A PROOF OF A PARTITION THEOREM FOR $[\mathbb{Q}]^{n}$

VOJKAN VUKSANOVIC

(Communicated by Alan Dow)

Abstract

In this note we give a proof of Devlin's theorem via Milliken's theorem about weakly embedded subtrees of the complete binary tree $2^{<\mathbb{N}}$. Unlike the original proof which is (still unpublished) long and uses the language of category theory, our proof is short and uses direct combinatorial reasoning.

A tree is any partially ordered set (T, \leq) such that for any $t \in T$ the set $\{s \in$ $T: s \leq t\}$ is well ordered by the induced order. Given a tree T we say that S is a subtree of T if $S \subseteq T$. From now on we will suppose that every tree has a root, i.e. we will suppose that every tree has the unique minimal element. We will also suppose that that for a given tree T, for every $t \in T,\{s \in T: s \leq t\}$ is finite. By $\operatorname{Succ}(t, T)$ we will denote the set $\{s \in T: t \leq s\}$ and by $\operatorname{Pred}(t, T)$ we will denote the set $\{s \in T: s \leq t\}$. Given a tree T and $t \in T$ by $I S(t, T)$ we will denote the set of immediate succesors of t in T. By $T(n)$ we will denote the n-th level of T, i.e. the set of all $t \in T$ such that $|\{s \in T: s \leq t, s \neq t\}|=n$. For a tree T, height (T) will denote $\sup \{n+1: T(n) \neq \emptyset\}$. We say that a tree (T, \leq) is perfect if for every $t \in T$ there is $s \in T$ such that $t \leq s$ and $|I S(s, T)| \geq 2$. Given a tree T and nodes s and t in T by $s \wedge t$ we will denote the maximal node in T which is below both s and t. If $A \subseteq T$, by $\wedge(A)$ we will denote the \wedge - closure of A, the smallest subset A^{\prime} of T containing A such that $\left(\forall s, t \in A^{\prime}\right) s \wedge t$ belongs to A^{\prime}.

Most of the time we shall be working inside the complete binary tree $2^{<\mathbb{N}}$ ordered by end-extension which we denote by \subseteq. We shall also need to consider the two orderings on $2^{<\mathbb{N}},<_{l e x}$ and $\leq_{\mathbb{Q}}$, which we introduce in the following two definitions.

Definition 0.1. Let $s, t \in 2^{<\mathbb{N}}$. We say that s is lexicographically less than t and write $s<_{l e x} t$ provided the following hold: s and t are incomparable and if $i \in \mathbb{N}$ is the maximal integer such that $s \upharpoonright i+1=t \upharpoonright i+1$, then $s(i+1)<t(i+1)$.

Definition 0.2. Given $s, t \in 2^{<\mathbb{N}}$ put $t \leq \mathbb{Q} s$ iff $s=t$ or $\left(\left(s \subseteq t\right.\right.$ and $\left.s^{\wedge} 0 \subseteq t\right)$ or $\left(t \subseteq s\right.$ and $\left.t^{\wedge} 1 \subseteq s\right)$ or (s and t are incomparable and $\left.t<_{l e x} s\right)$).

Note that while $\leq_{\mathbb{Q}}$ is a total order $<_{l e x}$ is not. But, $<_{l e x}$ is a total order on any antichain of $2^{<\mathbb{N}}$ and in fact it agrees with $\leq_{\mathbb{Q}}$. It is also easy to check that $\left(2^{<\mathbb{N}}, \leq_{\mathbb{Q}}\right)$ has the order type η.

Let $A \in\left[2^{<\mathbb{N}}\right]^{n}$ for some $n \in \mathbb{N}$. From now on by $\left\{a_{1}, \ldots, a_{n}\right\}_{\leq_{\mathbb{Q}}}$ we will denote the enumeration of elements of A with respect to $\leq_{\mathbb{Q}}$.

[^0]

Figure 1.

