SUPERLINEAR LOWER BOUNDS FOR
BOUNDED-WIDTH BRANCHING PROGRAMS

David A. Mix Barringtonf
COINS Department
University of Massachusetts
Ambherst, Massachusetts 01003
USA

Howard Straubing}
Department of Computer Science
Boston College
Chestnut Hill, Massachusetts 02167
USA

Abstract

We use algebraic techniques to obtain superlinear lower bounds on the size of bounded-
width branching programs to solve a number of problems. In particular, we show that
any bounded-width branching program computing a nonconstant threshold function has
length)(nloglogn), improving on the previous lower bounds known to apply to all such
threshold functions. We also show that any program over a finite solvable monoid comput-
ing products in a nonsolvable group has length Q(nloglogn). This result is a step toward
proving the conjecture that the circuit complexity class ACC? is properly contained in
NC!.

A preliminary version of this paper appeared in the Proceedings of the 1991 Structure in
Complexity Theory Symposium.

1. The Main Results

In this paper we describe a general algebraic technique for obtaining superlinear lower
bounds on the length of bounded-width branching programs to solve certain problems.
Our method is based on the interpretation, due to Barrington and Thérien [5] of these
programs as generalizations of ordinary finite automata.

We are thus able to apply the well-established connection between finite automata and
finite monoids to branching programs. More precisely, we start from the simple algebraic
fact that a homomorphism from a free monoid into a finite monoid N cannot simulate

T Research supported by NSF Grant CCR-8714714.
I Research supported by NSF Grant CCR-8902369.

1

iterated multiplication in another finite monoid M, unless M is a homomorphic image of
a submonoid of N. We find, through a sequence of Ramsey-theoretic arguments, that an
analogous result holds for branching programs. This is the source of all our lower bounds.

A branching program with n inputs is a directed acyclic graph in which there is a single
source node, each node is labelled by an element of {1,...,n}, each non-sink node has
exactly two exiting edges, labelled 0 and 1, and each sink node is designated as either an
accepting or a rejecting node. A computation of the program on input a; - - - an, € {0,1}*
begins at the source node. At each step the label i of the present node is examined, and
the program branches to one of the two successor nodes, depending on whether a; = 0 or
a; = 1. The computation continues in this manner until a sink node is reached. The input
is accepted or rejected depending on whether this sink node is an accepting or a rejecting
node. Thus the program accepts a subset of {0,1}". Usually we are interested in families
of branching programs, consisting of one program for each input length. Such a family
then recognizes a subset of {0,1}*.

Bounded-width branching programs were introduced in [6] and [8]. A bounded-width
branching program of width w consists of k levels, each with w nodes, except for the
first level which has a single node. Each directed edge goes from a node on one level to
a node on the next level. The size of the program is k. By a family of bounded-width
branching programs we mean such a family in which the width is a constant independent
of the length of the input. At the expense of increasing the size by a constant factor, we
may assume that the program is input oblivious, that is, that every node on a given level
has the same label.

Barrington [3] and Barrington and Thérien [5] gave the following algebraic interpretation
of such programs: Each level is an instruction to read the i* bit of the input string
(where ¢ is the label of the nodes on this level) and then emit one of two maps go, g1 :
{1,...,w} = {1,...,w}, depending on the value of the bit consulted. The maps emitted
at each level are composed, and the input is accepted if and only if the composite maps
1 to an accepting value in {1,...,w}. The set of maps from {1,...,w} into itself forms a
finite monoid (i.e., a set with an associative multiplication and an identity element) with
composition of maps as multiplication. This leads to the formulation of a new model: Let
A be a finite alphabet. A program over a finite monoid M with input alphabet A consists
of a sequence of instructions

(ilﬁfl)a-'-a(i'r,fr)

—where for each j,7; € {1,...,n}, and f; is a map from A into M—together with a subset
X of M. On input a; ---a, € A*, the program emits the value

fl(ail)"'fr(air) €M,

and accepts the input if and only if this value belongs to X. Barrington and Thérien estab-
lished that every bounded-width branching program of length » and width w is equivalent
to a program of length r over a submonoid of 7%, the monoid of all maps on a w-element set
with left-to-right composition as the multiplication. Conversely, every program of length
r over a finite monoid M is equivalent to a branching program of width |M| and length .

