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A GAME-THEORETIC PROOF OF ANALYTIC RAMSEY THEOREM

by Kazuyuki TANAKA in Sendai (Japan)

Abstract

We give a simple game-theoretic proof of Silver’s theorem that every analytic set is Ram-
sey. A set P of subsets of w is called Ramsey if there exists an infinite set H such that
either all infinite subsets of H are in P or all out of P. Our proof clarifies a strong connec-
tion between the Ramsey property of partitions and the determinacy of infinite games.
MSC: 03E1S, 03E60, 05A17.

! Key words: Analytic Ramsey theorem, determinacy of infinite games.

Let w be the set of non-negative integers. For an infinite subset X of w let [X]" denote the
set of all subsets of X with exactly n elements (n € w). Suppose that [X]" is partitioned into P,
and P,. Then the classical version of RAMSEY’s theorem asserts that there is an infinite subset
H of w such that either [H]"S P, or [H]" S P,.

In this paper, we discuss the following natural generalization of RAMSEY’s theorem. For
any infinite subset X of w, let [X]“ denote the set of all infinite subsets of X. We say that a par-
tition P S [w]” is Ramsey if there exists an infinite subset H of w such that either [H]* S P or
! [H]® € [w]® — P. By the axiom of choice, we can easily construct a partition which is not
Ramsey. But it is natural to ask which sets, in terms of logical complexity, are Ramsey. This ;
problem was first posed by DaNA Scotr (unpublished) in the mid-1960’s. \

After GALVIN-PRIKRY [3] proved that all Borel sets are Ramsey, SILVER [7] has given a com-
plete answer to the problem, by showing in ZF + DC that (i) Z1 sets are Ramsey, (ii) the state-
ment of 43 Ramseyness contradicts with GODEL’s axiom V = L, and (iii) if there is a measu-
rable cardinal, then X sets are Ramsey. Recall some notation. A set is £} (or analytic) iff it is
a projection of a Borel (A}) set iff it is defined by a £! formula with parameters. A set is L} iff
it is a projection of a co-analytic (I1}) set iff it is defined by a X} formula with parameters. A
‘ set is A iff it can be defined both by a X} formula and a I1} formula without parameter. For
| more details, see MoscHOVAKIS [6]. A nice exposition of SILVER’s theorem can be found in
BoLrogas [2].

In [4], KasTANAS shows that the Ramsey property of a partition P can be deduced from the
determinacy of a certain infinite game of the same logical complexity as P. Although his
proof has many interesting points, it does not provide an alternative proof of SILVER’s the-
: orem since analytic determinacy over the reals is not provable in ZF + DC. So we improve
! his game construction by an unfolding trick. Our game is similar to an asymmetric game of
i KEecHRIs [5] which KAsTANAS might try to use at the end of the paper, but it is actually more
elementary. We will prove analytic Ramseyness from X9 determinacy over the reals, and gen-
erally X}, , Ramseyness from X! determinacy over the reals. Since X determinacy over the
! reals is provable in ZF, this gives another proof of SILVER’s theorem.
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302 K. TANAKA

We will treat only the lightface statements, since the boldface versions (including parame-
ters) are straightforward from them by the usual relativization argument. Let P be a X! subset
of [w]“. Then there exists a £ formula @(f, X) such that P(X) < 3fe2¢¢(f, X). We define
the game Gp as follows:

I 1I
dO, AO
ng, Bo
dla Al
ny, Bl
The rules of Gp are
()] Aoelwl®, 4i+1€[B]*, and d;i=0or 1,
(ii) B;€[A;]“, n;e A;, and n; < b for all be B,;.

The first person who disobeys one of the above rules loses the game. When all the rules are
obeyed, player I wins iff @ (f, H) holds, where f(i) = d, for all i€ w and H = {no, ny, ...}. Thus
Gpis a Z) game and I is a IT9 player.

For a Z.,, partition P, we also define the game Gp in the same way. Supposing
P(X)<>3fe2°@(f, X) with @ € IT}, player I wins iff ¢ (f, H) holds, and so Gy is a X! game
and I is a [T} player.

Regarding a X} partition P (n = 1) and its associated game Gp, we have

Theorem.
(@) I has a winning strategy in Gp=>3H € [w]* ¥ X € [H]* P(X),
(b) II has a winning strategy in Gp=>VA € [w]*IH c[A]°Y X € [H]*P(X).

