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(1) We obtain two new results concerning the inclusion problem of
polynomial time frequency classes with equal numbers of errors.

1. (m, m+d)P � (m+1, m+d+1)P for m<2d.

2. (m, m+d)P=(m+1, m+d+1)P for m�c(d) where c(d) is
large enough.

This disproves a conjecture of Kinber. (2) We give a transparent proof of
a generalization of Kinber's result that there exist arbitrarily complex
problems admitting a polynomial time frequency computation. Several
corollaries provide more insight into the structure of the hierarchy of poly-
nomial time frequency classes. (3) The relationships between polynomial
time frequency classes and selectivity classes are studied. ] 1997 Academic

Press

1. INTRODUCTION

The notion of frequency computation was introduced by Rose [Ros60] and
McNaughton [McN61] in the early sixties and developed by Trakhtenbrot
[Tra63], Kinber [Kin75] and Degtev [Deg81]. Let m and n be natural numbers
with n�m�1. A function f : 7* � N is called (m, n)-computable if there exists a
recursive operator T : (7*)n � Nn with the following property. If T(x1 , ..., xn)=
( y1 , ..., yn) for mutually distinct numbers xi then at least m of the equalities
f (xi)= yi , i=1, ..., n are true. Then we also say that f is (m, n)-computed by T or
T provides an (m, n)-computation for f.

We study frequency computations under time restrictions; i.e., we demand that
the operator T be time bounded on input x1 , ..., xn by some function t(max |xi | ).

Let us define (m, n) TIME(t) to be the class of all predicates which are (m, n)-
computable in time t and (m, n) to be the class of all predicates which are (m, n)-
computable without any time restriction. In particular, (m, n)P denotes the class of
predicates which are (m, n)-computable within polynomial time.

One of the most fundamental questions is to determine for which pairs (m, n)
and (h, k) of natural numbers (m�n, h�k) the corresponding classes (m, n) and
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(h, k) (or (m, n) TIME(t) and (h, k) TIME(t) for given recursive function t) are
equal (equality problem) or are comparable with respect to set inclusion (inclusion
problem). It turns out that the solution of these problems depends on whether the
classes are time bounded or not. The first step towards solving these problems was
made by Trakhtenbrot [Tra63] who proved that (m, n)=REC (=the class of all
recursive predicates) if m�n>1�2. For m�n�1�2, the classes (m, n) contain non-
recursive predicates. For these classes the equality problem has been attacked by
Degtev [Deg81]. His approach has been successfully completed by Kummer and
Stephan [KS95]:

For m�n�1�2, (m, n)=(h, k) � m=h 7 n=k.

In the case of time bounded frequency classes a solution of the inclusion problem
(and hence of the equality problem) has been given by Kummer and Stephan
[KS95] and McNicholl [McNic95]. The corresponding result for the polynomial
time case is formulated as Theorem 2.3. It gives an equivalent reformulation of the
inclusion problem in terms of the combinatorial notion of admissibility. It is,
however, not always easy to apply this criterion to decide a specific inclusion
question.

This is why we once more deal with this topic. Our goal is to determine explicitly
under what conditions two given classes (m, n)P and (h, k)P are comparable with
respect to set inclusion. We cannot give a full solution, but for classes with equal
numbers of errors (i.e., n&m=k&h) we prove two theorems by shedding some
light on the inclusion structure of the polynomial time frequency classes. We obtain:

Theorem 1.1.

(m, m+d )P � (m+1, m+d+1)P for m<2d.

So the conjecture of Kinber that (m, n)P=(h, k)P for m�n�2�3 and h�k�2�3
and n&m=k&h is disproved. We cannot say exactly when equality holds, but we
prove

Theorem 1.2. For all d # N there exists a number c(d ) such that (m, m+d )P=
(m+1, m+d+1)P for all m�c(d).

We conjecture that one may even take c(d)=2d, but our proof yields a much
weaker bound.

In Section 3 we consider whether one can save time by allowing errors. Kinber
[Kin75] answered this question positively. We prove the following more general
result.

Theorem 1.3.. Assume 1�m�n, 1�d, 0�k for m, n, k, d # N. Let t be an
arbitrary recursive function. Then

(m+k, n+k+d )P"(m, n) TIME(t){<.
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In Section 4 we deal with the relationship between frequency classes and selec-
tivity classes which were introduced by Hemaspaandra et al. [HJRW95] in that
general form. A motivation for studying this relationship has to do with the
question of whether there exist NP-complete problems that are polynomial time
frequency computable. For more details see Section 4.

2. THE HIERARCHY OF TIME BOUNDED FREQUENCY-CLASSES

We consider the inclusion and the equality problem for classes (m, n) TIME(t)
and (m$, n$) TIME(t) for m�n>1�2 and m$�n$>1�2. As Trakhtenbrot showed,
(m, n)=REC for m�n>1�2 one would expect (m, n)P=P. This is, however, not
true, as proved by Kinber [Kinb75]. In the next section we give a transparent
proof of his result that there exist arbitrarily complex sets in (n&1, n)P.

For ease of notation we state our results in this section for polynomial time
bounds. It is easily seen that they can be generalized to arbitrary time bounds t. We
start with some easy inclusions of (m, n)P-classes.

Theorem 2.1.

1. (m, n)P�(m, n$)P for n�n$

2. (m, n)P�(km, kn)P for k�1

3. (m+k, n+k)P�(m, n)P for k�0.

The following definition introduces a local version of (m, n)-computability. It was
given by Degtev [Deg81] and leads to a very natural combinatorial view on the
inclusion and the equality problem of frequency classes.

Definition 2.2. Assume 1�m�n�s for m, n, s # N. A set V�[0, 1]s of binary
vectors of length s is called (m, n)-admissible iff for every n numbers 1�x1< } } } <
xn�s there exists a vector ( y1 , y2 , ..., yn) such that for each v # V at least m of the
n equations v(xi)= yi are true.