2

The value of this new model, and the reason for its introduction, was the discovery that
the algebraic structure of M is related to the kinds of circuits that can recognize the same
language that the program recognizes. Thus Barrington [3] showed that if M contains a
group that is not solvable, then every language in NC! is recognized by a polynomial-
length family of programs over M. Furthermore, Barrington and Thérien [5] showed that
a language is in the circuit complexity class AC? if and only if it is recognized by a
polynomial-length family of programs over a finite monoid that contains no nontrivial
groups, and is in the circuit complexity class ACC? if and only if it is recognized by
a polynomial-length family of programs over a finite monoid that contains only solvable
groups.*®

It is conjectured that ACC? is strictly contained in NC!. According to the above remarks
this conjecture would be proved by finding superpolynomial lower bounds on the length of
programs over monoids containing solvable groups that recognize some language in NC*.
One of the goals of our current research is to find such algebraic proofs of circuit lower
bounds.

This new model also gives us a highly structured, algebraic way of looking at branching
programs, which we use to much advantage in this paper. For example, our Theorem 1.3
below makes no explicit reference to finite monoids, although we use these ideas throughout
its proof.

Here are our main results:

1.1 Theorem. Let N be a finite monoid in which every group has order dividing ¢ > 0.
Let p > 0 be an integer not dividing g. Then any family of programs over N recognizing
the language

Ly={a1---a, €{0,1}*:) a;=0 (mod p)}
=1

has length (nloglogn).

1.2 Theorem. Let G be a finite group. Any family of programs over G recognizing the
language 1* C {0,1}* (i.e., computing the AN D of its input bits) has length Q(n loglogn).

1.3 Theorem.(a) Any family of width ¢ branching programs recognizing the language

{a;---an € {0,1}*:2@ >t}
=1

has length (nloglogn).
(b) Let g : N — N be a function such that

ACC" consists of those languages recognized by constant-depth polynomial-size families of
circuits containing unbounded fan-in AND, OR and M ODgq gates for some fixed ¢q. This
class is called ACC in earlier papers, but we prefer to use this notation to underscore the
analogy with the AC* hierarchy.

lim g(n) = lim n — g(n) = +oo.

n—0oo n—oo

Then for any family of bounded-width branching programs recognizing

Ly(gy = {a1--an € {0,1}":) a; > g(n)}
=1

there is a constant ¢ > 0 such that for infinitely many values of n, the n** program of the
family has length at least ¢nloglogn.

Let G be a finite group. We can view G as a finite alphabet, so that each string w in G*
also has a value 7(w) in G, obtained by multiplying together all the letters in the string.
The language Lg consists of all strings w € G* such that 7(w) = 1.

1.4 Theorem. Let N be a finite monoid in which every group is solvable, and let G be a
finite nonsolvable group. Then any family of programs over N recognizing Lg has length

Q(nloglogn).

Let us say something about the significance of these results and where they stand in
relation to similar work. Barrington and Thérien [5] have shown that a program over a
finite monoid M in which every group is solvable can be simulated by an ACC? circuit
in which every modular gate has a period dividing the order of a group in M, with the
size of the circuit bounded by a polynomial in the length of the program. Smolensky [14]
showed that ACC? circuits in which every modular gate has period ¢*, for ¢ prime, require
exponential size to recognize L, unless p is a power of ¢. Since every group of prime power
order is solvable, it follows that Theorem 1.1 holds with an ezponential lower bound on
program size when ¢ is a prime power. On the other hand, if the assumption that q is a
prime power is dropped, then there may be a polynomial upper bound, as it follows from
results of Barrington [3] that one can add bits modulo 7 with a polynomial-length program
over a nonsolvable group of order 60. Our theorem appears to be the only nontrivial lower
bound result known to apply in all cases.

Theorem 1.2 is due to Cai and Lipton [7]; we include it here because it is a direct corollary
of our main theorem. In fact, the present work owes a lot to the methods that Cai and
Lipton used to establish this theorem. It is conjectured (see [4]) that if G is solvable, then
exponential-length programs are required to compute the AN D function, whereas there is
a polynomial upper bound for nonsolvable groups.

Theorem 1.3(a) improves on a
(nloglogn/(logloglogn))

lower bound due to Pudlak [13]. Alon and Maass [1] establish Q(nlogn) lower bounds
on program length for Ly, where g(n) is of the form n®, and Babai, et. al., [2] find
(nlogn) lower bounds for asymptotically almost all threshold functions. Our result in
1.3(b), while smaller than the bounds established in [1] and [2], is the best one known to
apply to all nonconstant threshold functions (that is, threshold g(n), where neither g(n)
nor n — g(n) is bounded above by a constant).

