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574 JOHN GINSBURG AND BILL SANDS [Aug.—Sept.

defined in (3). Let r€ S'. Recall that c*(r)= R,(v). By direct computation,

veT(r)=fo(r)- T(T).
Hence f,(r)=v or f,(r)=R(v). But the former case occurs only when r=(0, £1), and then
R,(M)=v=1£®).
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MINIMAL INFINITE TOPOLOGICAL SPACES
JoHN GINSBURG AND BILL SANDS

In this note we will describe a collection of five infinite topological spaces having the
property that every infinite space contains one of the members of the collection as a subspace.
We denote the set of natural numbers by w. Consider the following five topologies with
underlying set w:

(i) discrete: all subsets of w are open;
(ii) indiscrete: the only open sets are w and J;
(iii) cofinite: the open sets are w, &, and all subsets of w whose complements are finite;
(iv) initial segment: the open sets are w, &, and all sets of the form [0,n]={kEw:k <n}
where n Ew;
(V) final segment: the open sets are w, &, and all sets of the form [n,w]={kEw:n <k}
where n €w.
We will establish the following result.

THEOREM. Every infinite topological space contains one of the preceding five spaces as a
subspace.

Note that no two of the five spaces are homeomorphic, and each of the five spaces is
homeomorphic to all of its infinite subspaces. It follows that these five spaces form the smallest
collection of infinite spaces satisfying the conclusion of the thearem.

Before proceeding with the proof, let us compare our result with the analogous situation in
some other mathematical structures.

(a) Let G be a graph with infinitely many vertices. Ramsey ([3], cf. [2, page 15]) showed that
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G must contain as a subgraph either the complete graph on countably many vertices or the
totally disconnected graph on countably many vertices.

(b) Let P be a partially ordered set with infinitely many elements. From Ramsey’s theorem it
follows that P must contain either an infinite chain or an infinite antichain. Since any infinite
chain will contain w if it is well ordered and w* (the dual of w) if it is not, P must contain one of
the partially ordered sets of Figure 1 as a subset.
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(c) Let L be a lattice with infinitely many elements. T. P. Whaley [4, Corollary 2.4] showed
that L must contain a sublattice isomorphic to w, w*, or the lattice M, of Figure 2. We feel it
worthwhile to include a proof of this result. If L contains an infinite chain, then L contains w or
w*, as desired; therefore we assume that all chains in L are finite. (This is a very strong
assumption. For example, it implies that L is complete.) Recall that for a,bE L, a is said to be a
lower cover of b if a<b and no element of L lies strictly between a and b. Every non-empty
subset of L contains a maximal and a minimal element; thus every element of L other than the
least element O contains a lower cover, and we may choose a € L such that the interval [0,q] is
infinite but [0, c] is finite for all lower covers ¢ of a. The set C of all lower covers of a must then
be infinite. Let ¢ € C. Since {xAc:xE C}C[0,c] is finite, there are an element b of L and an
infinite subset C; of C such that canx=2> for all x in C,. Choose an element,d of L which is
maximal with respect to the property that there exists ¢ € C and an infinite subset C, of C such
that cAx=d for all x € C,. The preceding argument shows that elements having this property
exist, hence such a choice is possible. Choose ¢, € C and an infinite subset C, of C such that
conx =d for all x € C,. Now choose ¢, € C,. Since [0, ¢,] is finite, there is an infinite subset C, of
C, such that c;aAx=c Ay for all x and y in C,. Furthermore, by the choice of 4, we must have
ciax=d for all x in C,. Choosing ¢, € C, and continuing this procedure, we obtain a sublattice
{a,d,cy,c,,C,,... } isomorphic to M.

(d) In striking contrast is the situation for groups. Here, the problem of finding all “minimal”
infinite groups seems to be very difficult. In fact, this problem may not even be meaningful! For
example, there might exist non-isomorphic infinite groups G and H such that G contains a
subgroup isomorphic to H, H contains a subgroup isomorphic to G, and every infinite subgroup
of G or H is isomorphic to G or H; in this case no infinite subgroup of G or H would seem to
qualify as a member of the list of “minimal” infinite groups. If such a list exists, it must be
infinite (for each prime p, consider the group of rational numbers between 0 and 1 with
denominators a power of p, under addition modulo 1). Furthermore, it must contain at least one
nonabelian group, since infinite Burnside groups have the property that every abelian subgroup
is finite (cf. [1, page 34]).
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Proof of the theorem. Let X be an infinite topological space. For a subset S of X we denote
the closure of S in X by clS. Consider the equivalence relation ~ on X defined by a~b iff
cl{a}=cl{b}. The subspace topology on each equivalence class is the indiscrete topology.
Therefore if some equivalence class modulo ~ is infinite, X contains a subspace homeomorphic
to (ii) above. So assume each equivalence class is finite. In particular, there are infinitely many
distinct equivalence classes. Choosing one element from each class gives rise to an infinite
subspace of X which satisfies the T} separation axiom. We may therefore assume, without loss of
generality, that X itself is 7y,

Now consider the relation < on X defined by a <b iff a €cl{b}. Notice that since X is Ty, <
is antisymmetric, and it follows that < is a partial order on X. If x <y, then every open subset
of X which contains x also contains y; furthermore, y &cl{x}, so there is an open subset of X
containing y but not x. The partially ordered set (X, <) is infinite, and hence contains a subset
isomorphic to one of the three partially ordered sets of Figure 1. Let 4={a,,a,...} with
a,<a,< --- be a subset of X isomorphic to w. Let G be a nonempty open subset of 4, and set
m=min{k Ew|a, € G}. Then G{ a|k >m}; moreover, for each n there is an open subset of X
containing a, but not a,_,, whence {a,|k >n} is open in 4 for each n. Thus, 4 with the subspace
topology is homeomorphic to w with the final segment topology (v). Similarly, let B=
{b1,bs,...},b,>b,> - - -, be a subset of X isomorphic to w*, and let G#B be a nonempty open
subset of B. It follows that m’ =max{k Ew|b, EG} exists and that G={b;|k <m'}; moreover,
for each n there is an open subset of X containing b, but not b, ,, whence {b,|k <n} is open in
B for each n. Thus, B with the subspace topology is homeomorphic to w with the initial segment
topology (iv). Therefore we assume (X, <) contains an infinite antichain, and it follows that the
subspace topology on this antichain will be T;. So, without loss of generality, we assume X is T',.

