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ON RUNS OF RESIDUES' 

D. H. LEHMER AND EMMA LEHMER 

According to a theorem of Alfred Brauer [1] all sufficiently large 
primes have runs of I consecutive integers that are kth power residues, 
wher-e k and I are arbitrarily given integers. In this paper we consider 
the question of the first appearance of such runs. 

Let p be a sufficiently large prime and let 

r = r(k, 1, p) 

be the least positive integer such that 

(1) r, r+ 1, r+ 2,*, r+l-1 

are all congruent modulo p to kth powers of integers > 0. It is natural 
to ask, when k and I are given, how large is this minimum r and are 
there primes p for which r is arbitrarily large? If we let 

A(k, 1) = lim sup r(k, 1, p) 
p 00 c 

then is A infinite or finite, and if finite what is its value? 
It is easy to see that 

A(2, 2) = 9 

so that every prime p > 5 has a pair of consecutive quadratic residues 
which appears not later than the pair (9, 10). In fact if 10 is not a 
quadratic residue of p then either 2 or 5 is, and so we have either 
(1, 2) or (4, 5) as a pair of consecutive residues. 

By an elaboration of this reasoning M. Dunton has shown that 

A(3, 2) = 77, 

and more recently W. H. Mills has shown that 

A(4, 2) = 1224. 

Both of these proofs are as yet unpublished. 
In contrast to these results we prove in this paper that 

(2) A(2, 3) = oo, 

and 

Presented to the Society, November 19, 1960 under the title On the distribution of 
consecutive quadratic and cubic residues; received by the editors December 5, 1960. 

1 This paper is the result of unsupported research. 
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(3) A(k, 4) = o k ? 1048909. 

In other words, by proper choice of p the appearance of a run of 3 
quadratic residues or of 4 higher residues can be postponed as long as 
desired. 

PROOF OF (2). Let N be a positive integer. Then it suffices to prove 
that there is a prime p for which 

(4) r(2, 3, p) > N. 

Let 

qi, q2, . . ., qt 

be all the primes -<N. 
By the quadratic reciprocity law, those primes which have a par- 

ticular prime qi as a quadratic residue belong to a set of arithmetic 
progressions of common difference 4qi. Those primes which have qi 
for a nonresidue likewise belong to another set of arithmetic progres- 
sions of difference 4qi. If we combine the progressions of the first kind 
for every prime qi 1 (mod 3) with those of the second kind for every 
prime qi 2 (mod 3) and use Dirichlet's theorem on primes in arith- 
metic progressions we see that there exists a prime p such that 

(0 ) q (mod 3) (q # 3, q < N). 

Using the multiplicative property of Legendre's symbol we see that 

(5) ( =) m (mod 3) (m p 0 (mod 3), m ? N). 

But among any three consecutive numbers < N there is one congruent 
to -1 (mod 3) and hence, by (5), is a nonresidue of this prime p. 
Hence the first run of three consecutive quadratic residues lies be- 
yond N. This proves (4) and (2). 

PROOF OF (3). The following theorem enables one to prove that for 
124, A(k, 1) = co for all k up to high limits. It is clear that for such a 
program one may confine k to odd prime -values and take 1=4. 

THEOREM A. Let k and p* = kn+ 1 be odd primes. Suppose further 
that 2 is not a kth power residue of p*, and p* is small enough so that 
it has no run of 4 consecutive kth power residues. Then A(k, 4)= co. 

For the proof we need the following lemma which is a special case 
of a theorem of Kummer [2]. 
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LEMMA. Let k be an odd prime and ql, q2, * * *, qt be any set of distinct 
primes different from k. Let 7y, 72, yt, be a set of kth roots of unity. 
Then there exist infinitely many primes p 1 (mod k) with correspond- 
ing kth power character X modulo p such that 

x(qi) = (i = l(l)t). 

To prove the theorem let N be an arbitrarily large integer and let 
ql, q2, , qt be the primes ? N with the exception of the prime p*. 
Choosing a nonprincipal character, let yi be the kth power character 
of qi modulo p*. By the lemma there exist infinitely many primes 
p 1 (mod k) such that the q's have the same characters modulo p as 
modulo p*. By the multiplicative property of characters this will be 
true of all the integers m < N that are not divisible by p*. Hence p 
has no run of 4 consecutive residues < N unless one of these residues 
is a multiple of p*. But two units on either side of this multiple of p* 
we find numbers congruent to + 2 (mod p*) which are nonresidues 
of p* and hence of p. Hence there is also Ino run of 4 residues which 
includes a multiple of p * <N. This proves the theorem. 

