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Abstract

This paper studies 3-dimensional visibility representations of graphs in which objects in 3-d
correspond to vertices and vertical visibilities between these objects correspond to edges. We ask
which classes of simple objects are universal, i.e. powerful enough to represent all graphs. In
particular, we show that there is no constant k£ for which the class of all polygons having k or
fewer sides is universal. However, we show by construction that every graph on n vertices can be
represented by polygons each having at most 2n sides. The construction can be carried out by an
O(n?) algorithm. We also study the universality of classes of simple objects (translates of a single,
not necessarily polygonal object) relative to cliques K, and similarly relative to complete bipartite
graphs K, .

1 Introduction

This paper considers 3-dimensional visibility representations for graphs. Vertices are represented by
2-dimensional objects floating in 3-d parallel to the zy-plane (these objects can be swept in the z
direction to form thick objects if desired). There is an edge in the graph if, and only if, the objects
corresponding to its endpoints can see each other along a thick line of sight parallel to the z-axis. A
thick line of sight is a tube of arbitrarily small but positive radius whose ends are contained in the
objects. Throughout this paper, we use the term “visibility representation” to refer to this particular
model. An alternative model is that two objects are regarded as seeing each other even if their only
visibility lines are thin, i.e., tubes of 0 radius. In general there are quite subtle differences between
representable objects in both models but our results hold for the thin visibility model as well.

The corresponding notion of 2-dimensional visibility has received wide attention due to its ap-
plications to such areas as graph drawing, VLSI wire routing, algorithm animation, CASE tools and
circuit board layout. See [DETT] for a survey on graph drawing in general; for 2-dimensional visibility
representations, see for example [DH], [TT], [KKU], [W].
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Exploration of 3-dimensional visibility is still in the early stages. From the point of view of geo-
metric graph theory, there is no reason to confine the study of visibility representation to dimension 2;
the study of 3-dimensional representations opens the way to the study of higher dimensional visibility
representation in general. From the point of view of visualization of graphs, it is possible that by ex-
amining constructions of 3-dimensional physical models of graphs, or perspective drawings or graphics
renderings of such models, a viewer could perceive qualitative features of the underlying combinatorial
structure more easily than by examining adjaceny lists, adjacency matrices, or 2-dimensional draw-
ings. This intriguing possibility will take much experimentation to explore thoroughly. Our results can
contribute to the foundations of such a study in the following way. Presumably, for a 3-dimensional
representation to be useful for visualization, it should be powerful enough to represent all graphs, or
at least basic kinds of graphs. This motivates us to ask which classes of objects are universal, i.e., can
give visibility representations for all graphs, or all graphs of a given kind.

The visibility representation considered in this paper has also been studied in [BEF+] (an abstract
of some of its results was presented at GD’92), in [Rom]|, and in [FHW]. In these papers, the objects
representing vertices are axis-aligned rectangles, or disks, and the properties of graphs that can be
represented by these objects are studied. By contrast, this paper begins with families of graphs (all
graphs, or all graphs of a specific kind), and explores simple ways to represent all graphs in the family.

Section 2 considers which translates of a given, fixed figure are universal for cliques K,, and complete
bipartite graphs K,, . Section 3 uses counting arguments based on arrangements to show that no
class of polygons having at most some fixed number k of sides is strong enough to represent all graphs.
Section 4 shows that every graph on n vertices has a visibility representation by polygons each of which
has at most 2n sides. These sections also contain additional results not listed here in the introduction.

2 Graphs realizable by translates of a figure

In this section we will investigate which complete and which complete bipartite graphs can be realized
as visibility graphs of translates of one fixed figure. Here a figure is defined as an open bounded set
whose boundary is a Jordan curve. We say that a graph G can be realized by a figure F if and only if G
is the visibility graph of translates of F'. It will turn out, for example, that there are many figures that
can realize all complete graphs. On the other hand, no figure can realize more than a finite number
of stars, i.e., complete bipartite graphs of the form K1 ,,.

2.1 Complete graphs

The realization of complete graphs K,, by translates of special figures like squares and disks has been
investigated by Fekete, Houle, and Whitesides [FHW] and by Bose et al. [BEF+]. In [FHW] it is
shown that K7 can be realized by a square, whereas no K,,, n > 8, can be realized. On the other hand,
any K, can be realized by a disk. We will consider more general figures in the following theorem.

