; 1) <m A p;(m) < ev/2m}. Let H(i) be a
set of words of length n; such that either T, ¢ (#(=DUH) (0m) =1
and o1 has no 1-witness or pNPEEEDUHE) (i) = 0 and o)

has no 0-witness. We then set E(i) equal to E(i — 1) U H(i).
Since p;(|0™]) < cv/27 | the number of queries made by the computation
TZ-NP@(E(FI)UH(’.)) (0"¢) is less than cy/2m. From the third property of f, it then
follows that a set H(7) always exists. O

Note that, by similar techniques, it is possible to prove the following stronger
version of the above theorem.

THEOREM 2.2. Two robustly Y*-spanning machines Ny and N; exist such
that, for any oracle H, an oracle E exists such that, for any (0,1)-function
f computable in (NP N coNP)?%E " a word x exists such that:

v & L(Nf,)-

Note also that from Theorem 2.1 it follows that Theorem 1.1 cannot be
proven with the sparseness condition removed. Moreover, in this case it is
possible to prove that sparseness is optimal, that is, for any superpolynomial
density, Theorem 1.1 fails for some oracle of that density. We leave as an open
problem whether sparseness is optimal also in the case of Theorem 1.2.



6 Crescenzi & Silvestri

qs

@ @ @
P1 D2 P3 Da yUs

Figure 3.1: Sperner’s triangle of size 5

3. The complexity of Sperner’s Lemma

In this section we prove that functions with inefficient short witnesses exist by
making use of the Sperner’s Lemma. Before going on, let us remark that the
difficulty in finding these functions is clearly due to the third condition in their
definition, that is, the inefficiency of the witnesses. Indeed, the main result of
this section (see Lemma 3.2) faces this problem.

The Sperner’s triangle of size n is a cycle of 3n—3 border vertices py, ..., pn,
42y - qn, and o, ... 1, 1 (see Figure 3.1).

The standard triangulation (of the Sperner’s triangle) of size n is obtained
by joining the following pairs of vertices (see Figure 3.2):

1. p; and g,_(;_1), for any 7 with 2 <7< n —1,
2. p; and 7, _(i_1), for any ¢ with 2 <7 <n —1, and
3. ¢ and r,_(i_y), for any 7 with 2 <7< n —1.

The crossings between the above straight-line segments are called crossing
vertices.

Let N denote the set of border and crossing vertices of the standard trian-
gulation of size n. A vertex coloring ¢ : N — {0,1,2} is said to be admissible
if:
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Figure 3.2: Standard triangulation of size 5

L. ¢(p1) =0, ¢(pn) =1, and ¢(q,) = 2, and

2. ¢(p;) # 2, for any ¢ with 2 <i1<n—1,

(1

(i)
3. ¢(q;) #0, for any i with 2 <i<n—1, and
4. ¢(r;) # 1, for any ¢ with 2 < i <n —1 (see Figure 3.3).
The Sperner’s Lemma allows to state the following result.

LEMMA 3.1. Any admissible coloring of the standard triangulation of size n
has a 3-colored triangle.

(A proof of this lemma is given, for instance, by Papadimitriou 1990.)

On the ground of this lemma, we can define a function f which on input a
direct encoding of a coloring of the standard triangulation of size n outputs 1
if and only if this coloring has a 3-colored triangle. We shall now prove that f
has inefficient short witnesses.

Clearly, f admits 1-witnesses (that is, a 3-colored triangle). Moreover,
Lemma 3.1 states that f also admits O-witnesses (that is, a single border vertex
which is colored in a non-admissible way). It remains to show that these
witnesses are inefficient. In the following, we denote by m, the length of a

direct encoding of a coloring of the standard triangulation of size n.