The fact that A(3, 4)= oo follows from the theorem by setting 
k=3 and p*=7. Similarly by taking k=5 and p*=11 we have 
A(5, 4)= oo. 

There is good reason to believe that A(k, 4) = co for all k. To prove 
this it would suffice to prove for each prime k the existence of a prime 
p*= kn+ 1 satisfying the hypothesis of the theorem. If n is not too 
large, then p * = kn +1 will not have 4 consecutive kth power residues. 
In fact n is precisely the number of residues altogether. Trivially, if 
n=2 we have A(k, 4)= oo as with k=3, 5, 11, 23, etc. With a little 
more effort we can prove 

THEOREM B. If n ?12 then A(k, 4) = oo. 

PROOF. We may suppose that k>5. Let p*=kn+1 be a prime not 
satisfying the hypothesis of Theorem A. This failure is not due to the 
fact that 2 is a residue of p*. In fact if 2 were a residue, p* would 
divide 2n-1 by Euler's criterion. Since n is even and _ 12 this re- 
stricts p* to the values 

3, 5, 7, 11, 13, 17, 31. 

In each case the corresponding value of k is ?5. Hence 2 must be a 
nonresidue along with -2 and (p ? 1)/2. Hence we may suppose that 
p* has a run of 4 residues 

2 < a, a + 1, a + 2, a + 3 < (p - 1)/2 
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as well as the negatives of these modulo p*. Besides these 8 residues 
there are the two residues congruent to ? (a+2)/a 0 ? 1. These two 
are isolated since 

a+2 2 a+2 2 
-1 =- and + 1 - (a+ 1) 

a a a a 

are obvious nionresidues. The reciprocals ?a/(a+2) are also isolated 
residues and they are new because 

a+2 a 
(mod p*) 

a a +2 

implies 

a(a + 2) -2 (mod p*) 

in which a product of two residues is congruent to a nonresidue. In- 
cluding the residues + 1 we have accounted for at least 14 distinct kth 
power residues of p*. Hence 14 <n <12, a contradiction. Therefore 
p* must satisfy the hypothesis of Theorem A and so A(k, 4) = oo. 

A more elaborate argument involving the factors of 3n -1 and the 
Fibonacci numbers yields a theorem in which the 12 in Theorem B is 
replaced by 36. 

Let Po = kno+ 1 be the least prime congruent to 1 modulo k. Primes 
k for which no(k)_ 38 are relatively rare, only about 3%10 of all the 
primes <50000 by actual count. The least such prime is k = 1637 with 
no=38, and the largest value for no for primes less than 50000 is 
no =80 for k = 47303. The values of k <50000 were calculated on the 
SWAC and were tested on the 7090 by John Selfridge for pairs of 
consecutive kth power residues. It was discovered that in this range 
the only pairs are the trivial pairs (co, co + 1) and 
(W2=p-C-1, w2+1-p-CO), which appear whenever n0 is a multiple 
of six. Since such pairs cannot obviously combine to make a quad- 
ruplet they were eliminated from the next run, made entirely on the 
7090 by John Selfridge, for k _ 1048909 in which no nontrivial pairs 
occurred. The largest value of no = 156 occurred for k = 707467. These 
numerical results for which we are very grateful enable us to state 
the following theorem, using Theorem A. 

THEOREM C. If k 5 1048909, then A(k, 4) = co. 

More generally one can ask about the first appearance of I consec- 
utive numbers each with specified kth power character modulo p 
=kn+1, excluding of course the case already considered in which all 
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the numbers are kth power residues. This seemingly more difficult 
problem is unexpectedly simple. Regardless of I the first appearance 
of such a set of consecutive numbers may be delayed indefinitely by 
proper choice of p. In fact if we set all the y's in the lemma at 1 we 
can find primes p having all the primes < N and hence all the numbers 
? N as kth power residues. Hence if the specified characters contain 
as much as a single nonresidue the first appearance can be made to 
occur beyond N. 

In a future paper, written jointly with W. H. Mills, we determine 
the finite numbers A(5, 2), A(6, 2) and A(3, 3). 
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