Here v(k) denotes the k th component of v. One could say that a set V is (m, n)-
admissible if it locally admits a solution.

Let V�[0, 1]s be (m, n)-admissible. For each sequence 1�x1< } } } <xn�s and
corresponding vector ( y1 , y2 , ..., yn) we define a vector z # [0, 1, V]s by

z(i)={yi

V
if i=xi

otherwise.

These z are considered to be rows of a table T. For vectors u, v # [0, 1,V]s we define
their Hamming distance by

d(u, v)=|[i : u(i){v(i) 7 u(i){V 7v(i){V]|.

Evidently, V is (m, n)-admissible if and only if there exists a table T with the
following properties:
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1. For each sequence 1�x1< } } } <xn�s there exists exactly one vector
z # T with z(i)=V if and only if i � [x1 , ..., xn].

2. d(u, v)�n&m for all u # T and v # V.

Thus we say that V is (m, n)-admissible via T.
Now we give a theorem of Kummer and Stephan [KS95] which reduces the

inclusion problem for classes (m, n)P and (m$, n$)P to finite combinatorics.

Theorem 2.3 [KS95]. For 1�m�n and 1�m$�n$, (m, n)P�(m$, n$)P iff
any (m, n)-admissible set V�[0, 1]max(n, n$) is (m$, n$)-admissible.

We use this reformulation of the equality problem for classes (m, n)P to prove
Theorems 1.1 and 1.2 via Propositions 2.4 and 2.6.

Proposition 2.4. Let m<2d. Then there exists a set V�[0, 1]m+d+1 which is
(m, m+d )-admissible but not (m+1, m+d+1)-admissible.

Before we prove this proposition let us consider an example of the construction
of a set which is (m, m+d )-admissible but not (m+1, m+d+1)-admissible in
order to obtain the main ideas of such a construction. This may cause an easier
understanding of the general proof. Let us consider an extreme case, for instance
d=2 and m=2d&1=3.

First we choose a set W�[0, 1]d=[0, 1]2 with |W|=m+1=4. In this case we
have only the following possibility:

W=[w1 , w2 , w3 , w4]=[11, 10, 01, 00].

Now we construct a set V # [0, 1]6 which is (3, 5)-admissible but not (4, 6)-
admissible. Let

V=V1 _ V2

with

V1=[v1 , v2 , v3 , v4]=[11 0000, 10 0000, 01 0000, 00 0000]

V2=[v5 , v6 , v7 , v8]=[11 1000, 10 0100, 01 0010, 00 0001].

Note that all vectors of V1 start with an element of W and end with four 0s. The
vectors of V2 start also with an element of W and have exactly one 1 among the
last four components, but each in a different place.

We have to show that V is (3, 5)-admissible. Consider the table T defined as
follows:

z6 1 1 0 0 0 V

z5 1 0 0 0 V 0

z4 0 1 0 V 0 0

z3 0 0 V 0 0 0

z2 0 V 0 0 0 0

z1 V 0 0 0 0 0.
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As we can easily see d(zi , vj)�2 for all i=1, ..., 6 and j=1, ..., 8. Hence V is (3, 5)-
admissible via T.

It remains to verify that V is not (4, 6)-admissible. Assume V is (4, 6)-admissible;
then there exists a vector z # [0, 1]6 with d(z, vj)�2 for all j=1, ..., 8. We try to
find out how it looks.

If z(1)=z(2)=1 then, because of d(z, v4)�2 and d(z, v8)�2, both z(6)=0 and
z(6)=1 must hold. But this is not possible. By symmetry, the other possibilities for
z(1) and z(2) also lead to a contradiction. Since there is no possibility to choose the
first two components of z, such a z cannot exist. Thus, V is not (4, 6)-admissible.

Now we prove Proposition 2.4.

Proof. We choose a set W�[0, 1]d of cardinality m+1. This is possible
because m<2d. Let W=[w1 , ..., wm+1] and define w� # [0, 1]d by w� ( j)=1&w( j).
Let

$ij={0 for i{ j
1 for i= j.

Now we construct V�[0, 1]m+d+1:

V= .
6

i=1

Vi ,

with

V1=[(w� i (1), ..., w� i (d ), 0, ..., 0) : i=1, ..., m+1]

V2=[(w� i (1), ..., w� i (d ), $i, 1 , ..., $i, m+1) : i=1, ..., m+1]

V3=[(wi (1), ..., wi (d ), 0, ..., 0) : i=1, ..., m+1]

V4=[(wi (1), ..., wi (d ), 1, 0, ..., 0) : w� i � W]

V5=[(w(1), ..., w(d ), 0, ..., 0) : w, w� � W]

V6=[(w(1), ..., w(d ), 1, 0, ..., 0) : w, w� � W].

We have to show that V is (m, m+d )-admissible but not (m+1, m+d+1)-
admissible.

1. V is (m, m+d )-admissible. Define the table T to have exactly the vectors

(1) 0 } } } 0

l&1

V 0 } } } 0

d&l

0 } } } 0

m+1

, l=1, ..., d

and

(2) wl (1) } } } wl (d ) 0 } } } 0

l&1

V 0 } } } 0

m&l+1

, l=1, ..., m+1.
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Define

a(u, v)=|[i : 1�i�d 7 u(i){v(i) 7 u(i){V 7 v(i){V]|

and b(u, v) by

d(u, v)=a(u, v)+b(u, v).

We show that V is (m, m+d )-admissible via T; i.e., d( y, v)�d for every y # T and
v # V. Let y # T. If y is of the form (1), then, for every v # V, we have a( y, v)�d&1
and b( y, v)�1. If y is of the form (2), then we distinguish four cases.

1. v # V1 _ V3 _ V5 . Then we have a( y, v)�d and b( y, v)=0.

2. v # V2 . Then b( y, v)�1 and a( y, v)<d unless

v=w� l (1) } } } w� l (d ) 0 } } } 0

l&1

10 } } } 0.

But in this case, b( y, v)=0 as the only nonzero bit matches V.