Definition 0.3. Suppose that S is a subtree of T. We say that S is strongly embedded in T (see Figure 1 for the case $T=2^{<\mathbb{N}}$) if the following hold:

1) If s is a nonmaximal in S and $t \in I S(s, T)$, then $\operatorname{Succ}(t, T) \cap I S(s, S)$ is a singleton,
2) If $\operatorname{height}(T)=\omega$ and $\operatorname{height}(S) \leq \omega$ there is strictly increasing function $f: \operatorname{height}(S) \rightarrow \omega$ such that $S(n) \subseteq T(f(n))$ for each $n \in \operatorname{height}(S)$.

Suppose in the previous definition we drop requirement 2), and instead of 1) we have:
1^{\prime}) If s is a nonmaximal in S and $t \in I S(s, T)$, then $S u c c(t, T) \cap I S(s, S)$ is either a singleton or empty.
Then we say that S is weakly embedded in T.
By $W E m^{<\omega}(T)$ we will denote the set of all finite weakly embedded subtrees of T.
Definition 0.4. Given a strongly embedded subtree T of $2^{<\mathbb{N}}$ and trees A and B weakly embedded in T, we say that A and B have the same embedding type and we write $A \sim_{E m} B$ provided the following hold:

1) There is a bijection $f: A \rightarrow B$ satisfying $a \subseteq a^{\prime}$ iff $f(a) \subseteq f\left(a^{\prime}\right)$.
2) If $a \in A \cap T(n), a^{\prime} \in A \cap T\left(n^{\prime}\right), f(a) \in B \cap T(m)$, and $f\left(a^{\prime}\right) \in B \cap T\left(m^{\prime}\right)$, then $n<n^{\prime}$ iff $m<m^{\prime}$.
3) Suppose $n \in \omega$ and there is $d \in A \cap T(n)$. Suppose $a \in T(n)$ with ($\operatorname{Succ}(a, T) \backslash$ $\{a\}) \cap A \neq \emptyset$. Pick $c \in(\operatorname{Succ}(a, T) \backslash\{a\}) \cap A$, and let b be the unique node with $b \in \operatorname{Pred}(c, T) \cap T(n+1)$. Suppose $f(d) \in T(m)$, and write a^{\prime} and b^{\prime} for the unique nodes $a^{\prime} \in(\operatorname{Pred}(f(c), T) \backslash\{f(c)\}) \cap T(m)$ and $b^{\prime} \in \operatorname{Pred}(f(c), T) \cap T(m+1)$. Then we require that $a^{\wedge} 0 \subseteq b$ iff $a^{\prime \wedge} 0 \subseteq b^{\prime}$ (see Figure 2).

Note that this is not the same as the original definition given in [3]. Originally, we have that in a finitely branching tree T, for each $t \in T$ there is a linear order \prec on $I S(t, T)$. In other words, for each $t \in T, I S(t, T)$ can be enumerated as

$$
I S(t, T)=\{i s(t, T)(j): j \in|I S(t, T)|\}
$$

so that

$$
i s(t, T)(i) \prec i s(t, T)(j) \Leftrightarrow i \in j \in \mid I S t, T) \mid .
$$

Figure 2.

Also, in 3) of the previous definition of the embedding type of a weakly embedded subtree, it is required that for each $i \in|I s(a, T)|, b=i s(a, T)(i)$ iff $b^{\prime}=i s\left(a^{\prime}, T\right)(i)$. In the case of strongly embedded subtrees of the complete binary tree we naturally take the ordering $<_{l e x}$ to be the linear order \prec. Then it is easy to see that our definition is equivalent to the original one when working with strongly embedded subtrees of $2^{<\mathbb{N}}$. We write $E m^{A}(T)$ for the collection of all weakly embedded subtrees B of T with $A \sim_{E m} B$. The following theorem, which is due to Milliken [3], is crucial for our proof.

Theorem 0.5. Suppose that T is a perfect strongly embedded subtree of $2^{<\mathbb{N}}$, that $A \in W E m^{<\omega}(T)$, and that $E^{A}(T)=\bigcup_{i \in r} C_{i}$. Then there is a perfect strongly embedded subtree S of T and $k \in r$ such that $E^{A}(T) \cap W E m^{<\omega}(S) \subseteq C_{k}$.