4

Theorem 1.4 is an important step in our program to prove that ACC? is strictly contained
in NC!. Of course, what we want is a superpolynomial lower bound, rather than the
superlinear bound given here. We can interpret this theorem in such a manner as to give
a new circuit lower bound. Let us define an ACC? formula to be an ACC” circuit that is
a tree, rather than an arbitrary directed acyclic graph. The size of such a formula is the
number of nodes. We will show:

1.5 Theorem. Any family of ACC® formulas recognizing Lg, where G is a nonsolvable
finite group, has size }(nloglogn).

We think that the real significance of this work lies in the very general character of the
arguments. Indeed, all the theorems stated above are direct corollaries of a single alge-
braic result which states, in essence, that programs of linear or nearly linear length over
finite monoids behave a great deal like homomorphisms into finite monoids. The precise
statement of this result (Theorem 2.2) will be given in Section 2, after some algebraic pre-
liminaries. Sections 3 and 4 are devoted to the proof of the theorem: In Section 3 we show
how to treat programs that make a constant number of scans, either left-to-right or right-
to-left, over their input. In Section 4 we reduce arbitrary linear size (or slightly superlinear
size) programs to this case. The proof in Section 3 requires a Ramsey-theoretic argument
that goes back to Erdos and Szekeres; Section 4 uses a different Ramsey-theoretic result,
due to Cai and Lipton [7]. Theorems 1.1-1.5 will be established in Section 5; the reader
who is only interested in how these theorems follow from our general algebraic result can
skip Sections 3 and 4.

2. Algebraic Preliminaries and the
Fundamental Theorem

We first give a brief rundown of some basic properties of finite monoids. For more detailed
information on the matters discussed here, see [9] (especially Chapter III), [11] or [12].
If M is a finite monoid, then for each m € M the set {m” : r > 0} is finite, and thus
m!t? = m® for some ¢t > 0,q > 0. If we let 7' be the maximum of these ¢ and @ the least
common multiple of the g over all m € M, then mT+? = m7 for all m € M. An element
e of a monoid is said to be idempotent if €2 = e. With T and @ as above, choose R such
that T + R is divisible by Q. Then m”*® is idempotent; in particular every element of M
has an idempotent power.

A homomorphism ¢ : My — M, of finite monoids is a map satisfying ¢(mm') = ¢(m)p(m')
for all m,m' € M;. If A is a finite alphabet, then A* forms a (infinite) monoid under
concatenation of strings, and every map ¢ : A — M extends to a unique homomorphism
from A* into M. (That is, A* is the free monoid on A.) We say that a monoid M;
divides a monoid M,, and write M; < M, if there is a submonoid N of M, and a
homomorphism ¢ from N onto M;. There is an important characterization of division in
terms of homomorphisms from free monoids, which we shall frequently use: Let ¢ : A* —
N,¥ : A* - M, be homomorphisms, with 1 surjective. If M does not divide N, then
there exist u,v € A* such that ¥(u) # ¥(v) and ¢(u) = ¢(v) (otherwise there would be
a homomorphism 7 : ¢(4*) - M such that ¥y = o ¢, implying M < N). If a group G
divides a finite monoid M, then G is the homomorphic image of a group in M.

5

The direct product M; x M, of monoids is the cartesian product together with compo-
nentwise multiplication, which makes M; x Ms a monoid. The reversal of a monoid M,
denoted M%, is the monoid with the same underlying set as M, and with multiplication *
given by

sxt=1-s,

where the right-hand side denotes the product in M. If N is a finite monoid, then the
reversal closure of N, denoted rcl(N), is the family of all finite monoids M such that M
divides a direct product

(Nx NEY}¥ =NxNEx...x NxNE

-~

k times

for some k& > 0.

2.1 Lemma. Let A be a finite alphabet, M and N finite monoids, and ¢ : A* - M a
surjective homomorphism. Suppose M ¢ rcl(N). Then there exist m; # my € M such

that for every homomorphism ¢ : A* — K, where K € rcl(N), there exist u,v € A* with
¥(u) = m1,¥(v) = m2, and ¢(u) = ¢(v).

Proof. Observe that there are only finitely many homomorphisms

$1,...,¢5 : A* > N x NE,
Let

$: A" - (N x NE)*

be the homomorphism whose i** component is ¢;. It is easy to show that any homomor-
phism ¢ : A* —» K € rcl(N) factors through ®, and the result follows immediately from
the previous remarks concerning division. [

When the conclusions of Lemma 2.1 hold, we say that mi,ms € M are N-separated by /.
We are now ready to state the main theorem.