3. v # V4 , say v=(wi (1), ..., wi (d ), 0, ..., 0). If a( y, v)=d, then y( j)=w� l ( j) for
j=1, ..., d. Hence w� i=wl for some l, but this contradicts wl # W. Hence, for all
v # V4 we have both a( y, v)<d and b( y, v)�1.

4. v # V6 , say v=(w(1), ..., w(d ), 1, 0, ..., 0) with w, w� � W. If a( y, v)=d we get
the same contradiction as in Case 3. So we have again a( y, v)<d and b( y, v)�1.

2. We show that V is not (m+1, m+1+d )-admissible. To this end, let
y # [0, 1]m+d+1 and define u # [0, 1]d by u( j)= y( j) for 1� j�d. We discuss the
following three cases.

If u # W then there exist v1 # V1 and v2 # V2 such that vi ( j)=1&u( j)=1& y( j)
for i=1, 2 and j=1, ..., d. But v1{v2 so that d( y, vi)�d+1 for i=1 or i=2.

If u � W and u� # W then there exist v3 # V3 and v4 # V4 such that vi ( j)=
u� ( j)=1& y( j) for i=3, 4 and j=1, ..., d. But v3{v4 so that d( y, vi)�d+1 for i=3
or i=4.

If u � W and u� � W then there exist v5 # V5 and v6 # V6 such that vi ( j)=
u� ( j)=1& y( j) for i=5, 6 and j=1, ..., d. But v5 {v6 so that d( y, vi)�d+1 for i=5
or i=6.

Since there is no possibility of constructing a vector y without making more than
d errors, V is not (m+1, m+d+1)-admissible. K

From the last proposition and the fact that (m, m+d )P$(m+1, m+d+1)P
we get (m, m+d )P � (m+1, m+d+1)P for m<2d. Hence we proved Theorem
1.1. It is very natural to ask what happens for m�2d. We conjecture

(m, m+d )P=(m+1, m+d+1)P for m�2d.

But we succeeded only in proving the weaker result in Theorem 1.2.
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In preparation for this proof let us recall Ramsey's theorem. For a set X, let
X [2]=[Y�X : |Y|=2].

Theorem 2.5 (Ramsey's theorem [Gra90]). For all n, q # N there exists R(n, q)
so that for all N�R(n, q) and any mapping . : [1, ..., N][2] � [1, ..., q] there exists
a subset M�[1, ..., N] with |M|�n such that .(M [2])=[.(X) : X # M [2]] is a
singleton.

Proposition 2.6. For every d # N there exists a natural number c(d ) such that for
m�c(d ) every (m, m+d )-admissible set is (m+1, m+d+1)-admissible.

Proof. Let d # N be given. We choose an m and assume that there exists a V�
[0, 1]m+d+1 which is (m, m+d )-admissible, but not (m+1, m+d+1)-admissible.
Using Ramsey's theorem we want to show that this is impossible for large m.

Let z1 , z2 , ..., zm+d+1 be the rows of a table T with zi (i)=V such that V is
(m, m+d )-admissible via T.

Claim 1. For i=1, ..., m+d+1 there exist vectors fi , gi # V with

fi (i)=0, gi (i)=1, and d( fi , zi)=d(gi , zi)=d.

Proof. If V in zi is replaced by 0 or 1 we get vectors z (0)
i and z (1)

i , respectively.
Since V is not (m+1, m+d+1)-admissible, there exist vectors fi , gi # V such that
d( fi , z (1)

i )�d+1 and d(gi , z (0)
i )�d+1. On the other hand, V is (m, m+d)-

admissible, and this means d( fi , zj)�d and d(gi , zj)�d for all i and j. From these
statements we easily conclude the claim. K

Let us consider the mapping

. : [1, ..., m+d+1][2] � [0, ..., 2d]_[0, ..., d]_[0, ..., d]

defined by

.(i, j)=(d(zi , zj), d( fi , zj), d(gi , zj)), for i< j.

Let q=(2d+1)(d+1)2 denote an upper bound of the cardinality of the range of .
and let n=2d+d+2. Ramsey's theorem (Theorem 2.5) implies that for m+d+1�
R(n, q) there exists a subset M�[1, ..., m+d+1] with |M|=n such that the image
of M [2] under . is a singleton, say [(k, x, y)].

First of all we note that x= y=d is impossible. This follows from

Claim 2. x� y (mod2).

Proof. For arbitrary i, j # M, i< j, we consider the vectors fi , gi , zj . Without
loss of generality we assume zi to be of the form shown as follows. Since fi and gi

may differ in at most 2d components, f &1
i (1) & g&1

i (1){<.
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Without loss of generality this appears as follows:

fi : 1, ..., 1, 1, ..., 1, 1, ..., 1, 1, ..., 1

d

, 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0, 0
i
, 0

j

, 0, ...

gi : 0, ..., 0, 0, ..., 0, 1, ..., 1, 1, ..., 1, 1, ..., 1, 1, ..., 1

d

, 0, ..., 0, 0, ..., 0, 1, 0, 0, ...

zi : 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0, V, 0, 0, ...

zj : 1, ..., 1

a1

, 0, ..., 0, 1, ..., 1

a2

, 0, ..., 0, 1, ..., 1

b1

, 0, ..., 0, 1, ..., 1

b2

, 0, ..., 0, c, V, 0, ...

The following equations must hold:

(i) x=d( fi , zj)=d&(a1+a2)+b1+b2+c

(ii) y=d(gi , zj)=d&(a2+b1)+a1+b2+1&c

Adding both equations we get

2d&2a2+2b2+1=x+ y.

This shows that

x� y (mod2). K

By symmetry we can assume x<d and by choice of M, we have

n&1=max
i # M

|[ j # M : j>i 7 d( fi , zj)=x]|.

We prove

Claim 3.

max
i # M

|[ j # M : j>i 7 d( fi , zj)=x]|�2d+d.