We will now state the theorem which is due to Devlin [2].
Theorem 0.6. We have:
1)

$$
\begin{array}{ll}
\text { 1) } & \eta \rightarrow(\eta)_{<\omega / t_{n}}^{n}, \\
\text { 2) } & \eta \nrightarrow(\eta)_{<\omega / t_{n}}^{n}<1
\end{array}
$$

$$
\text { where } t_{1}=1 \text { and } t_{n}=\sum_{i=1}^{n-1}\binom{2 n-2}{2 i-1} t_{i} t_{n-i} \text { for } n \geq 2
$$

We will prove three lemmas which will prove Theorem 0.6. The first two prove $1)$, and the last proves 2).

From now on we identify the rationals with the set of all finite sequences of 0's and 1's.

Given a colouring $c:\left[2^{<\mathbb{N}}\right]^{n} \rightarrow r$, it naturally induces a colouring $c^{\prime}: \mathcal{F} \rightarrow r$ where \mathcal{F} is a family of all subsets A of $2^{<\mathbb{N}}$ such that there is an $A^{\prime} \in\left[2^{<\mathbb{N}}\right]^{n}$ and $A=\wedge\left(A^{\prime}\right)$. It is easy to see that we have only finitely many different embedding types which appear as a \wedge - closure of n-element subsets of $2^{<\mathbb{N}}$. For example the \wedge - closure of a pair in $2^{<\mathbb{N}}$ gives us seven different embedding types. These are (see Figure 3) $\{\{\emptyset, 0\},\{\emptyset, 1\},\{\emptyset, 0,1\},\{\emptyset, 0,10\},\{\emptyset, 0,11\},\{\emptyset, 1,00\},\{\emptyset, 1,01\}\}$.

Hence, we can apply Theorem 0.5 successively finitely many times to get a perfect strongly embedded subtree T of the complete binary tree $2^{<\mathbb{N}}$ such that if $A=$

Figure 3.

Figure 4.
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ are two different n-element subsets of T and if $\wedge(A) \sim_{E m} \wedge(B)$, then $c(A)=c(B)$. We can assume without loss of generality that we have the complete binary tree $2^{<\mathbb{N}}$ such that all n-element subsets which have \wedge - closure of the same embedding type are monochromatic.

It turns out that there is a subset X of $2^{<\mathbb{N}}$ large enough in the sense that it has order type η under $<_{l e x}$ and which has the property that for each n the members of $[X]^{n}$ realise the minimal possible number of embedding types over all subsets of $2^{<\mathbb{N}}$ of order type η under $\leq_{\mathbb{Q}}$. We introduce the set X in the following definition.

Definition 0.7. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an enumeration of the complete binary tree with the property that for any two e_{n}, e_{m} we have $m<n$ iff $\left|e_{m}\right|<\left|e_{n}\right|$ or $\left(\left|e_{m}\right|=\left|e_{n}\right|\right.$ and $\left.e_{m}<_{l e x} e_{n}\right)$. Define $\phi: 2^{<\mathbb{N}} \rightarrow 2^{<\mathbb{N}}$ by induction as follows: $\phi(\emptyset)=\emptyset$ and given $\phi(t)$ if $t^{\wedge} i=e_{n}$ put $\phi\left(t^{\wedge} i\right)=\phi(t)^{\wedge} i^{\wedge} 00 \ldots 0$ and $\left|\phi\left(t^{\wedge} i\right)\right|=3 n$, where $i=0,1$. From now on by W and X we will denote the following two sets, $W=\phi^{\prime \prime} 2^{<\mathbb{N}}$ and $X=\left\{\phi(t)^{\wedge} 01: t \in 2^{<\mathbb{N}}\right\}$ (see Figure 4).

Note that X is an antichain and that $\left(X,<_{l e x}\right)=\left(X \leq_{\mathbb{Q}}\right)$ has the order type η. Let $A \in[X]^{n}$ be arbitrary. It is easy to see that $|\wedge(A)|=2 n-1$. It is also easy to see that for any $Y \subseteq X$ we have $\wedge(Y)=\{s \wedge t: s, t \in Y\}$. Let $\wedge(A)=\left\{a_{1}, a_{2}, \ldots, a_{2 n-1}\right\}_{\leq_{Q}}$. Define a well-ordering $<_{W_{A}}$ of the set $\{1,2, \ldots, 2 n-1\}$ as follows: $i<_{W_{A}} j$ iff $\left|a_{i}\right|<\left|a_{j}\right|$. Then we have the following lemma.

