1. Cross product of two chooses:

$$
T\left(\binom{\omega}{a_{1}} \times\binom{\omega}{a_{2}}\right)=\binom{a_{1}+a_{2}}{a_{1}}=\frac{\left(a_{1}+a_{2}\right)!}{a_{1}!a_{2}!}
$$

2. Cross product of k chooses:

$$
T\left(\binom{\omega}{a_{1}} \times\binom{\omega}{a_{2}} \times \ldots \times\binom{\omega}{a_{k}}\right)=\binom{a_{1}+a_{2}+\ldots+a_{k}}{a_{1}, a_{2}, \ldots, a_{k}}=\frac{\left(a_{1}+a_{2}+\ldots+a_{k}!\right)}{a_{1}!a_{2}!\ldots a_{k}!}
$$

3. Yes: the problem $T\left(\binom{\omega^{2}}{a}\right)$ can be broken down into several "smaller" problems in the format above.
4. $T\left(\binom{\omega^{2}}{a}\right)$ is the Schroeder's fourth problem (OEIS A000311) number of $a+1$. It's also referred to as the number of total partitions of $a+1$. For example, $T\left(\binom{\omega^{2}}{3}\right)=26$.
5. The sequence $T\left(\binom{\omega^{3}}{a}\right)$ is solved for exactly but doesn't seem to be in the OEIS. Starting at $a=1$, the sequence is $1,14,509,35839,4154652$, $718142257,173201493539,55580900954954,22900450653281951,11782966082685899537$ (the last term is $a=10$). We haven't yet tried to solve for a prettier recurrence than the super-general one below; given that $T\left(\binom{\omega^{2}}{a}\right)$ has a nicer recurrence it's reasonable to expect that $T\left(\binom{\omega^{3}}{a}\right)$ has one as well.
6. The general recurrence for these types of problems is

$$
\begin{aligned}
& T\left(\binom{\omega^{d_{1}}}{a_{1}} \times\binom{\omega^{d_{2}}}{a_{2}} \times \ldots \times\binom{\omega^{d_{m}}}{a_{m}}\right) \leq \\
& \sum_{\substack{k=1 \\
d_{k}=1 \\
a_{k} \geq 0}}^{m} T\left(\binom{\omega^{d_{1}}}{a_{1}} \times\binom{\omega^{d_{2}}}{a_{2}} \times \ldots \times\binom{\omega^{d_{k-1}}}{a_{k-1}} \times\binom{\omega^{d_{k}}}{a_{k}-1} \times\binom{\omega^{d_{k+1}}}{a_{k+1}} \times \ldots \times\binom{\omega^{d_{m}}}{a_{m}}\right)+ \\
& \sum_{\substack{k=1 \\
d_{k}>1}}^{m} \sum_{i=1}^{a_{k}} T\left(\binom{\omega^{d_{1}}}{a_{1}} \times\binom{\omega^{d_{2}}}{a_{2}} \times \ldots \times\binom{\omega^{d_{k-1}}}{a_{k-1}} \times\binom{\omega^{d_{k}-1}}{i} \times\binom{\omega^{d_{k}}}{a_{k}-i} \times\binom{\omega^{d_{k+1}}}{a_{k+1}} \times \ldots \times\binom{\omega^{d_{m}}}{a_{m}}\right)
\end{aligned}
$$

for all integers $d_{k}, a_{k} \geq 0$ where $\exists k: d_{k}, a_{k}>0$. The base case is where $\forall k: d_{k}, a_{k}=0$ where the value is 1 .