Proof. We consider a vector fi , the corresponding row zi , and another row zj

such that d( fi , zj)=x holds. Without loss of generality they have the following
form:

fi : 1, ..., 1, 1, ..., 1

d

, 0, ..., 0, 0, ..., 0, 0
i
, 0, ...

zi : 0, ..., 0, 0, ..., 0, 0, ..., 0, 0, ..., 0, V, 0, ...

zj : 1, ..., 1

a

, 0, ..., 0, 1, ..., 1

b

, 0, ..., 0, c, 0, ...

241TIME BOUNDED FREQUENCY COMPUTATIONS



File: DISTIL 266609 . By:DS . Date:08:12:97 . Time:09:54 LOP8M. V8.B. Page 01:01
Codes: 2939 Signs: 2132 . Length: 52 pic 10 pts, 222 mm

How many rows zj of this form can exist? There are at most d of them which can
have the star (V) under the first d components. If the star is not under the first d
components, the following two equalities must hold:

(i) a+b=d(zi , zj)=k,

(ii) d&a+b+c=d( fi , zj)=x.

Since x<d, we get from (ii) b&a+c<0, hence 2a>k&1 and 2b<k. Thus a may
be any value between [(k&1)�2] and d. Since k # [0, ..., 2d], the maximal possible
range for a is [1, ..., d]. Thus we have no more than 2d possibilities to choose 1s
under the first d components. Each of these possibilities gives rise to at most one
zj . To verify this, let us assume there exist two vectors zj and zk being equal on the
first d components and having a 1s there, 1�a�d. Each of them has exactly b
further 1s so that their hamming distance is bounded by 2b. As 2b<k, this con-
tradicts the assumption d(u, v)=k for all rows u{v. Thus, altogether we have at
most 2d+d vectors zj with the property d( fi , zj)=x. K

By definition we have that n=2d+d+2. But from Claim 3 we get n�2d+d+1
which implies a contradiction. We have thus proved that every (m, m+d )-
admissible set is (m+1, m+d+1)-admissible for m+d+1�R(n, q)=R(2d+
d+2, (2d+1)(d+1)2). K

From Proposition 2.6 and Theorem 2.3 we get Theorem 1.2.

3. MORE ERRORS MAY SAVE TIME

The idea of frequency computations is to get a faster solution of a complex
problem by allowing some errors. That this is possible was proved by Kinber
[Kinb75]. He showed that there exist arbitrarily complex functions in (n&1, n)P.
But the proof is hard to understand. We get his result as a special case of a more
general result (Theorem 1.3) which moreover gives some insight into the structure
of the hierarchy of polynomial time frequency classes. We need some preparatory
steps.

1. We consider step counting functions s of Turing machines which are strictly
increasing in the following sense:

m<n O s(0m)<s(0n). (1)

One easily verifies

Lemma 3.1. For every recursive function t there exists a step counting function s
with property (1) majorizing t.

2. For a step counting function s having property (1) we define inductively a
sequence of words:

w1=0

wk=0s( |wk&1|).
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Let

*(k)=|wk |

and

S=[w1 , w2 , ...].

Lemma 3.2. S is decidable in polynomial time.

Proof. Let M be a Turing machine computing exactly s(n) steps on inputs of
the form 0n. We describe a polynomial time decision procedure for S.

Inputs not having the form 0k are refused. For inputs of the form 0k we generate
the sequence w1 , w2 , ... word by word. If wi is generated, M uses it as input, and
in each step of M a unary counter for s( |wi | ) is incremented. This yields wi+1 . The
input is accepted if and only if there exists an i such that wi=0k.

Because of the monotonicity of s, at most k initial words of 0k can be generated.
Hence the procedure needs no more than ck2 steps for some c>0. K

3. Let M$1 , M$2 , ... be an effective enumeration of all Turing machines having a
clock t (t being a recursive function). Let the list M$1 , M$2 , ...be generated by an
algorithm A.

Define recursively M1=M$1 , and if Mi=Mj$ then

Mi+1={
Mi

M$j+1

if A generates the list (M$1 , ..., Mj$)
within *(i+1) steps
if A generates the list (M$1 , ..., Mj$ , M$j+1)
within *(i+1) steps.

So we can assume an effective enumeration M1 , M2 , ... of all Turing machines
working within time bound t such that Mi can be determined within *(i) steps given
input i. Now we are ready to prove Theorem 1.3.

Theorem 1.3. Assume 1�m�n, 1�d, 0�k for m, n, k, d # N. Let t be an
arbitrary recursive function. Then

(m+k, n+k+d ) P"(m, n) TIME(t){<.

Proof. The proof is based on a wide space diagonalization argument. This is a
common method which was used for instance by Amir and Gasarch in [AG88]
and Kummer and Stephan in [KS91]. One of the first to use wide space diagonal-
ization arguments was Ladner [Lad75].

For the given recursive function t choose a step counting function s according to
Lemma 3.1 and using this s, define S and * as above. In particular, we have

t( |wk | )�|wk+1 |. (2)
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We introduce a partition S=S1 _ S2 _ } } } by defining sets Sj having exactly
n+k+d elements:

Sj=[w(n+k+d ) j&(n+k+d&1) , ..., w(n+k+d ) j].

If Tj denotes the operator Tj : (7*)n � [0, 1]n computed by Mj we define n values
which Tj yields if it is applied to the n smallest elements of Sj :

( y(n+k+d) j&(n+k+d&1) , ..., y(n+k+d ) j&(k+d ))

=Tj (w(n+k+d ) j&(n+k+d&1) , ..., w(n+k+d ) j&(k+d )).

Making use of these y& we introduce the function f : 7* � [0, 1],

1& y& if x=w& and & is of the form &=(n+k+d) j&c

f (x)={ where k+d�c�n+k+d&1

0, otherwise.

We verify that f � (m, n) TIME(t), but f # (m+k, n+k+d ) P.