Lemma 0.8. Let A and B be two n-element subsets of X. If $\wedge(A) \sim_{E m} \wedge(B)$, then $<_{W_{A}}=<_{W_{B}}$.
Proof. We will prove this by induction on n. For $n=1$ the lemma holds trivially. Suppose that the lemma is true for every $k \leq n$ and let us prove the lemma for $n+1$. Let $A, B \in[X]^{n+1}$ and let $A^{\prime}=\left\{a_{1}, a_{2}, \ldots, a_{2 n+1}\right\}_{\leq_{Q}}$ and $B^{\prime}=\left\{b_{1}, b_{2}, \ldots, b_{2 n+1}\right\}_{\leq_{Q}}$ where $A^{\prime}=\wedge(A)$ and $B^{\prime}=\wedge(B)$. Let a_{k} and b_{l} be the roots of A^{\prime} and B^{\prime} respectively. Set $A_{1}=\left\{x \in A^{\prime}: a_{k}{ }^{\wedge} 0 \subseteq x\right\}, A_{2}=\left\{x \in A^{\prime}: a_{k}{ }^{\wedge} 1 \subseteq x\right\}$ and similarly define B_{1} and B_{2}. Then, if $f: A^{\prime} \rightarrow B^{\prime}$ is a bijection witnessing $A^{\prime} \sim_{E m} B^{\prime}$ it is easy to see that $f\left(a_{k}\right)=f\left(b_{l}\right)$ and therefore $k=l$. Also, it is easy to see that $f \upharpoonright A_{1}$ is a bijection from A_{1} onto B_{1} witnessing $A_{1} \sim_{E m} B_{1}$ and $f \upharpoonright A_{2}$ is a bijection from A_{2} onto B_{2} witnessing $A_{2} \sim_{E m} B_{2}$. Therefore, we can apply inductive hypothesis to A_{1}, B_{1} and to A_{2} and B_{2} and easily conclude the lemma.

Hence, from the lemma above one concludes that the embedding type of the $\wedge(A)$ of some $A \in[X]^{n}$ is determined completely by its well-ordering $<W_{A}$. This will help us to count the number of possible colours for n-tuples of X.

Lemma 0.9. For each n let t_{n} be the minimal number of embedding types which appear as the \wedge-closure of n-element subsets of X. Then

$$
t_{1}=1 \quad \text { and } \quad t_{n}=\sum_{i=1}^{n-1}\binom{2 n-2}{2 i-1} t_{i} t_{n-i}
$$

Proof. That $t_{1}=1$ is easy and well-known. So, suppose that $n>1$ and let A^{\prime} be the \wedge - closure of some n-element subset $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ in X. Set $B^{\prime}=\left\{x \in A^{\prime}: a^{\wedge} 0 \subseteq x\right\}$ and $C^{\prime}=\left\{x \in A^{\prime}: a^{\wedge} 1 \subseteq x\right\}$ where a is the root of A^{\prime}. Let $l=\left|\left\{a_{i}: a_{i} \in B^{\prime}\right\}\right|$ and $r=\left|\left\{a_{i}: a_{i} \in C^{\prime}\right\}\right|$. Note that $1 \leq l, r$ and $l+r=n$. Note also that $B^{\prime}=\wedge(B)$ and $C^{\prime}=\wedge(C)$ where $B=A \cap B^{\prime}$ and $C=A \cap C^{\prime}$. Note that for fixed $l, r \leq n$ we have by inductive hypothesis $t_{l} t_{r}$ different types of pairs $\langle B, C\rangle$. By the previous lemma structure A^{\prime} is completely determined by its well-ordering $<_{W_{A}}$. The well-ordering $<_{W_{A}}$ interlaces the well-orderings $<_{W_{B}}$ and $<_{W_{C}}$ and adjoins a as the $<_{W_{A}}$ minimal element. (For $n=2$ and $n=3$ see Figure 6 and Figure 7 respectively.) The number of possible ways $<_{W_{B}}$ and $<_{W_{C}}$ can be interlaced to form $<_{W_{A}}$ is $\binom{\left|B^{\prime}\right|+\left|C^{\prime}\right|}{\left|B^{\prime}\right|}=\binom{2 n-2}{2 l-1}$. Therefore, the total number of possibilities for A^{\prime} is