2.2 Theorem. Let M and N be finite monoids, where M ¢ rcl(N). Let A be a finite
alphabet, and ¢ : A* — M a surjective homomorphism such that 1(a) = 1 for some a € A.

Consider a family of programs over N such that the length of the n* program is n - k(n),
where

IEINDHAIEe]

Iim n
n—oo

Let my,my € M be N-separated by 1. Then for all sufficiently large n there exist w,w' €
A™ such that ¥(w) = mq, ¥(w') = my, and such that the n** program of the family gives
the same value on w and w'.

The proof of this theorem will be given in Sections 3 and 4.

6

3. Sweeping Programs

Let £ > 0. A k-sweeping program over a finite monoid N is a program that factors into
k segments, where in each segment all n letters of the input are read, either from left to
right or from right to left. More precisely, let the sequence of instructions of the program

be

(ij7fj)aj = 1,...,’)",

as in Section 1. Then r = kn, and for all 0 < j < k, either ¢j,1p, =p,forall p=1,...,n,
orijnyp=n—p+1,forall p=1,...,n.

In this section we shall establish a version of Theorem 2.2 for sweeping programs. Before
proceeding to the proof, let us show how the argument works by treating a special case.
How do we prove that a linear-size family of programs over a finite monoid M that contains
no nontrivial groups cannot recognize L;? If the program family is a homomorphism
¢ : A* — M we proceed as follows: Since M contains no nontrivial groups there is an
integer ¢ > 0 such that for all m € M, m* = m**!. Thus ¢(1°710%) = #(10**?), so the
homomorphism cannot distinguish between strings in L, and strings outside L. Now let
us consider a family of programs that make a single sweep of the input from left to right.
The foregoing argument does not generalize directly to this case, because the value emitted
by the program when reading a particular bit depends on the position of the bit as well
as the value of the bit. The way we accomplish the generalization is by considering very
long (length s) input strings. For 1 <4 < j < s we color the segment (z,7) by the pair
(m1,my) € M x M, where m; is the value emitted by the program upon reading 107—¢~2
in positions %,...,5 — 1, and my is the value emitted upon reading 0°~*~! in the same
positions. If N is very large then by Ramsey’s theorem there is a sequence 29 < - -+ < 22441
such that the segments (29,%1),. .., (22¢,%2¢4+1) all have the same color. We can now apply
the program to the strings

LU =+ - Ut1Vg42 " V2 +1Y

and

TUY = - UV ° 0 - V2¢41Y,

where

Gp—ip_1—2 ip—ip_1—1
u'r:].OT r—1 ,'U-,-ZOT r—1 ,

and z and y are arbitrary strings of length 2o — 1 and s — 25¢41 + 1, respectively. The two
strings have opposite parity, but the value emitted by the program on the first string is
mi my = mjm, !, which is the value emitted on the second string, thus the program
family cannot recognize parity.

This is the essence of our proof. Lemma 3.1 is the precise Ramsey-theoretic result we use.
(Ramsey’s theorem itself gives much smaller lower bounds.) Lemma 3.2 gives the above
argument about programs in a more general setting, so that it applies to programs making
several sweeps rather than a single sweep.

3.1 Lemma. Let r,n,k > 0, and consider a k-coloring of the set {(z,7):1 <i < j <mn}.
If n > r* then there is a sequence

1§1:0<’L.1 <"'<’L.-,-§’I’L
such that all (z;,7;41) have the same color.

Proof. Suppose that no such sequence exists. To each j € {1,...,n} we associate 7; €
{0,...,7 — 1}*, where the p'* component of 7; is the length g of the longest sequence

ig <i1 < - <ig

such that i, = j and all (4,3;+1) are colored p. If n > r¥ then there exist j; < jy such
that 7;, = 7,. Consider now the color p assigned to (j1,72). If the p'* component of 7;, is
g then the p'® component of 7;, is at least ¢ + 1, a contradiction. [

This lemma generalizes the well-known result of Erdés and Szekeres [10] that if n > r?
then every sequence a; - - - a, of numbers contains a monotone subsequence of length r. In
this case an edge (2,) is colored UP or DOWN depending on whether a; < a; or a; > a;.