1. f � (m, n) TIME(t). Assume that Mj provides an (m, n)-computation of f.
Apply Tj on the n-tuple of the n smallest elements of Sj . The first line of the defini-
tion of f shows that

If n&m+d�n, Tj makes n&m+d>n&m errors,

If n&m+d>n, Tj makes n>n&m errors, which contradicts the assump-
tion. Hence, no Mj provides an (m, n)-computation of f.

2. f # (m+k, n+k+d ) P. To show this we construct a polynomial time
operator T : (7*)n+k+d � [0, 1]n+k+d computing f with at most n&m+d errors.
T will be defined to be symmetric, i.e., its value does not depend on the order of
its arguments. Therefore, we always assume the arguments x1 , ..., xn+k+d to be
given in the lexicographic order x1<x2< } } } <xn+k+d . We now describe the con-
struction of

(z1 , ..., zn+k+d)=T(x1 , ..., xn+k+d).

For this purpose we define jm to be the largest j s.t. Sj & [x1 , ..., xn+k+d]{<. Then
we put

zi={0
f (xi)

if xi # Sjm
7 |Sjm

& [x1 , ..., xn+k+d]|<n+k+d
otherwise.

We notice that zi= f (xi) with at most n&m+d exceptions. These exceptions may
occur if xi # Sjm

7 |Sjm
& [x1 , ..., xn+k+d]|<n+k+d, because in this case we have

zi=0 and f (xi)=1 by the first line of the definition of f. But by the definition of
f this is possible for no more than n&m+d arguments. This shows that T is an
(m+k, n+k+d )-computation of f.
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Finally, we have to verify that T is computable within polynomial time with
respect to |xn+k+d | for any given tuple (x1 , ..., xn+k+d). At first, we test which of
the xi are in S. For those that are, we determine j and l with xi=w(n+k+d) j&l for
0�l�n+k+d&1. By our Lemma 3.2 this needs polynomial time in |xn+k+d |.

Now we compute zi for i=1, ..., n+k+d.
If xi # Sjm

and |Sjm
& [x1 , ..., xn+k+d]|=n+k+d, then we have to compute

Tjm
(w(n+k+d ) jm&(n+k+d&1) , ..., w(n+k+d ) jm&(k+d )). (3)

If xi belongs to the n smallest elements of some Sj , j{jm , then we have to compute

Tj(w(n+k+d) j&(n+k+d&1) , ..., w(n+k+d) j&(k+d)). (4)

In all remaining cases zi=0, which requires only constant time. To compute (3) we
have to

v determine Mjm
and

v apply Mjm
to (w(n+k+d ) jm&(n+k+d&1) , ..., w(n+k+d) jm&(k+d )).

The former requires

*( jm)=|wjm
|�|w(n+k+d ) jm&(n+k+d&1) |�|xn+k+d |

steps; the latter requires

t( |w(n+k+d ) jm&(k+d ) | )�|w(n+k+d ) jm&(k+d&1) |�|w(n+k+d ) jm
|=|xn+k+d |

steps. Notice that xn+k+d=w(n+k+d ) jm
since xn+k+d # Sjm

. The first inequality
follows from (2).

The argument for (4) is nearly the same. By (2) we get

t( |w(n+k+d) j&(k+d ) | )�|w(n+k+d ) j&(k+d&1) |�|xn+k+d |.

Here it is important that w(n+k+d) j&(k+d&1) or some larger element of S belongs
to (x1 , ..., xn+k+d) so that |xn+k+d | majorizes the computation time. Hence, we
can perform all steps within polynomial time with respect to |xn+k+d |. K

For m=n, k=0 and d=1 we get

Corollary 3.3 [Kinb75]. For arbitrarily large recursive t there exist functions

f # (n&1, n) P"TIME(t).

Remark. Kinber [Kinb75] proves that P can be replaced by TIME(id).

If the set S is defined by

w1=0

wi+1=02|wi |
,
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Lemma 3.2 remains valid, and we can prove in exactly the same way that Theorem
1.3 remains valid if TIME(t) is replaced by P. This gives several important
corollaries.

The following three corollaries follow already from Theorem 2.3. We mention
them here once more explicitly to get Fig. 1 as complete as possible. From
P�(2, 3) P and (2, 3) P"P{< (Theorem 1.3) we get

Corollary 3.4.

P / (2, 3) P.

For k=0 and d=1 we get (m, n+1) P"(m, n) P{< which shows, that state-
ment (1) of Theorem 2.1 is a strict inclusion:

Corollary 3.5.

(m, n) P / (m, n+1) P.

Finally, we see that no frequency class is contained in another frequency class
with a smaller number of errors.

Corollary 3.6. For d�1 and k�0,

(m+k, n+k+d ) P�3 (m, n) P.

In order to summarize the results obtained on the hierarchy of the polynomial
time frequency classes we now mention some more results.

Theorem 3.7.

1. [Kin75]. (2, 3) P=(2+k, 3+k) P for k�1.

2. [Hin94]. (4, 6) P=(4+k, 6+k) P for k�1.

3. [KS95]. (2, 4) P�(3, 6) P.

4. [KS95]. For all m # N there exists a number h0 such that for all h�h0 ,
(m, 2m) P�(h, 2h) P holds.

5. [KS95]. For m<h # N, (m, 2m+1) P"(h, 2h+1) P{<.

The proof of number 3 can be generalized so that we get the following result:

Theorem 3.8. For d, k # N, d�2, k�0, (d+k, 2d+k) P�(d+k+1, 3d+k) P.

Some other inclusions can be proved similarly; e.g., one can show that

v (2, 5) P�(3, 8) P

v (4, 7) P�(6, 11) P.
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FIG 1. The hierarchy of the frequency classes under polynomial time bounds. Note that, for clarity
reasons, not all known results mentioned in the paper are incluced.

4. SOME CONNECTIONS BETWEEN SELECTIVITY CLASSES
AND FREQUENCY CLASSES

Theorem 1.3 shows that there exist arbitrarily complex problems which are fre-
quency computable in polynomial time. A natural question is whether this is
possible for NP-complete problems.