$$
t_{n}=\sum_{l=1}^{n-1}\binom{2 n-2}{2 l-1} t_{l} t_{n-l}
$$

This proves 1) of Devlin's theorem. The next lemma will prove 2).
Lemma 0.10. Let $S \subseteq X$ and let S have $\leq_{\mathbb{Q}}$ - order type η. Then for every $P \in[X]^{n}$ there is $A \in[S]^{n}$ such that $\wedge(P) \sim_{E m} \wedge(A)$.

Proof. Set $S^{\prime}=\left\{x \in W\right.$: both $\left\{s \in S: x^{\wedge} 0 \subseteq s\right\}$ and $\left\{s \in S: x^{\wedge} 1 \subseteq s\right\}$ are densely ordered by $\left.\leq_{\mathbb{Q}}\right\}$. We will prove that S^{\prime} is a perfect subtree. Let s^{\prime} be the root of the $\wedge(S)$. Note that $s^{\prime} \in W$. Put $U=\left\{t \in S: s^{\prime \wedge} 0 \subseteq t\right\}$ and $V=\left\{t \in S: s^{\prime \wedge} 1 \subseteq t\right\}$. Then U and V are nonempty, $U \cup V=S$ and $\forall u \in U$ and $\forall v \in V$ we have that $u \leq_{\mathbb{Q}} v$. Since S has order type η, U and V are densely ordered by $\leq_{\mathbb{Q}}$ and $s^{\prime} \in S^{\prime}$. Given $s \in S^{\prime}$ put $U=\left\{t \in S: s^{\wedge} 0 \subseteq t\right\}$ and let $U^{\prime}=U \backslash\{u \in U: u$ is an

Figure 5.

Figure 6. Embedding types in the case $n=2$
endpoint of the dense linear order $\left.\left(U, \leq_{\mathbb{Q}}\right)\right\}$. Let u be the \subseteq - least node of the $\wedge\left(U^{\prime}\right)$. As above, both $\left\{w \in U^{\prime}: u^{\wedge} 0 \subseteq w\right\}$ and $\left\{w \in U^{\prime}: u^{\wedge} 1 \subseteq w\right\}$ are densely ordered by $\leq_{\mathbb{Q}}$. Because the only points deleted from U to form U^{\prime} were endpoints, $\left\{w \in U: u^{\wedge} 0 \subseteq w\right\}$ and $\left\{w \in U: u^{\wedge} 1 \subseteq w\right\}$ are also both densely ordered by $\leq_{\mathbb{Q}}$. Hence $u \in S^{\prime}$. By the same argument, $v \in S^{\prime}$ is found such that $s^{\wedge} 1 \subseteq v$. Note that $\left|I S\left(s, S^{\prime}\right)\right|=2$ for every $s \in S^{\prime}$. Let $f: S^{\prime} \rightarrow S$ be a fixed one-to-one function such that

$$
\text { a) } \quad s^{\wedge} 0 \subseteq f(s)
$$

for every $s \in S^{\prime}$. It is easy to define such a function by induction because by the construction $\left\{s \in S: x^{\wedge} 0 \subseteq s\right\}$ is infinite for every $x \in S^{\prime}$. Let Z be the perfect subtree of S^{\prime} (see Figure 5) with the property that for every $x, y \in Z$:
b) $|x|<|y|$ iff $|x|<|f(y)|$ iff $|f(x)|<|y|$ iff $|f(x)|<|f(y)|$,
c) if $x \in Z(m), y \in Z(n)$, then $|x|<|y|$ iff $m<n$ or $\left(m=n\right.$ and $\left.x<_{l e x} y\right)$.