3.2 Lemma. Suppose we are given a family of k(n)-sweeping programs over a finite
monoid N, with input alphabet 4, and for each s > 0 a map a; : A — A*. Let r > 0. If

n> T|N||A|'k(")

then there exist a sequence

1§1:0<1:1<""L'7-§’I’L

and a homomorphism

(I):A*—>N1 X"'XNk(n),

where N, = N, or N, = NE, depending on whether the c* sweep of the program is left to
right or right to left, with the following property: Let u € A1, v € A" ', Then there
exist 89,...,8k(n) € N such that for any w = a; ---a, € A", the value of the nt? program
on

Uiy —ig(@1) i i, ,(ar) v
is
50 - P1(w) 81+ Sp(n)—1 * Ph(n)(W) * Sk(n)-

(Here ¢; denotes the i** component of the homomorphism ®. The product of the 2-k(n)+1
factors is computed in N.)

Proof. Let A = {a1,...,a5}, and let the program instructions be

(ij,fj),l S] Snk(n),l S'L.j < n.

8

We color {(,7) : 1 <14 < j < n} by elements of (N4 Let 1 < p <s5,1 < ¢ < k(n).
The p'* component of the ¢** component of the color assigned to (i, j) is

fte—1yn+i(b1) -+ fe—1yntj—1(bj—)

or

fcn—(j—i)(bj—i) e fcn—l(bl)’

where aj_;(ap) = by ---bj_;. The first alternative holds if the ct? sweep of the program is
left to right, and the second if the c** sweep is right to left. By Lemma 3.1, there exists a
sequence

1§1:0<1:1<"'<’L.7-§’I’L

such that all (24,%¢41) are assigned the same color 7. Let ¢;(a,) = m; p, where m; , is the
p'® component of the i** component of 7. Then ® = (¢1,... » Pk(n)) extends to a unique

homomorphism

(I):A*—>N1 X---XNk(n).

The result now follows directly. Observe that so is the product of the first |u| values
emitted by the program, if the first sweep is left to right, and the product of the first |v]
values if the first sweep is right to left. Similarly sy, is the product of the last |u| or |v|
values, depending on the direction of the last sweep. For 1 < ¢ < k(n), s. is the product
of the values emitted by the (ecn — k1 + 1)th through the (en + kz)th instructions of the
program, where k; and k, are either |u| or |v|, depending upon the directions of the c*?
and (¢ + 1)th sweeps.[l

The foregoing lemma allows us, in a sense, to view programs as homomorphisms. In order
to apply it we shall require the following strengthened version of Lemma 2.1—this tells
us that under certain conditions we can assume that the strings « and v have the same
length:

3.3 Lemma. Let M and N be finite monoids, and let A be a finite alphabet. Suppose
M ¢ rcl(N),and ¢ : A* — N, : A* — M are homomorphisms, where 9 is surjective and
¥(a) = 1 for some a € A. Let m;,my € M be N-separated by 9. Then for all sufficiently
large r there exist u,v € A” such that ¥(u) = mq,9¥(v) = my and ¢(u) = ¢(v).

Proof. There exists p > 0 such that ¢(a?) = e is idempotent. Let S = {za? : z € AP}.
Then S generates a free submonoid of A*. It follows from Lemma 2.1 that there exist
u',v' € §* such that ¥(u') = m1,9¥(v') = m2, and ¢(u') = ¢(v'). If |u'| = |[v'| we are
done. Otherwise, we can suppose without loss of generality that |u'| < |v'|. The lengths
of u' and v' differ by a multiple of p, and thus there exists k& > 0 such that |u'a*?| = |v'|.
But 9 (u'a*?) = ¥ (u') = my, and ¢(u'a*?) = $(u')e* = ¢(u'), because ¢(5*) C Ne. The

desired conclusion follows with v = u'a®?, v = v'. 11

Observe that the length r of the string required in Lemma 3.3 can be bounded by a function
of |[M|,|N| and |4].

We can now prove a version of our fundamental theorem for sweeping programs.

3.4 Proposition. Let M, N be finite monoids, where M ¢ rcl(N). Let A be a finite
alphabet, and ¢ : A* —» M a surjective homomorphism, where ¥(a) = 1 for some a € A.
Consider a family of k(n)-sweeping programs over N, where

1
lm nIvIAFE® — 4o,
n—00

Let mi,my € M be N-separated by 7. Then for all sufficiently large n, there exist w,w' €
A™ such that ¥(w) = my,¥(w') = my, and such that the n** program of the family gives
the same value on w and w'.