It has been proved [KS95], [Ogi94] that the (m, n)-computability of SAT
implies P=NP. (We discuss this result at the end of this section.) Selman studied
the concept of semirecursive sets introduced by Jockusch [Joc68] in a polynomial
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time setting and proved that if SAT is P-selective, then P=NP. Are these two
collapse results related to each other? To answer this question we compare the
P-selective sets with the frequency computable sets.

According to [Sel79] we define

Definition 4.1. The set A is called P-selective iff there exists a function f (a
selector for A) computable in polynomial time such that

1. f (x, y) # [x, y],

2. x # A 6 y # A O f (x, y) # A.

Let P&Sel be the set of all P-selective sets.
In analogy to the statement that any semirecursive set is (1, 2)-recursive (see

[KS91]) we have

Fact 4.2. P&Sel�(1, 2) P.

We get this result as a special case of Theorem 4.6.
Hemaspaandra et al. [HJRW95] introduced a more general version of P-selec-

tivity, the multi-selectivity. We give their definition in a slightly modified form:

Definition 4.3. S(k) is the class of all sets L�7* for which there exists a func-
tion f # FP (an S(k)-selector for L) such that for each n�1 and any mutually distinct
input strings y1 , ..., yn ,

1. f ( y1 , ..., yn) # [ y1 , ..., yn] and

2. |L & [ y1 , ..., yn] |�k O f ( y1 , ..., yn) # L.

The following results were proved in the paper mentioned above.

Fact 4.4.

1. S(k)/S(k+1) for each k�1,

2. S(1)=P&Sel.

We now investigate the relationship between the classes (m, n) P and S(k).

Theorem 4.5. For all k�1, m, n (m<n)

(m, n) P�3 S(k).

Proof. Because of Kinber's result (Theorem 3.7) it is sufficient to prove
(2, 3) P"S(k){<. (Note that (2, 3) P is the smallest polynomial time frequency
class.) We consider the set

S=[w1 , w2 , ...],

where

w1=0
wn+1=02|wn|

.
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Let M1 , M2 , ... be an effective enumeration of all polynomial time Turing machines
computing all possible polynomial time selectors f1 , f2 , ... . By diagonalizing against
all polynomial time computable selector functions we construct a set A # (2, 3) P
such that A � S(k) for all k�1. Let

S=S1 _ S2 _ } } } ,

where

Sj=[w(k+2) j&(k+1) , w(k+2) j&k , ..., w(k+2) j].

We define A by

1. x # A, if x � S or there exists a j such that x=w(k+2) j .

2. w(k+2) j&h � A 7 w(k+2) j&i # A for h, i=1, ..., (k+1), i{h
� fj (w(k+2) j&(k+1) , w(k+2) j&k , ..., w(k+2) j&1)=w(k+2) j&h .

It follows immediately from the definition of A that no fj can be an S(k)-selector
of A. Hence, A � S(k).
But A # (2, 3) P. To show this, we consider the operator

T(x1 , x2 , x3)=(u1 , u2 , u3),

which is defined as follows:

1. If xi � S or �j xi=w(k+2) j , then ui=1.

2. Let jmax be the largest j such that Sj & [x1 , x2 , x3]{<.

3. If xi=w(k+2) j&l , l=1, ..., (k+1) and j< jmax , compute

v= fj (w(k+2) j&(k+1) , ..., w(k+2) j&1)

and let

ui={0
1

if v=w(k+2) j&l

otherwise.

4. We now consider the case where |Sjmax
& [x1 , x2 , x3]|=3.

(a) If (x1 , x2 , x3)=(w(k+2) jmax&l1
, w (k+2) jmax&l2

, w(k+2) jmax&l3
), 1�l1 , l2 ,

l3�(k+1), then u1=u2=u3=1.

(b) If x3=w(k+2) jmax
and xi=w(k+2) jmax&li

, i # [1, 2], 1�li�(k+1), then
compute

v= fjmax
(w(k+2) jmax&(k+1) , ..., w(k+2) jmax&1)
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and let for i # [1, 2]

ui={0
1

v=w(k+2) jmax&li

otherwise

and

u3=1.

5. If 1�|Sjmax
& [x1 , x2 , x3]|�2, then ui=1 if xi # Sjmax

.

Clearly, this T (2, 3)-computes cA : Only in cases 4(a) and 5 can errors occur,
actually at most one error. T is computable in polynomial time. The argument is
practically the same as in the proof of Theorem 1.3. K

Theorem 4.6. For any k�1 and any m�1,

S(k)�(m, 2m+k&1) P.

Proof. Let A # S(k). We have to define a polynomial time operator T which
(m, 2m+k&1)-computes A.

Let f be an S(k)-selector function. We consider a (2m+k&1)-tuple
(x1 , ..., x2m+k&1) and assume w.l.o.g. that the indices are chosen so that

f (x1 , ..., x2m+k&1)=x2m+k&1

f (x1 , ..., x2m+k&2)=x2m+k&2

b

f (x1 , ..., xm+k)=xm+k .

Now, we define

T(x1 , ..., x2m+k&1)= 0. . .0
m+k&1

1 . . .1
m

.

The claim is that this T computes A with at most m+k&1 errors. Let
i=|A & [x1 , ..., x2m+k&1] |.

Case 1. i�m+k&1.
In this case, all 1s are correct, i.e., we have at least m correct outputs.

Case 2. k�i�m+k&2.
In this case, the last i&k+1 1s are correct, and the remaining 1s need not be
correct, because an S(k)-selector applied to a set with less than k elements from A
need not output an element from A. Therefore, k&1 0s could be wrong. Hence, we
have m+k&1&(k&1)=m 0s which are correct. So, altogether, we have
i&k+1+m�m+1 correct outputs.

Case 3. i�k&1.
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None of the 1s need be correct. Furthermore, i of the 0s could be false. There
remain m+k&1&i�m correct 0s.