First, we need the following definitions:
A curve C is called strictly convez if and only if for any two points p,q € C, the interior of the line
segment pg does not intersect C. We say that a figure F' has a local roundness if there is some open
set U such that the intersection of U and the boundary of F' is a strictly convex curve. A set whose
boundary is a strictly convex curve is called a strictly convez set.

Theorem 2.1 a) Any K,, can be realized by any nonconvez polygon.



b) For any convez polygon P there is an n € IN such that no K,,,m > n, can be realized by P.
c¢) For any K, there is a convex polygon realizing it.

d) Any figure F with a local roundness can realize any K.

Proof:

a) We first observe that the figure in Fig. 1 can realize any K,,. If P is a nonconvex polygon, then it
has at least one nonconvex vertex. Arranging copies of P in a neighborhood of this vertex as in Fig. 1
realizes any K.

Figure 1: Realization of an arbitrary K, with a nonconvex polygon

b) Let Py,..., P be a sequence of translates of a convex n-gon P ordered by increasing z-coordinate
and let Pj,..., P, be their projections into the zy—plane. Furthermore, let ei,...,e; be the corre-
sponding translates of one edge of P, projected into the zy—plane and H; the halfplane bounded by

the straight line through e; which contains P/, i = 1,...,k. We define an order on e,..., e (more
precisely, on the set of lines passing through them) by: e; < e; <= H; O H;. Since ey,..., e are

parallel this order is linear. First, we will show:

Claim: If P;, P», P; are translates of a convex polygon realizing K3, then not all sequences eq, es, e3
of translates of one edge can be monotone in the above order.

For example, in Fig. 2 e, ez, e3 is monotone increasing, di,d2,ds is monotone decreasing, but
c1, C2, c3 is not monotone.

To prove the claim, consider a point p (in the zy—plane) where P; and P; have a vertical line of
sight. Then p lies outside Pj and therefore there exists an edge co of Pj so that the straight line g
through ¢, separates p from Pj. Let c1,c3 be the edges of P{, P;, respectively, corresponding to cs.
Assume a line parallel to g is being moved towards the scene from the outside. It will first meet P|
and P} before it meets Py (or vice versa). Consequently, the order in which edges c¢1, ¢2, c3 are met is
not monotone.

For n,k € IN, define f(k) = (k — 1)2+ 1 and let N = f™(3) (i.e., the n-fold iteration of f(k)

evaluated at k = 3; actually N = 22" + 1). Using an argument from [BEF+] we will show that Ky
cannot be realized by any convex n-gon. Suppose otherwise and let e!,...,e" be the edges of the



Figure 2: Triangles realizing K3.

n-gon and Pi,..., Py the translates of the n-gon. Since N = (f"~!(3) — 1)2 + 1, by the theorem
of Erdés-Szekeres [ES] the sequence el, ..., el of corresponding translates of edge e' (projected into
the zy—plane) has a monotone subsequence of length f"~!(3). The corresponding subsequence of
polygons must have a subsequence of length f”2(3) where both the e!- and e?-sequences are monotone.
Iterating this process yields a subsequence of length f°(3) = 3 where all edge-sequences are monotone
in contradiction to the claim above. It is possible to reduce N from doubly exponential to exponential
in n using properties of edge colorings in graphs [F].

c) The statement follows from the fact that any K,, can be realized by disks [FHW] and any disk can
be approximated to arbitrary precision by convex polygons.

d) Consider a segment of the boundary of F' that consists of more than one point and is strictly convex.
We can select a suitable subsegment o with the following property: if [ is the straight line through
the endpoints of o, then no line perpendicular to [ intersects o in more than one point.
Assume also without limitation of generality that [ is horizontal, so o looks as in Fig. 3.