Proof. For all i > 0 define a; : A — A* by a;(b) = ba*™!, for b € A. Observe ¥(a;(b)) =
1(b). Choose r large enough for the conclusions of Lemma 3.3 to hold. If n is large enough,
then

n > pINIHHE

By Lemma 3.2 there exist

1§1:0<1:1<"'<’L'7-§’I’L,

a homomorphism

(I):A*—>N1X---XNk(n)

(where N; = N or N; = NE according to the direction of the j** sweep) and so,. .. s 8k(n) €
M such that the value of the nt* program on

7:()—1 n—i,.

a* o, g (b1) i, i, (br)a

is

509(b1 -+ br)s1 Sp(n)—1Pk(n) (b1 -+ - br)Sk(n)-
By Lemma 3.3, there exist w = by - -- b, v = b} - - - bl such that ®(u) = ®(v), ¢¥(u) = mq,
and ¥(v) = ma. Let

n—1i,

io_la’h—’io(bl)"'a’ir—’ir—1(b7‘)a‘)

w=a

w’ — a’io_lail _'Lo(bg_) “es a'L’,. —'L'T_]_(b,,r)an_ir .

Then ¢;(u) = ¢i(v) for all i, so the n** program of the family has the same value on both
w and w'. On the other hand, ¥(w) = ¥(u) = mq, and Y(w') = P(v) = ma. I

4. Reduction of Linear-Size Programs
to Sweeping Programs

10

In this section we complete the proof of Theorem 2.2 by showing how to reduce the general
case to that of sweeping programs. The reduction is accomplished by means of a combina-
torial lemma, due to Cai and Lipton, which we now state as Lemma 4.1. The proof, which
uses Ramsey-theoretic techniques similar to those of [1], is in [7]. Let o be a sequence
of elements from {1,...,n} in which each element of {1,...,n} appears exactly k times.
If I C {1,...,n} let o1 denote the subsequence of o consisting of all occurrences of the
elements of 1.

4.1 Lemma. Let o,n,k be as above. Then there exists I C {1,...,n} such that |I| > nsik,
and such that oy factors into 7 segments

T1T2 * " Tj,
where 7 < k and each 7; is monotone increasing or monotone decreasing. |

Now consider a program with n inputs over a finite monoid N. Let I C {1,...,n}. A
restriction of the program to I is a program over N with |I| inputs obtained as follows:
We fix the input letters in the positions {1,...,n}\I. This fixes the values in N emitted
by the instructions of the program that query these positions. Let I = {i; < --- < ig}. If
the letters in these positions are set to a1,...,aq then the value emitted by the program is

mo - g1(aj,) - ma - - gp(aj,) - mp,

for some my,...,m, € N, and maps gi1,...,9p : A — N. The g; give the values emitted by
the by the instructions that query the letters positions in I; and the m; are the products of
the values emitted by the instructions between successive queries of the letters in positions
in —these depend on the fixed input letters in {1,...,n}\I, but not on the input letters
a;. Our new program has p instructions. On input a; ---a4 the first instruction emits
mg - g1(a;j,) - m1, and the i*® instruction, for ¢ > 1, emits g;(a;;) - m;. In particular, the
assignment of values to the letters in positions {1,...,n}\I defines a map n : 47 —» A™
such that the value of the restricted program on u € A? is equal to the value of the original
program on 7(u).

Proof of Theorem 2.2. Since the n'® program has length n - k(n), there exists a set
J C{1,...,n} such that |J| = T and such that each position in J is consulted no more
than 2 - k(n) times. We define a restriction of the original program to J by setting all
the letters in positions {1,...,n}\J to a, where ¥(a) = 1. It thus suffices to establish the
theorem for the restricted program. We can add instructions that always emit the identity
element to insure that each input letter is consulted exactly 2 - k(n) times. By Lemma 2.1

there exists a subset I of J such that

1
1> (5)*
2

and any restriction to I is a j-sweeping program, where 7 < 2- k(n). In particular, we can
consider the restriction obtained by setting the letters in positions J\I to a, where ¥(a) =

1
1. It thus suffices to establish the conclusion for this j-sweeping program on (7)s¥*®
inputs. But

11

1

()77 s (2w
2 —\2 ’

which, according to our hypothesis, grows without bound, so the desired result follows
from Proposition 2.4. i

5. Proofs of Theorems 1.1-1.4

We first make a brief remark about the asymptotics implicit in Theorem 2.2: If we choose
k(n) = c-loglogn,

where

1
~ 4|A[- log(3|N[)’

C

then

log(nl/(""N')ZlAl'k(")) = (log n)%,
so the hypotheses of the theorem are satisfied. This is the source of the Q(n loglog n) lower
bounds in these four theorems.