T is computable in polynomial time because f # FP. K

The next two theorems show that Theorem 4.6 gives the optimal embedding of
the S(k)-classes into the hierarchy of the polynomial time bounded frequency
classes.

Theorem 4.7. For all k�1

S(k)�3 (1, k) P.

Proof. Let M1 , M2 , ... be an effective enumeration of all polynomial time Turing
machines computing all possible polynomial time operators T1 , T2 , ... . For fixed k
we now construct a set A which is in S(k) but not in (1, k) P by diagonalizing
against all polynomial time operators T1 , T2 , ... . We make use of the set
S=S1 _ S2 _ } } } introduced in the proof of the previous theorem with the only dif-
ference that

Sj=[w(k+1) j&k , w(k+1) j&(k&1) , ..., w(k+1) j].

Then A is defined by

1. x # A, if x � S or �j x=w(k+1) j .

2. Let Tj (w(k+1) j&k , ..., w(k+1) j&1)=(u(k+1) j&k , ..., u(k+1) j&1). Then
�j �k

l=1 w(k+1) j&l # A � u(k+1) j&l=0.

From this definition of A it follows directly that A � (1, k) P, because each operator
Tj makes k errors when it is applied to

(x1 , x2 , ..., xk)=(w(k+1) j&k , w(k+1) j&(k&1) , ..., w(k+1) j&1).

Now we give an S(k)-selector for A. For all n�1 and input strings x1 , x2 , ..., xn

with mutually distinct xi and x1<x2< } } } <xn we define f as follows:

1. If among the arguments there exists an element not belonging to S, then
f (x1 , x2 , ..., xn)=xi , if i is the smallest index j s.t. xj � S.

2. Otherwise, if among the arguments there exists some w(k+1) j , then
f (x1 , x2 , ..., xn)=xi , if i is the smallest l s.t. �j xl=w(k+1) j .

3. If none of the preceding cases applies we have the case �n
i=1 � j �k

l=1

(xi # Sj 7 xi=w(k+1) j&l). If n<k, let f (x1 , ..., xn)=x1 . If n�k, we proceed as
follows. Making use of the second line of the definition of A we check whether there
exists at least one element among x1 , x2 , ..., xn&k which belongs to A. If there exists
such an element, let xi be the smallest of them and let

f (x1 , ..., xn)=xi .

Otherwise, put f (x1 , ..., xn)=xn&k+1 .
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Finally, we verify that f is an S(k)-selector for the set A. We have to show that
f outputs an element from the input string [x1 , ..., xn] which is in A, if there are
at least k elements from the input string in A. In the cases 1 and 2 there is at least
one element which is in A. This becomes the output for f. So we have a correct out-
put, if there are at least k elements in A.

In Case 3 we first test whether there is an element of [x1 , ..., xn&k] in A for sure.
If we find one, this is a correct output of f. If not we can output an arbitrary
xi # [xn&k+1 , ..., xn], because if there are k elements from [x1 , ..., xn] in A, then
these must be the elements xn&k+1, ..., xn .

f is computable in polynomial time with respect to |xn |. The test whether an xi

lies in S and if yes in which Sj and whether it is the largest element in Sj is possible
in polynomial time. In Case 3 we have to compute at most n&k polynomial func-
tions Tj , but only at arguments which are all smaller than xn . So the worst case
which can occur is that xn&k , xn&k+1 , ..., xn are in Sjmax

. Then we have to compute
Tjmax

(xn&k , ..., xn&1) which is polynomial in |xn |. K

Theorem 4.8. For all k, m>1,

S(k)�3 (m, 2m+k&2) P.

Proof. Our goal is to construct a set A such that A � (m, 2m+k&2) P but
having an S(k)-selector f # FP. We use the set S=S1 _ S2 _ } } } with Sj=
[w(2m+k&2) j&(2m+k&3) , ..., w(2m+k&2) j]. We make use of the shorthands Yj=
Tj (w(2m+k&2) j&(2m+k&3) , ..., w(2m+k&2) j)=( y(2m+k&3) , ..., y0) and d=(2m+k&2)
&m=m+k&2. The set A is defined by:

1. x # A, if x � S or � j x=w(2m+k&2)j .
Otherwise,

2. Sj�A, if |[i : yi=0]|�d+1.

3. Sj & A=<, if |[i : yi=1]|�d+1.

Assume that none of the cases 2 or 3 applies.

4. If |[i : yi=0]|=d&l, 0�l�[d�2], then let i0 , ..., il be the (l+1) largest
indices s.t. yi0

= yi1
= } } } = yil

=1. In this case Sj & A=Sj"[w(2m+k&2) j&i0
, ...,

w(2m+k&2) j&il
].

If Case 4 does not apply, then

5. If |[i : yi=1] |=d&l, 0�l<[d�2], then let i0 , ..., il the (l+1)-smallest
indices s.t. yi0

= yi1
= } } } = yil

=0. In this case Sj & A=[w(2m+k&2) j&i0
, ...,

w(2m+k&2) j&il
].

Notice that both [d�2]�|[i : yi=0]|�d and [d�2]�|[i : yi=1|�d can happen
simultaneously, but then Case 4 has priority over Case 5.

It is easy to verify that A � (m, 2m+k&2) P. Indeed, assume that Tj

(m, 2m+k&2)-computes A. By definition of A, Tj makes at least d+1 errors on
Sj . Now we give an S(k)-selector f for A.
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For a given set X with at least k+1 elements, we define f (X ) as follows. First,
we determine in polynomial time which of the elements of X do not belong to S or
for which there exists a j such that x=w (2m+k&2) j . If there exist such elements,
define f (X ) as the smallest of them. Otherwise, we determine (also in polynomial
time) to which Sj the elements of X belong. For all x � Sjmax

, we exactly compute
whether they belong to A or not. If there exist such elements belonging to A, then
let f (X ) be the smallest of them. Otherwise, define f (X ) as the smallest element
of Sjmax

.
This function f is an S(k)-selector for A. To verify this we distinguish several

cases. We always assume that X contains at least k elements from A, since otherwise
there is nothing to be shown.