Figure 3: Curve segment o

Let S be the closed convex figure bounded by ¢ and the line segment between its endpoints. We
will show by an inductive construction:

Claim: For any n there exists a realization of K,, by n translates S, ..., S, of S with the following
properties:

i) Let S7,...,S] be the projections of Si,..., S, into the zy-plane, and let o}, ..., 0}, and I}, ...,
denote the pieces of the boundaries of these projections that arise from o and [. There exists a
horizontal line g such that all the [f,... I lie strictly below g.

ii) Any pair S;, S, i # j, see each other along a line of sight that intersects the zy-plane strictly
above g.



iii) For 1 < i < n, the boundary pieces o, and o], have exactly one common intersection point above
g. Let s, denote this point, and let D;,(¢e) denote the closed disk of positive radius € centered
at sin. Consider the set D;p(e) N Si\S},. For all sufficiently small e > 0, all points in S; with
x, y-projections in this set see upward to z = oo.

iv) For i =1,...,n the z-coordinate of S; is i.

The claim is obviously true for n = 1.

Suppose now by inductive hypothesis that we have positioned Sy, ..., S, satisfying the claim. We
choose some point p on the boundary of S;, to the right of all s14,...,5,-1, as intersection point
Sn+1,n (see Fig. 4). Now we position Sy 41 in the plane z =n + 1 as follows:

First we put it exactly over S,,. Then we move it upwards (i.e. in positive y-direction) slightly so that
i) is still correct. Then we move it to the left until it intersects Sy, at p (see Fig. 4). The total motion
can be made arbitrarily small, in fact, small enough so that iii) is satisfied with n replaced by n + 1
and points s;, replaced by points s; ,11 (see Fig. 5). Item ii) is satisfied by part iii) of the inductive
hypothesis since S;, 1 covers all points 515, ...5, 14.

Figure 5: Visible parts of S; in neighborhoods of sig and s17.

2.2 Complete Bipartite Graphs

[BEF+] considers the realization of complete bipartite graphs by unit disks and unit squares. It is
shown that K33 and K33 can be realized but claimed that K3, j > 4 cannot. Here we will consider



translates of more general convex objects and as usual in convex geometry we will call a compact
convex set whose interior is not empty a convez body. In particular, we will investigate the realization
of stars K , and we will show:

Theorem 2.2  a) K5 but no Ky ,, n > 6, can be realized with parallelograms.
b) If B is a strictly convez body then K¢ but no Ki,, n > 7, can be realized by B.

c) For any figure F there exists an n € IN such that for all k € IN with k > n K j is not realizable
by F.

d) For any K, ., there exists a quadrilateral realizing it.

For the proof of the theorem we need the following lemma.

Lemma 2.1 Let A be a strictly convex body and let A1, As translates of A such that A, A1, Ay pairwise
touch each other (i.e., the boundaries intersect but not the interiors). Then for any sufficiently small
€ >0 Ay can be translated by a vector t of length € such that Ay +1t still touches A but is disjoint from
Ay

Proof: Assume without loss of generality that the origin 0 € A and let A; = A +;,1 = 1,2, so t1,to
are reference points within A1, Ay corresponding to 0 within A. Define A’ by the Minkowski sum
A" = A® (—A) and define A, = A" +¢;,5 = 1,2. Then A', A}, A are also strictly convex. The fact
that two of these figures, say A, A1, touch is equivalent to the fact that the reference points 0,¢; lie
on the boundaries A}, 0A’, respectively. So altogether we have the situation illustrated in Fig. 6.
Because of their strict convexity the curves 0A’ and 0A] intersect properly in t2, so any sufficiently

Figure 6: Three translates touching each other

small e-circle around ¢2 has an intersection point p with 0A’\ A]. A translation of Ay by t = p — i
then has the desired properties. O



Proof of Theorem 2.2:

a) A realization of K; 5 by parallelograms is shown in Figure 7. Observe that the view between
the upper parallelogram and the bottom ones is obscured by the middle one.

7
A7
s

Figure 7: Realization of K; 5 by parallelograms.

Now suppose that some K, is realized by parallelograms P, P1, ..., P, where P, corresponds to
the vertex that is adjacent to all others. Suppose that there are parallelograms among P, ..., P, that
exactly cover Py i.e. that have the same projection into the xy—plane. It is clear that there can
be at most one such parallelogram, say P;, above (or below) Py and that in this case none of the
parallelograms P, ..., P, can lie above (below) Py since they must see Py but not P;. Hence for n > 2,
it is not possible that there are two parallelograms among P, ..., P, exactly covering P, one above
and one below. Among the parallelograms not exactly covering Py each one must see at least one
vertex of Py since their projections into the zy—plane are disjoint. In addition no vertex can be seen
by more than one of P, ..., P, because they are not allowed to see each other. Consequently there
can be at most four parallelograms among P, ..., P, not exactly covering Py and at most one exactly
covering it, i.e. n < 5.