LEMMA 3.2. For any \/m.,/3-bounded query algorithm and for any n, a col-
oring of the standard triangulation of size n exists such that the algorithm on
input this coloring either outputs 1 and no 3-colored triangle exists or outputs
0 and the coloring is admissible.
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Figure 3.3: An admissible coloring of the standard triangulation of size 5

PROOF. The coloring requiring the stated number of queries will be derived
by an adversary argument similar to that used by Hirsh & Vavasis (1987). We
construct a sequence Py, P, ..., P, of partial paths starting from the border
vertex rp,/91—1 to fool the algorithm. Each P; is an extension of P;_; and is
a sequence of alternating right- and down-straight subpaths: it is constructed
from P;_; either by setting P’; = P, 1 or by the addition of one more subpath.
The P; will be chosen to force the algorithm to make a lot of queries.

Each P, stops at a vertex and tentatively begins a new subpath .S;: S; is the
path from the last vertex [; of P; either horizontal-rightward or down-right to a
border vertex b;. In both cases, we denote as R; the parallelogram determined
by l;, b;, and p, (see Figure 3.4).

At the beginning, I includes only vertex rp,»1_1 and Sy is the horizontal-
rightward path from 7, /21-1 to the ¢-border.

Let v; be the vertex whose color ¢; has been asked by the algorithm at the
1th query. We then distinguish the following cases:

1. v; is a border vertex. In this case we answer according to the following
rules (see Figure 3.3):

(a) c(p1) = c(r;) =0, for any 7 with [n/2] <i<n-—1,

(b) ¢(p;) = ¢(g;) = 1, for any ¢ with 2 < ¢ < n and for any j with

(c) c(gn) = e(r;) =2, for any 7 with 2 < i < [n/2] — 1.
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Pn

Figure 3.4: Partial paths and tentative extensions

Furthermore we let P11 be P; and S;;; be S;.

. v; 1s a crossing vertex not included in R;. In this case, if v; is above or
on P; then we answer ¢; = 2, otherwise we answer ¢; = 0. Furthermore
we let Piyq be P, and S;41 be S;.

. v; 1s a crossing vertex included in R; but neither on S; nor adjacent to a
vertex of S;. In this case, we answer ¢; = 1: v; becomes forbidden, that

is, no P; can pass through it for j > 7. Furthermore we let Py, be P
and Si—l—l be Si-

. v; is a crossing vertex either on .S; or adjacent to a vertex of S; and S; is
an horizontal-right path. Let I/ and I be the first two adjacent vertices
of S; (with I/ successive to I}) such that both the down-right paths from
I and I/ to the border do not contain either a forbidden vertex or »;. In
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this case, we let P41 be P, united with the path from [; to [/, and we
let S;y1 be the down-right path from ! to the border. Furthermore, if v;
is in R;y; then we answer ¢; = 1, otherwise we answer ¢; = 2 or ¢; = 0
depending on v; being on .S; or adjacent to a vertex of S;.

5. v; is a crossing vertex either on S; or adjacent to a vertex of S; and S; is
a down-right path. This case is treated similarly to the previous one.

Clearly, the construction of P; can run for a large number of queries before
either case 4 or case 5 fails: indeed, this cannot happen until the algorithm
has made at least n/2 queries. Thus the above construction shows that we can
keep going with hiding a 3-colored triangle to the algorithm for n/2 queries.
Observe that n/2 is at least |/, /3.

Moreover, the partial coloring determined by the first n/2 queries of the
algorithm can be always extended so that either it is admissible (thus containing
a 3-colored triangle) or it does not contain any 3-colored triangle (thus being
not admissible). O

4. One more result on robustness

The last theorem we present shows that, contrary to Theorems 1.1 and 1.2,
Theorem 1.3 can be proven with the sparseness condition removed.

THEOREM 4.1. Let Ny and Ny be two robustly complementary and categorical
oracle Turing machines. Then, for all oracles A, L(Ng') € P(UPUUP)&A,

PROOF.  Let H be the set of tuples ((F),x,i,b), where (F') denotes the
encoding of a finite set F', such that an accepting path of either NI'(x) or Nf'(x)
exists so that the ¢th bit of its encoding is b. Since Ny and N; are robustly
complementary and categorical, it follows that, for each x and F', one and only
one accepting path of either NI'(z) or N{'(x) exists. Thus, H € UP U coUP.
By using such a set H, the proof can then be carried out almost identically to
that of Theorem 2.1 by Hartmanis & Hemachandra (1990). O
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