Proof of Theorem 1.1. Let N be a finite monoid in which every group has order dividing
g. It is easy to show that every group in the direct product of two monoids M; and M,
is contained in the direct product of a group in M; with a group in M,. It follows that
every cyclic group in rcl(N) has order dividing g. In particular, let M, be the cyclic group
{1 =g%9,...,g°'}; then M, ¢ rcl(N). Define a homomorphism % : {0,1}* — M, by
$(0) = 1, ¥(1) = g. Then 9 satisfies the hypotheses of Theorem 2.2. Observe that if
my,my € M, are N-separated by v, then so are m;h and myh for any h € M,. (Use
strings uw and vw, where ¢(w) = h.) In particular, we may suppose m; = 1. We now
apply Theorem 2.2: Suppose we have a family of programs over N of length ¢ - nloglogn,
where ¢ is chosen as described at the beginning of this section. Then if n is sufficiently
large, there exist w,w' € A™ such that ¥(w) = m; = 1,¢¥(w') = ma, and such that the
n*® program gives the same value on w and w'. But w € L, and w' ¢ L,, so the family of
programs does not recognize L. I

Proof of Theorem 1.2. Let M be the monoid {0, 1}, with multiplication

0.0=0-1=1-0=0,1-1=1.

It is straightforward to show M ¢ rcl(G) for any finite group G. (Indeed, the reversal of a
group G is isomorphic to GG, and any divisor of a direct product of finite groups must itself
be a finite group.) We define a homomorphism ¢ : {0,1}* — M by #(0) = 0,%(1) = 1.
Then ¢ satisfies the hypotheses of Theorem 2.2, and for w € {0,1}*,¢(w) = 1 if and only
if w € 1*. By Theorem 2.2, if there is a family of programs over G of size ¢ - nloglogmn,
with ¢ chosen as above, then there exist n > 0, w € 1™, w' € {0,1}"\{1™}, such that the

12

nt® program gives the same value on w and w'. Thus the family of programs does not
recognize 1*. |

To prove Theorem 1.3, we need the following lemma.

5.1 Lemma. Let N be a finite monoid such that for some ¢ > 0,9 > 0, m**? = m? for all
m € N. Then any family of programs over N accepting the set

L(t+1,n) ={a1--an € {0,1}": Y a; > 1}
=1

for all sufficiently large n has length Q(nloglogn).

Proof. Consider the finite monoid

M ={l,s,5%,...,5", s = 5'T2},

Define a homomorphism % : {0,1}* — M by ¥(0) = 1, ¥(1) = s. It is easy to verify
that every monoid in rcl(N) satisfies the identity z'*? = 2!, and thus M ¢ rcl(N). Let
my = s¥,my = s!, with k < I, be N-separated by 1. Then v¥(u) = mq,%(v) = my for some
u,v € {0,1}*. Thus 9(u - 117171 = st 1k~ and (v - 177171) = s¥+1 are N-separated by
1, so in applying Theorem 2.2 we may assume ms = s*7!. The result now follows from
Theorem 2.2 by noting that ¥(w') = s**! if and only if w' € L(t + 1, |w']).

Proof of Theorem 1.3. (a) Consider the monoid T} of all functions from {1,...,¢} into
itself, with composition as the operation. (Strictly speaking, it is necessary to specify
whether the composition of two functions is written with the first function to be applied
on the right or the left. The two monoids that result from these choices are nonisomorphic,
but reversals of one another.) Let m be any element of this monoid, and let Im(m) denote
the image set of the function m. It follows that Im(m™"!) C I'm(m") for all r, and thus
Im(m?) = Im(m**!). Thus m**t? = m® for some ¢ > 1. The result now follows at once
from Lemma 5.1 and Theorem 2.2.

(b) First observe that if there is a family of programs over N that recognizes L), then
there is a family of programs of the same length that recognizes L), where h(n) =
n — g(n). We may thus suppose that there are infinitely many values of n such that
g(n?) < n? —n, otherwise, we can simply reverse the roles of g(n) and h(n) to obtain this.
Now let ¢,q be such that m**? = m? for all m € N. Then for infinitely many values of r
we have

g(r*) >t +1,

r2 —g(r?) > r.