b) Here we use some results from convexity theory obtained by Hadwiger [H] and Griinbaum [G]. In
fact, they showed that at most 8 translates of a convex body B in two dimensions can touch B without
intersecting it or each other. The number 8 is only achieved by parallelograms; otherwise it is 6 (see
Fig. 8). Suppose one of the 6 outer translates is removed. Then we can apply Lemma 2.1 to one of
the neighboring ones and move it away from its neighbor that is touching it. Repeating this process,
we can adjust the five outer translates so that each still touches the inner one but no two outer ones
touch or intersect each other. Clearly, it is then possible to push each of them slightly inward so that
all properly intersect the inner one still without touching each other. Placing the five outer translates
at, say, z = 0, the inner one at z = 1, and another one exactly above it at z = 2 realizes K1 ¢.

To show the impossibility of K 7 we assume without loss of generality that the object B is closed.
Suppose K 7, could be realized and let A be (the projection into the zy-plane of) the copy of B
realizing the central vertex. Then at most one of the other vertices can be realized by a translate of
B having exactly the same projection. Otherwise, since the translate representing the central vertex
would be covered from both sides by two other translates, any additional translate would either fail
to see the translate for the central vertex or would see at least two translates. So there are (at least)



Figure 8: B touched by 6 of its translates.

six vertices whose representations have projections Ay, ..., Ag different from A, but intersecting A. For
1=1,...,6, let t; # 0 be the translation vector such that A; = A+ t;. Further let A; > 0 be the unique
positive number such that C;, which we define by C; = A + \;t;, just touches A in one point.

Claim: C; N C; = () for i # j.

In fact, we will show that there is a straight line separating C; from C;. Let B; = A; \ A for all
1. Then the interiors of By, ..., Bg do not intersect. Even their convex hulls do not intersect, as easily
can be seen. So for i # j there is a straight line [ separating B; from B; (see Fig. 9). Furthermore /
must intersect the interior of A. Since [ does not intersect the curve 7 in Fig. 9 it cannot intersect C;.
Likewise it cannot intersect C}, so it separates C; and Cj.

Figure 9: A line separating C; and Cj.

By the claim we would have C4, ..., Cgs all touching A but no two touching each other, which is not
possible by the results of Hadwiger and Griinbaum.

c¢) Consider a realization of K, and its projection into the zy—plane. Then no point of the plane
can be covered by the projections of more than three of the figures. Furthermore the projection of



the figure representing the center of the star must be intersected by the projections of all the other
figures, so all projections must lie within a circle whose diameter is at most three times the diameter
of F. These two properties imply that the number of figures is limited by an area argument.

=

Figure 10: Realization of K45 by quadrilaterals

d) The construction is shown in Fig. 10.

3 An upper bound on the number of graphs representable by k-gons

In this section we will show that there is no fixed kK € IN such that every graph has a visibility
representation by k-gons. In fact, we will even see that there is a constant o > 0 such that in order to
represent all graphs with n vertices by polygons, some of those polygons must have more than [k‘fg"nj
vertices.

Definition 3.1 A graph is said to be k-representable if and only if there is a visibility representation
with (not necessarily convex) simple polygons each having at most k vertices.

The interesting fact that for every k there is a graph that is not k-representable follows from the
following theorem.

Theorem 3.1 There is an o > 0 and there are graphs Go,G3,Gy,...,Gy,... such that G, has n

vertices and is not ngg"n

|-representable.
The theorem follows quite easily from the following lemma.

Lemma 3.2 There is a 8 such that for all n,k, there can be at most 2°7%198("%) mmany graphs with a
fized vertez set V = {v1,...,v,} that are k-representable.



Proof: We consider an arbitrary k-representable graph G = (V, E) with V' = {v1, ..., v, }. Obviously,
if G is k-representable then there exists a representation by polygons Py, ..., P, parallel to the zy-plane
with at most k edges each. Without loss of generality we can assume that P; has z-coordinate ¢ for
1=1,...,n.