Again, it is easy to construct such a subtree because S^{\prime} is perfect. Define by induction a bijection $\psi: W \rightarrow Z$ as follows: put $\psi(\operatorname{root}(W))=\operatorname{root}(Z)$. Having defined $\psi \upharpoonright \bigcup_{k \leq n} W(k)$, let $W(n+1)=\left\{w_{1}, \ldots, w_{2^{n+1}}\right\}$ and $Z(n+1)=\left\{z_{1}, \ldots, z_{2^{n+1}}\right\}$ be enumerations of $n+1$-st levels of W and Z respectively such that for all $1 \leq i, j \leq 2^{n+1}$ we have $i<j$ iff $\left|w_{i}\right|<\left|w_{j}\right|$ iff $\left|z_{i}\right|<\left|z_{j}\right|$. Then put $\psi\left(w_{i}\right)=z_{i}$ for all $1 \leq i \leq 2^{n+1}$. Note that we must have necessarily:

Figure 7. Embedding types in the case $n=3$
d) $w_{1}{ }^{\wedge} 0 \subseteq w_{2}$ iff $\psi\left(w_{1}\right)^{\wedge} 0 \subseteq \psi\left(w_{2}\right)$ for every $w_{1}, w_{2} \in W$ and
e) $\left(w_{1} \wedge w_{2}\right)^{\wedge} 0 \subseteq w_{1}$ iff $\left(\psi\left(w_{1}\right) \wedge \psi\left(w_{2}\right)\right)^{\wedge} 0 \subseteq \psi\left(w_{1}\right)$ for every $w_{1}, w_{2} \in W$.

Let $P=\left\{p_{1}, \ldots, p_{n}\right\}_{\leq_{\mathbb{Q}}} \in[X]^{n}$. Let $P^{\prime}=\left\{p: p^{\wedge} 01 \in P\right\}, A^{\prime}=\psi^{\prime \prime} P^{\prime}$ and $A=f^{\prime \prime} A^{\prime}$. Let $f^{\prime}: \wedge(P) \rightarrow \wedge(A)$ be an extension of f defined as follows: given $p_{i}, p_{i+1} \in P$ put $f^{\prime}\left(p_{i} \wedge p_{i+1}\right)=f\left(\psi\left(p_{i}^{\prime}\right)\right) \wedge f\left(\psi\left(p_{i+1}^{\prime}\right)\right)$ where $p_{i}^{\prime}, p_{i+1}^{\prime} \in P^{\prime}$ are unique elements such that $p_{i}^{\prime}{ }^{\wedge} 01=p_{i}$ and $p_{i+1}^{\prime}{ }^{\wedge} 01=p_{i+1}$, and for every $p_{i} \in P$ put $f^{\prime}\left(p_{i}\right)=f\left(\psi\left(p_{i}^{\prime}\right)\right)$ where $p_{i}^{\prime} \in P^{\prime}$ is the unique element such that $p_{i}^{\prime} \wedge 01=p_{i}$. It is easy to see that f^{\prime} is a bijection from $\wedge(P)$ onto $\wedge(A)$. Let us prove that f^{\prime} satisfies 1), 2) and 3) of Definition 0.4. 1) follows from the definition of ψ and f and f^{\prime}. By a), b) and c) we have that f^{\prime} satisfies 2), and 3) follows from a), d) and e). Hence, $\wedge(P) \sim_{E m} \wedge(A)$. This finishes the proof of the lemma.

References

1. D.Devlin, Some partition theorems and ultrafilters on ω, Ph.D. thesis, Dartmouth College (1979).
2. J.D.Halpern and H.Läuchli, A partition theorem, Trans. Amer. Math. Soc. 124 (1966), 360367. MR 34:71
3. K.Milliken, A Ramsey Theorem for Trees, J. Combinatorial Theory A 26 (1979), 215-237. MR 80j:05090

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada MS5 1A1

E-mail address: voja@math.toronto.edu

[^0]: Received by the editors March 29, 2001 and, in revised form, May 29, 2001.
 2000 Mathematics Subject Classification. Primary 05A18.
 Key words and phrases. Partitions of rationals.