For each such value of r we shall show how to construct a restriction of the original program
on 72 inputs to r input variables, so that the new program accepts L(t+1,r). First suppose

that the original program has length r? - k(r?). Since r < é, (unless r = 1), we may select
a set I of » input positions, each of which is consulted at most 2 - k(r?) times. Let us set

13

g(r?)—(t+1) of the positions in {1,...,7>}\I to 1, and the remaining 72 —r—(g(r?)— (¢ +1))
to 0. The resulting restricted program has length no more than 2 - rk(r?) and accepts its
input a1 --- a, if and only if }.7_, a; > t+ 1. By Lemma 5.1, there exists a constant ¢ such
that

k(r?) > cloglogr > = -loglog r*

N[o

for sufficiently large r. Thus

for infinitely many values of n.

Proof of Theorem 1.4. Suppose G is not solvable and that every group in N is solvable.
Then G ¢ rcl(N). Consider now the homomorphism ¢ : G* — G given by ¢(g) = g for all
g € G. Let my,my € G be N-separated by . We may assume, as in the proof of Theorem
1.1, that m; = 1. It now follows directly from Theorem 2.2 that any program over N
recognizing Lg has length ((nloglogn).ll

Proof of Theorem 1.5. The constructions of [5] and [15] associate to an ACC° formula
a program over a solvable group whose length is equal to the size of the formula. The
result now follows directly from Theorem 1.4. |

6. Questions for Further Study

Our principal open problem is to replace the superlinear lower bounds in Theorem 1.2 (in
the case wehre G is a solvable group) and Theorem 1.4 by superpolynomial lower bounds.
As mentioned before, this will show that ACC? is strictly contained in NC'. The combi-
natorial methods used here do not appear to generalize directly to give superpolynomial
bounds. However we believe that these results may be an ingredient in the proof of the
stronger bounds. Indeed, a polynomial-length program over a finite monoid N can be
factored into a translation of the original length n input string to a string of length n*,
followed by a program over N that makes a single scan of its input. We now know a great
deal about the behavior of single scan programs, and wish to study what happens during
the polynomial translation of the original input.

A second question worth investigating is how tight are our bounds on branching program
length for threshold functions. The evidence of [1] and [2] suggests that a Q(nlogn) lower
bound ought to hold for the length of branching programs computing threshold functions
satisfying the hypotheses of Theorem 1.3(b), however it may be possible to find shorter
programs recognizing Lyg) if g(n) increases very slowly.

7. References

[1] N. Alon and W. Maass, Meanders and their applications in lower bounds arguments,

J. Comp. Sys. Sci. 37,118-129 (1988).

14

[2] L. Babai, P.Pudlak, V. Rédl and E. Szemeredi, Lower bounds to the complexity of
symmetric boolean functions, Theretical Computer Science 74, 313-324 (1990).

[3] D. Mix Barrington, Bounded-width polynomial-size branching programs recognize ex-

actly those languages in NC', J. Comp. Sys. Sci. 38, 150-164 (1989).

[4] D. Mix Barrington, H. Straubing and D. Thérien, Non-uniform automata over groups,
Information and Computation 89, 109-132 (1990).

[5] D. Mix Barrington and D. Thérien, Finite monoids and the fine structure of NC*, J.
Assoc. Comp. Mach. 35, 941-952 (1988).

[6] A. Borodin, D. Dolev, F. Fich and W. Paul, Bounds for width two branching programs,
SIAM J. Computing 15, 549-560 (1986).

[7] J. Cai and R. Lipton, Subquadratic simulations of circuits by branching programs, to
appear in STAM J. Computing.

[8] A. Chandra, M. Furst and R. Lipton, Multiparty protocols, Proc. 15th ACM STOC,
94-99 (1983).

[9] S. Eilenberg, Automata, Languages and Machines, vol. B., Academic Press, New York,
1976.

[10] P. Erd6s and Szekeres,A combinatorial problem in geometry, Composito Math. 2,
464-470 (1935).

[11] G. Lallement, Semigroups and Combinatorial Applications, John Wiley, 1979.

[12] J. E. Pin, Varieties of Formal Languages, Plenum, London, 1986.

[13] Pudlak, P., A lower bound on the complexity of branching programs, Proc. 11th
MFCS Symposium, Lecture Notes in Computer Science 176, 480-485 (1984).

[14] Smolensky, R., Algebraic methods in the theory of lower bounds for Boolean circuit
complexity, Proc. 19th ACM STOC, 77-82 (1987).

[15] H. Straubing, D. Thérien and W. Thomas, Regular languages defined with generalized
quantifiers, Proc. 15th ICALP, Lecture Notes in Computer Science 317, 561-575 (1988).

15