Consider the projections of all the polygons into the zy-plane. Extend each edge s of each polygon
to a line /;, obtaining a family £ of at most m = nk not necessarily distinct straight lines. Each edge
s and, thus, each line /s can be oriented by the convention that the polygon lies, say, left of s. Now,
G can be uniquely identified by the information in the following items.

1. the arrangement of the lines in L.

2. Each polygon F;,i = 1,...,n, is identified by the description of a counterclockwise tour around
its boundary. In particular, the starting point s is given by a line [ € £ containing it and by a
number ng < m meaning that s is the nf)" intersection point when traversing [ in the direction of
its orientation. Then a sequence of at most k numbers ny,...,n, € {1,...,m} is given, meaning
that the tour starts at s, goes straight on [ for n; intersections, then turns into the oriented line
crossing there, goes straight for ny intersections, etc. Clearly, this describes a tour within the
arrangement.

Clearly, the information in the above items uniquely identifies the pairwise intersections of the
projections of the polygons into the zy-plane. This together with the convention that P; has z-
coordinate equal to ¢ makes it possible to determine all visibilities, and hence G itself.

It remains to count the number of different possibilities for the data in the above items:

1. As is well known (see [A]), the number of different arrangements of m oriented straight lines is
at most 261198 for some constant 3; > 0.

2. For each polygon there are m possibilities for the starting line [, and at most m possibilities for
each number ng, ...,n,, 7 < k. So the number of possibilities per polygon is bounded by m**2.
Altogether, the number of possibilities is at most m* 27 which is at most 282™m198™ for some
constant Gy > 0.

Multiplying the upper bounds in 1 and 2 gives the desired total upper bound of 2°™1°8™ where
B =B+ Be- O

Proof of Theorem 3.1: Since there are exactly 2(5) graphs with vertex set V there are at least

2(3)/7»! (pairwise nonisomorphic) graphs with n vertices, which is more than 207" for some § > 0.

Define a = min(1, 53). Then a > 0 and for any k = | 2% | it holds that k <n and k < g5 .

By Lemma 3.2 there exist at most
9Bnklog(nk)
< 95135 g l0g(n?)
— 25n2

many graphs with n vertices that are k-representable. Since there are more than 20n? many pairwise
nonisomorphic graphs with n vertices there must be one that is not k-representable. O

On the other hand, every graph with n vertices is (2n + 1)-representable, which will be shown in
the next section.
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4 The Universal Construction

This section gives a general construction which produces for any graph G = (V, E) a 3-dimensional
visibility representation for G. The construction can be carried out in a straight-forward manner by an
algorithm that runs in O(n?) time, where n is the number of vertices of G. Each vertex is represented
by a polygon of O(n) sides (the polygons may differ in shape).

If desired, the basic construction can be modified easily and with the same time complexity to
produce convex polygonal (or polyhedral) pieces. Furthermore, these pieces can be made to have all
vertex angles of at least m/6. Choosing a suitable encoding we can assume that all operations have
rational operands so our run time bound holds for a unit cost integer RAM.

4.1 The Basic Pieces

Let W denote a regular, convex 2n-gon centered at the origin O, and let wy,wo, ... ws, denote the
locations of its vertices. We use W to define the basic pieces representing the vertices of G. For this
purpose, let X denote a regular, convex n-gon with vertices located at the odd-indexed vertices of
W. Imagine adding triangular “tabs” to X to obtain W as follows. Call edge wo;_1,w9;11 of X tab
position i, and for each ¢ from 1 to n, add a triangle whose vertices are wo;_1,wo;, woi+1 to X at tab
position 7. W is X together with its tabs (see Fig. 11).

The pieces of our construction are obtained from X in a similar way, except that the tabs may
vary in size. The construction may attach to tab position : of X a tab T; with vertices wa;_1,%;, wo;4+1.
Vertex t; is called the tab vertex of T;. In general, T; lies inside the corresponding tab on W, with
vertex t; lying on the radial line through O and wy;.

position 2 \_)

77N

position 3

position 4

Figure 11: Regular n-gon X for n = 4 tabs.

Definition 4.1 Let po; denote the point of intersection of the radial line through O and wy; with the
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line through wo; 1 and wy;t1. The size s; of tab T; is defined by s; = nd(t;,pei)/d(we;, pe;) where d
denotes the Fuclidean distance.
A tab of full size n has its tab vertex t; positioned at wo;.