Thus points are closed, and so every cofinite subset of X is open in X. If the topology on X is
the cofinite topology, then any countable subspace of X is homeomorphic to (iii) above. Thus we
may assume that no infinite subspace of X carries the cofinite topology. In particular, there is a
non-empty open set U, in X whose complement is infinite. Choose xo € U,. Since the subspace
topology on X — U, is not the cofinite topology, there is an open set Uj in X such that Uj— U, is
non-empty and such that X —(U,U Uj) is infinite. Choose x; € U;— U, and let U;= U] —{x,}.
Then Uy, U, are open in X, xo € Uy— U,, x, € U;— Uy, and X —(U,U U)) is infinite. Suppose we
have chosen open sets Uy, Uj,..., U, in X and points xg,x,,...,X, of X such that

(a) for all i,j <n, x,€ U, iff i=j, and

(b) X— ul., U is infinite.

Then X — U’.,U; does not carry the cofinite topology, so there is an open set U, in X such
that (X— U, U)N U}, and (X—U?,U)—U,,, is infinite. Choose a point x,,; in

,:+1_ U;‘-ll]i and let Un+l= Ur:+l_ {xo,xl,-..,x”}. Then Uo, U],..., Un+] and X0s X1y eeesXpya1
satisfy (a) and (b) above for n+1. By induction, we obtain a sequence of open sets
{Uy Uy, Uy,...} in X and points {xg,x;,Xp,...} in X satisfying (a) and (b) for all n. Let
Y ={xg,X,X,... }. By (a), points of Y are open in Y. Thus Y is discrete and homeomorphic to
(i) above. B

References

1. S. I. Adjan, Burnside groups of odd exponent and irreducible systems of group identities, Word Problems,
Studies in Logic and the Foundations of Mathematics 71, North-Holland, 1973.

2. C. L. Liu, Topics in Combinatorial Mathematics, Mathematical Association of America, 1972.

3. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30 (1930) 264-286.

4. T. P. Whaley, Large sublattices of a lattice, Pacific J. Math., 28 (1969) 477-484.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WINNIPEG, WINNIPEG, MANITOBA, CANADA.
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA.

This content downloaded from 71.178.160.166 on Mon, 29 Dec 2025 21:56:42 UTC
All use subject to https://about.jstor.org/terms



	Contents
	p. 574
	p. 575
	p. 576

	Issue Table of Contents
	American Mathematical Monthly, Vol. 86, No. 7 (Aug. - Sep., 1979) pp. 527-620
	Front Matter
	Search and Its Optimization [pp. 527-540]
	Mathematics as an Objective Science [pp. 540-551]
	What is Mathematics? [pp. 551-557]
	The Cantor-Lebesgue Theorem [pp. 558-565]
	Miscellanea [pp. 565]
	The Bounded Consistency Theorem [pp. 566-571]
	Correction to "The `Why-Don't-You-Just...?' Barrier in Discrete Algorithms" [pp. 571]
	Mathematical Notes
	A Proof of the Hairy Ball Theorem [pp. 571-574]
	Minimal Infinite Topological Spaces [pp. 574-576]
	A Property of Quadratic Polynomials [pp. 577-579]

	Research Problems
	Some Questions About Arithmetic Progressions [pp. 579-582]

	Classroom Notes
	Less Than or Equal to An Exercise [pp. 582-584]
	The Curious Substitution $z = \tan \theta/2$ and the Pythagorean Theorem [pp. 584-585]
	There is no Differentiable Metric for R<sup>n</sup> [pp. 585-586]

	Mathematical Education
	A Computer-Graded Examination Technique with a Human Face [pp. 586-589]
	Teaching 200 Students in a Personal Way [pp. 589-590]

	Problems and Solutions
	Problems Dedicated to Emory P. Starke: S16-S18 [pp. 591-592]
	Elementary Problems: E2747-E2790 [pp. 592-593]
	Solutions of Elementary Problems
	E1243 [pp. 593]
	E2706 [pp. 593-594]
	E2708 [pp. 594]
	E2710 [pp. 594-595]
	E2711 [pp. 595-596]
	E2714 [pp. 596]

	Advanced Problems: 6273-6275 [pp. 596-597]
	Solutions of Advanced Problems
	6082 [pp. 597]
	6128 [pp. 597]
	6160 [pp. 597-598]
	6192 [pp. 598]


	Reviews
	Review: untitled [pp. 599-600]
	Review: untitled [pp. 600]
	Telegraphic Reviews [pp. 601-612]

	News and Notices [pp. 613-616]
	Mathematical Association of America: Official Reports and Communications
	Oklahoma-Arkansas March Meeting [pp. 616-617]
	March Meeting of the Missouri Section [pp. 617]
	Annual Meeting of the Kansas Section [pp. 617-618]
	Spring Meeting of the Texas Section [pp. 618-619]
	April Meeting of the Iowa Section [pp. 619]
	April Meeting of the Indiana Section [pp. 619]
	Calendar of Future Meetings [pp. 620]
	Future Meetings of Other Organizations [pp. 620]

	Back Matter