As a corollary to the above theorem, we have

Corollary. (a) Every analytic set is Ramsey. (b) Zl-determinacy over the reals implies
X', \-Ramseyness. In particular, if there is a measurable cardinal (22%), every X} set is Ramsey.

Note that WoLFE’s proof of X3-determinacy and MARTIN’s proof of analytic determinacy
(based on a measurable cardinal) both can be carried out for the games over the reals as well
as the natural numbers (see MoscHovakis [6]). Now we prove the theorem.

Proof. (a) Let o be a winning strategy for I. We will construct an infinite set H such that
for each X = {x, x,, ...} € [H]“, there is a play (d,, 4o)" (X0, Bo)"(d;, 41)"(x,, By)"... which is
consistent with o, i.e.

(dy, 4;) = a((do, Ao)" (X0, Bo)™..."(x;-1, Bi-1)) forallie w.

Since I wins at this play, we have @ (f, X), where f(i) = d; for all i € w, and so P(X) holds.

If a partial play (dy, Ao)"(ng, Bo)"..."(n;—1, B;_1)"(d, A;) is consistent with ¢, we say that it
realizes a sequence (ng, ny, ..., n;_;). To construct a set H = {ng, ny, ...} of the above property,
we simultaneously build an w-sequence of finite trees T, S T; € ... such that for each i € w,
T; consists of certain o-consistent partial plays extending plays in T;_; and every subset
of ng, ny, ..., n;_; is realized in a partial play in T, Once such T;s are built, it is clear that
for each X € [H]" there is a path through | JT; generates (realizes) X.

We now show the inductive ct
I’s first move given by ¢. Put T
the induction step, we assume
structed, and additionally assum
in T; end with (d, 4) such that
ments of T;. Let n; be the least ¢

Yo=X— {ni}, (4
Then we define T, as follows:
T,,,=Tv {pjn(ni, Y)

It is obvious that any subset of
that all the partial plays in T},
of (a).

(b) The basic idea of the foll
need some extra treatment for t]
by I’s winning strategy in part (:
finite set H such that for each .
generates X and f. Clearly such

We here say that a 7-consist
realizes the pair of sequenc
H = {ny, n,, ...} together with a
i € w, T; consists of some 7-cons
each subset s of ng, ny, ..., n;_1
s there is a partial play in T; whi
each X e€[H]® and for each f«
pair (X, f).

Before the construction of su

Lemma. (cf. KASTANAS’ 0, L
p with the last move (n, B) such i
and d (=0 or 1) there exist X a

Proof of the Lemma. We
(my, Yo) = 7(p"(0, B)

Then put Y., = {mgy, my, ...}. Ne
(my, Yo) =7(p"(1, Y.

Then put Y, = {m’y, m’, ...}. (

We are now back to the con
realizes the pair of the empty
{no, ny, ..., m—1} and T,& T, S
there is an infinite set C; such
Let {po, P1, ---, Px—-1} be an enu
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A GAME-THEORETIC PROOF OF ANALYTIC RAMSEY THEOREM 303

We now show the inductive construction of H = {no, n,, ...} and T7s. Let (dy, Ay) be player
I’s first move given by a. Put Ty = {(dy, 4,)}. The empty sequence is realized by (dy, 4y). For
the induction step, we assume that {ng, n,, ..., m;_;} and T, T, S... < T; have been con-
structed, and additionally assume that there is an infinite set X; such that all the partial plays
in T; end with (d, 4) such that X; S 4. Let {p,, p, ..., Dr-1} be an enumeration of the ele-
ments of T;. Let n; be the least element of X;. We define d (j<k)and Y; (j=k) by

Y0=Xi_{ni}, (dj, Y;’+1):0'(pj’\(nia Y;))
Then we define T;,, as follows:
Ti=T,0{p"(n, )"(d;, Y1) : j<k}.

It is obvious that any subset of {ny, n,, ..., n;} is realized by a play in T,,,. We also notice
that all the partial plays in T;,, end with supersets of X;,, = Y,. This completes the proof
of (a).

(b) The basic idea of the following proof is the same as that of part (a). However, we here
need some extra treatment for the sequence f= {dy, d,, ...}, which was automatically decided
by I’s winning strategy in part (a). Let T be a winning strategy for II. We will construct an in-
finite set H such that for each X € [H]* and for each fe 2¢ there is a 7-consistent play which
generates X and f. Clearly such an H is homogeneous for 71 P(X).