We depth-first search G, assigning to each vertex a number ¢ indicating the order in which the
search discovers the vertex. The i** vertex discovered is represented by a polygon P; consisting of a
wedge-shaped portion of X with tabs of various sizes adjoined. See Fig. 12.

i i position i

-

""2(i+ni )+1

Figure 12: Piece F;.

The bounding wedge of P; is defined by two radial segments emanating from O, one to we;—; and
the other to wy(i1n,)41, for some n; > 0 to be determined. Between these radial segments, X has
1+ n; tab positions. Each piece P; has a tab of full size n at its lowest indexed tab position, i.e., at
position 7. Hence P; has a tab vertex t;(P;) = wg;. For i < j < i+ n;, the existence and location of
the tab vertex t;(F;) of tab T;(P;) depends on the size s;(F;) assigned to tab T;(F;).

The idea behind the construction is as follows. Realize a depth-first search tree for G by polygonal
pieces floating parallel to the zy-plane. Arrange these pieces so that the piece P(v) representing a
vertex v lies above the pieces representing vertices in the subtree rooted at v, with the zy-projection of
P(v) containing exactly the projections of the pieces P(w) for which w belongs to the subtree rooted
at v. Thus each piece has the possibility of seeing its ancestors and descendants, but nothing else.

Unless G itself is a tree, depth-first search discovers back edges, i.e., edges of G that do not appear
as tree edges in the depth-first search tree. A familiar property of depth-first search trees for graphs
is that each back edge must connect an ancestor, descendant pair in the tree. The purpose of adding
tabs of varying sizes is to control which ancestors and descendants see each other.

Suppose the depth-first search tree has a back edge between ¢ and ancestor j of . Our construction

12
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Figure 13: Back edges from ¢ and their inverted staircase of tabs.

creates a visibility between the tab T; of full size n in position 4 on P; and a tab in position ¢ on P;.
See Fig. 13.

Of course there may be back edges in the tree joining i to k, where k lies on the path from i to
its ancestor j. (Consider k = b,c,d in the figures.) In this case, our construction creates a visibility
between the tab in position 7 on P, and the full sized tab in position 7 on P;. Note that the visibility
between the tabs in position 7 on P, and P; must be blocked if the graph G contains no edge between

J and k. Hence, for example, the tabs in position 7 on P, and P; must be blocked from seeing each
other by intervening tabs.

Blocking inappropriate visibilities between tabs is achieved by creating an inverted staircase of
tabs above the tab in position 4 on P; and the tab in position i on P;. The tab in position 4 has full
size n. The tab in position ¢ on the piece immediately above P; is assigned size 0, as this piece sees
P; in any case. The tab on the next piece above P; is also assigned size 0 unless there is a back edge
from 7 to the vertex corresponding to this piece; in this case, the tab size is increased to 1. Tab size
remains the same or increases with increasing integer z values. In fact, tab size increases precisely
when P; and the piece at the z value in question should be mutually visible. Thus the size of the tab
in position 4 on P; is equal to the number of back edges of the form i, k, where £ lies on the path from
i to j (possibly k = j).

Lemma 4.2 Let G be a connected graph. The following assignment of parameters to the piece repre-
senting an arbitrary vertex v of G gives a 3-dimensional visibility representation for G:

e v is assigned its depth-first search order i;

13



the index n; of v is set equal to the number of descendants of v in the depth-first search tree;

the tab T;(P;) in position i on P; is assigned size s;(P;) = n;

fori < j <i+n; the size s;(FP;) of the tab T;(P;) on P; at position j is set equal to the number
of nodes on the tree path from j, up to and including i, that receive a back edge from j; and

the z coordinate of P; is set equal to 1 less than the z coordinate of its parent.

Proof:

A well-known property of depth-first search ordering is that the descendants of v are numbered
with consecutive integers, beginning with i+ 1. Thus P; has, in addition to a tab of full size at position
i, a tab (possibly of size 0) in position j for 1 < j <14 + n,.

It is easy to check that the pieces have disjoint interiors and that P; representing a vertex v cannot
see any Py representing a vertex w unless w is either an ancestor or a descendant of v. (Note that
if two pieces have the same parent, they are assigned the same z-coordinate and may share an edge.
However, the pieces can be perturbed slightly to make all the pieces disjoint.) Clearly, P; sees its
parent (if any) and all of its children.