Case 1. X contains an element x � Sjmax
from A. Then the smallest element of

this kind is chosen by the function f, i.e. f behaves correctly.

Case 2. No element from X"Sjmax
belongs to A. We consider the following sub-

cases where now Yjmax
=[ y2m+k&3 , ..., y0].

1. If |[i : yi=0]|�d+1, then Sjmax
�A and therefore the smallest element of

Sjmax
belongs to A.

2. If |[i : yi=0]|=d&l, 0�l�[d�2], then if for the smallest element of Sjmax

the corresponding yi equals 0 it belongs to A by definition. Otherwise, according to
Case 4 of the definition of A at least this element is in A, because of

|[i : yi=1]|=(2m+k&2)&|[i : yi=0] |=2m+k&2&(d&l )=m+l>l+1.

3. If |[i : yi=0]|<[d�2], we distinguish two subcases.

(a) m<[d�2]
In this case, 2m+k&2&[d�2]=m+d&[d�2]<|[i : yi=1] |. According to Case 5
of the definition of A we represent |[i : yi=1] | as d&l and get m+d&[d�2]<d&l,
which yields l+1<k�2. But this means that Sjmax

& A contains less than k elements.
Thus we have no requirement to f.

(b) [d�2]�m In this case we get |[i : yi=1] |>m+d&[d�2]�d. By
Case 2 of the definition of A we get Sjmax

& A=<. Hence, again, f needs not to
satisfy any condition.

Finally, we see that f is computable in polynomial time in the same way as in the
preceding proofs. K

The next theorem shows that, for a frequency greater than 1�2, none of the selec-
tivity classes is included in any of the polynomial time frequency classes. (See
Fig. 2)

Theorem 4.9. For all m, n m�n>1�2,

S(1)�3 (m, n) P.
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FIG 2. Relationship between selectivity and frequency classes.

Proof. To keep the proof easy we restrict ourselves to the case (m, n)=(2, 3)
and show P&Sel�3 (2, 3) P. The general case can be treated similarly.

Our goal is to construct a set A such that A � (2, 3) P but having a selector
f # FP. We make use of the set S=S1 _ S2 _ } } } with Sj=[w3j&2 , w3j&1 , w3j].

The construction of A makes use of an auxiliary function :, defined on S.

0 if the majority of the values of Tj (w3j&2 , w3j&1, w3j)

:( j )={ equals 1

1 otherwise.

The set A is defined as follows:

x # A � �
j

(x # Sj 7 :( j)=1).

It is easy to verify that A � (2, 3) P. Assume Tj (2, 3)-computes A. If :( j)=0, then
at least two components of Tj (w3j&2 , w3j&1 , w3j) have the value 1. But A & Sj=<.
Hence, Tj makes at least two errors on Sj . If :( j)=1, then at least two components
of Tj (w3j&2 , w3j&1 , w3j) have value 0. As Sj�A, Tj makes at least two errors on Sj .

Now we give a selector f for A:

f (x, y)= f ( y, x) for all x, y

1. f (x, y)=min(x, y) for x, y � S

2. f (x, y)=min(x, y) for x # Sj 7 y # Sj

3. f (x, y)=x if y � S 7 x # S

4. f (x, y)= y if x # Si 7y # Sj 7 i< j 7 :(i)=0

5. f (x, y)=x if x # Si 7y # Sj 7 i< j 7 :(i)=1.
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We verify that f is a selector function for A. Let x, y be given. At first we find out
which of the cases of the definition applies. If both x, y are not in S, then we can
output an arbitrary string for instance the minimum of x, y. If both are in the same
Sj then we can output one of them, because either both are in A or both are not.
If only one of them is in S, we output this, because if one element of x, y is in A,
then only this can be that one which is in S. If x # Si and y # Sj and i< j, then we
output x if A�Si and y otherwise. In the latter case, y is the only value which
possibly can belong to A.

Finally, we show f # FP. Let x, y be given. As S # P one can find out in polyno-
mial time which of the cases of the definition of f applies for any given x, y. In the
first three cases the value of f can readily be written down. In cases 4 and 5 we have
to know :(i). To get it, we have to compute Ti on Si which can be done in time
| y|. K

We come back to the topic discussed at the beginning of this section. From
[HJRW95] we know

Theorem 4.10.

.
�

k=1

S(k)�P�poly.

The special case P&Sel�P�poly was already known to Ko [Ko83].
From Theorem 4.10 it follows that for no k can NP have �p

t -complete sets which
are k-selective, unless by a well known result of Karp and Lipton the polynomial
hierarchy collapses on its second level.

Selman's result is stronger as it concerns a collapse P=NP. The result mentioned
above that the polynomial time frequency computability of SAT implies P=NP
does not follow from Selman's result because of Theorem 4.5. Moreover, it would
still be compatible with Theorems 4.9 and 4.10 that NP-complete problems would
have polynomial time frequency computations. However, NP-complete problems
admit polynomial time frequency computations only if the polynomial hierarchy
collapses on its second level. This follows from

Theorem 4.11 [ABG90, BKS95].

.
�

k=2

(1, k) P�P�poly.

Stronger collapse results follow from

Theorem 4.12 [Ogi94, BKS95]. If SAT is btt-reducible in polynomial time to a
set from ��

k=2 (1, k) P, then P=NP.

This theorem implies both collapse results mentioned at the beginning of this
section.

CONCLUSION

We have proved some explicit solutions for important inclusion problems for poly-
nomial time bounded frequency classes. But we still do not know what happens for
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(m, m+d ) P and (m+1, m+d+1) P if 2d�m�R(2d+d+2, (2d+1)(d+1)d)&
(d+1). We conjecture equality. But a general proof seems to be a very difficult
combinatorial issue.

Nevertheless, we gained insight into the hierarchy of frequency classes under
polynomial time restrictions.
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