We here say that a 7-consistent partial play (dy, 4o)"(no, Bo)~..."(di_1, A;_1)"(n;—1, Bi_1)
realizes the pair of sequences (ng, ny,...,n;_;) and (dy, d,, ..., d;_ ). We construct
H = {ny, n,, ...} together with an w-sequence of finite trees T, < T, < ... such that for each
i € w, T; consists of some 7-consistent partial plays extending plays in T;_,, and such that for
each subset s of ng, ny, ..., n;_, and for each sequence d of 0’s and 1’s with the same length as
s there is a partial play in T; which realizes the pair (s, d). If we have such H and T;s, then for
each X € [H]” and for each fe2¢ there is a path through UT; generating (realizing) the
pair (X, f).

Before the construction of such H and T}s, we prove the following lemma:

Lemma. (cf. KASTANAS’ 0., Lemma [4]). Let C be an infinite subset of w. For every partial play
p with the last move (n, B) such that B 2 C there is an infinite set A < C such that for everyme€ A
and d (=0 or 1) there exist X and Y such that t(p"(d, X)) =(m, Y) and Y2 A — {m}.

Proof of the Lemma. We first define the sequence of pairs (m;, Y;) as follows:
(mg, Yo) =7(p"(0, B)),  (Misy, Yir ) =7(p"(0, ¥))), foriew.
Then put Y. = {mo, my, ...}. Next define the sequence of pairs (m/, Y}) as follows:
(my, Yo) =7(p"(1, Yx)), (miy, Yii)=1(p"(1,Y)), foriew.
Then put Y, = {m’y, m', ...}. Clearly, 4 = Y’_ satisfies the lemma.

We are now back to the construction of H and T;s. Let T, = {@}. The empty sequence &
realizes the pair of the empty sequences (&, 8). For the induction step, we assume that
{no, ny, ..., n;_1} and T, S T, & ... € T, have been constructed, and additionally assume that
there is an infinite set C; such that all the partial plays in T; end with (n, Y) such that CcY.
Let {po, p1, ..., Pk-1} be an enumeration of the elements of T;.
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304 K. TANAKA

We then apply the above lemma repeatedly as follows: let 4, be a set obtained from C; and
Do in the lemma, and 4, a set obtained from A, and p, in the lemma, ..., and 4;_, a set ob-
tained from A;-, and px-, in the lemma. Then let n; be the least element of A4,_,, and
Ci+1=Ax-1— {n;}. By the lemma, there exist X;, ¥;, X}, and Y; (j< k) such that all of
them are supersets of C;,; and

7(p;"(0, X))) = (n, 1)), 7(p,"(1, X)) =(n, Y}), for j<k.
Finally, we define T;,, as follows:
T =T,u{p"0,X)"(n, Y)) : j<k}u{p (1, X)) "(n, Y}) : j<k}
Obviously T;, , satisfies all the required conditions. This completes the proof. |

Recently, Brass [1] also stresses a connection between partitions and games, though he
does not establish such an effective relation as in this paper.

References

[1] Birass, A., Selective ultrafilters and homogeneity. Ann. Pure Applied Logic 38 (1988), 215-255.

[2] BorLoBas, B., Combinatorics. Cambridge University Press, Cambridge, Mass., 1986.

[3] GALviN, F., and K.PrIikRyY, Borel sets and Ramsey’s theorem. J. Symbolic Logic 38 (1973), 192-198.

[4] KastaNas, I. G., On the Ramsey property for the sets of reals. J. Symbolic Logic 48 (1983)
1035-1045.

[5] KecHris, A. S., Forcing in analysis. In: Higher Set Theory (G. H. MULLER and D. S. Scorr, eds.),
Springer Lecture Notes in Math. 669 (1978), 277-302.

[6] Moscrovakis, Y.N., Descriptive Set Theory. North-Holland. Publ. Comp. Amsterdam, 1980.

[7] SILVER, J., Every analytic set is Ramsey. J. Symbolic Logic 35 (1970), 60-64.

K. Tanaka (Eingegangen am 20. September 1990)
Departments of Mathematics

College of General Education

Tohoku University

Kawanchi, Aoba-ku

Sendai 980

Japan

AN ELEMENTARY SYSTEM.
AND ITS SEMI-COMPLETEN
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