Let us check that if the depth-first search tree has a back edge from v, where v is numbered i, to
some ancestor u of v, where w is numbered k, then P; and P; are mutually visible. P has a tab in
position ;. This tab aligns with the tab of full size in position i on F;. Furthermore, the tab on P; has
size greater than the intervening tabs in position ¢, as the number of back edges from 7 on the path
from 7 to k is at least one greater than the number of back edges on the path from ¢ to &, up to but
not including k. Hence P; and Pj have a line of visibility between their tabs at position 7. Thus all
back edges are represented.

Now we check that no inappropriate visibilites are present. Clearly pieces corresponding to vertices
in disjoint subtrees do not even overlap in projection, so no visibilities occur between pieces that are
not ancestor-descendant pairs. Now consider a vertex w, numbered k, and a vertex v, numbered %,
where k is an ancestor of 7 but not the parent of 7. Suppose there is no edge (u,v) € G but that pieces
P; and Py are mutually visible. Clearly any visibility line must pass through some tab 7;(FP;) on P
and some corresponding tab T;(Fj) on Py.

Suppose first that 7 = i. Of course tab T;(P;) has full size. Because there is no back edge from 4
to k, and because k is not the parent of ¢, tab T;(Pj) has the same size (possibly 0) as the tab T; of
the piece immediately below Py on the path of pieces between P; and Py. This piece blocks visibility
between T;(i) and T;(k).

Now suppose that j > i. Then the tab T} of the piece immediately above F; in the path of pieces
between P; and Py has size equal to or greater than the size of T;(F;). Hence the tabs in position j
on P; and P, are not visible to one another.

This completes the proof that no inappropriate visibilities occur, and hence the proof of the lemma.
O

Now we can state the main result of this section.

Theorem 4.1 FEvery graph on n vertices is 2n-representable. Furthermore, a representation can be
constructed in O(n?) time.
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Proof: If G is connected, the statement holds by Lemma 4.2. If G is not connected, a representation
can be obtained by representing each connected component and then translating these representations
so that their projections do not overlap.

It is straightforward to design an algorithm that runs in O(n?) time for carrying out the construc-
tion of Lemma 4.2. This can be done by modifying the usual depth-first search algorithm to compute
the description of P; at the time the search returns from 7 to the parent of 7.

To facilitate the computation of P;, a list B; is maintained that records the number j of any vertex
for which (4,4) is a back edge to i. When search of the subtree rooted at 7 has been completed, the
value of n; is set to the number of the most recently discovered vertex. The tab size of T;(F;) is set to
n. Then the remaining sizes for tabs on P; are initialized to 0. The tab sizes of tabs on the children
of P; are copied to the sizes of the tabs in the same positions on F;. Finally, the list B; is processed.
For each j € B;, the tab size for the tab in position j on P; is increased by 1. The z-coordinate of P;
can be determined when 7 is first labeled, as it is equal to 1 less than the z-coordinate of the parent
of P;,. Hence the computation of the description of P; can be completed when the search is about to
return from 7 to its parent. Each tab on P; is computed in constant time. |

We can modify our construction to obtain various other kinds of objects to represent the vertices
as the corollary below describes

Corollary 4.1 The construction of Lemma 4.2 can be modified to produce objects for representing the
graph vertices that are convex polygons, or polygons (convez if desired) for which each vertex angle is
larger than some positive constant, or polyhedrons, or conver polyhedrons.

Proof: To produce convex pieces, use a W with sufficiently many vertices (12n) that each piece has
a vertex angle at O of at most /6. To produce fat pieces, move the vertex at O sufficiently close to
the chord through the first and last vertices of P; shared with W. To produce polyhedral pieces, take
the cross product of P; with a short line segment parallel to the z axis. O

5 Conclusion

In this paper, we have studied universality properties of 3-dimensional representations for graphs
and have shown that universal representations exist. Whether representations can be found that are
visually attractive and useful we consider an intriguing topic for future research. In addition, it would
be interesting to know if the construction of the last section can be modified so that it runs faster on
sparse graphs (i.e. considering the run time as a function of the number of edges).
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