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1 Introduction

We use the following standard notation and definitions.

Def 1.1 Let Z be the set of integers, N be the set of non-negative integers, and N+ be the
set of positive integers. Let [W ] be the set {1, . . . ,W} (where W ∈ N ∈ N).

Recall van Der Waerden’s Theorem [10] (see also [4], [5]).

Theorem 1.2 For any k ∈ N, for any c ∈ N, there exists W = W (k, c), such that for any
c-coloring of [W ], there exists a, d ∈ N, d 6= 0, such that a, a+ d, . . . , a+ (k− 1)d are all the
same color.

The original proof by van der Waerden was purely combinatorial and yielded bounds on
W that were INSANE (called EEEEEEEEEENORMOUS by [4]). In particular, the proof
used an ω2 induction and W (k, c) was bounded by a function that is not primitive recursive.
Shelah [9] gave a purely combinatorial proof that yielded bounds that were HUGE, though
not INSANE. In particular the bounds were primitive recursive. Gowers [3] gave a proof
using non-combinatorial (and difficult) techniques that yielded bounds that were relatively
SANE:

W (k, c) ≤ 22c
22

k+9

We discuss a known generalization of van der Waerden’s theorem. Note that the conclu-
sion of van der Waerden’s theorem is that

a, a+ d, a+ 2d, . . . , a+ (k − 1)d are the same color.

Can we replace d, 2d, . . . , (k−1)d by other functions of d? Yes. We can replace them with
polynomials in Z[x] that have no constant term. Here is the Polynomial van Der Waerden
Theorem:

1U. of MD at College Park, Dept of CS and UMIACS, gasarch@cs.umd.edu
2U. of MD at College Park, Dept of CS, kruskal@cs.umd.edu
3EPIC Computing, tinsuj@gmail.com
4George Mason University, Dept of Mathematics, zprice11@gmail.com

1



Theorem 1.3 Let p1(x), . . . , pk(x) ∈ Z[x] such that, for 1 ≤ i ≤ k, p(0) = 0. Let c ∈ N,
Then there exists W = W (p1(x), . . . , pk(x); c) such that, for any c-coloring of [W ], there
exists a, d ∈ N, d 6= 0, such that a, a+ p1(d), . . . , a+ pk(d) are all the same color.

For k = 1, this theorem was proven independently by Furstenberg [2] and Sárközy [7].
Bergelson and Leibman [1] proved the general result using ergodic methods. These proofs
yielded no upper bounds on W (p1(x), . . . , pk(x); c). Walters [11] proved Theorem 1.3 using
combinatorial techniques which yielded bounds on W that were INSANE. In particular, the
proof used an ωω induction and W (p1(x), . . . , pk(x); c) was bounded by a function that is
not primitive recursive. One again Shelah [8] gave a purely combinatorial proof that yielded
bounds that were HUGE, though not INSANE. In particular the bounds are primitive
recursive. Peluse [6] has obtained even better bounds using non-combinatorial techniques
(and difficult) techniques.

In this paper we show that, for some p(x) ∈ Z[x] and c = 2, 3, 4, one can obtain sane
bounds on W (p(x); c). Our proofs will be purely combinatorial and much easier than those
of Walters, Shelah, and Peluse. We hasten to point out that they proved the full poly van
der Warden theorem whereas we only prove it in special cases.

We will show the following.

• W (x2; 2) = 5 (this is very easy) and, for all a ∈ Z, W (ax2; 2) = 4a+ 1.

• For all a ∈ Z, W (ax; c) = |ac|+ 1.

• Let p(x) ∈ Z[x] such that p(0) = 0. Then W (p(x); 2) is bounded above by the min of
|p(i)|+ |p(j)|− g+ 1 such that (a) i, j ∈ N, (b) p(i), p(j) 6= 0, (c) g = gcd p(i), p(j), (d)
either p(i)/g or p(j)/g) is even. In the appendix is a table of some other exact values
of W (ax2 + bx; 2).

• W (x2; 3) = 29 and, for all a ∈ Z, W (ax2; 3) = 28a + 1. In the appendix is a table of
some other exact values of W (ax2 + bx; 3).

• For a, b ∈ Z, W (ax2 + bx; 3) ≤ O(a2b5).

• W (x2; 4) ≤≤ 84,149,474,894,213,522 In the appendix is a table of some upper bounds
on W (ax2 + bx; 4).

2 Preliminaries

Def 2.1 Let c ∈ N+ and W ∈ N+.
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1. A c-coloring of [W ] is a mapping [W ]→ [c].

2. Let p(x) ∈ Z[x]. A (p(x); c)-proper coloring of [W ] is a c-coloring of [W ] such that, for
all x, y ∈ [W ], if y−x = p(d) for some d ∈ N+, then x and y have different colors. When
the context is clear, we will often write proper c-coloring or simply proper coloring.

Note that the polynomial van der Waerden number, W = W (p(x); c), is the least number
such that there is no (p(x); c)-proper coloring of [W ].

Although we care about proper (p(x); c)-colorings, we need a more general notion:

Def 2.2 Let F ⊆ Z, c ∈ N+, and W ∈ N+.

• An (F ; c)-proper coloring of [W ] is a c-coloring of [W ] such that, for all x, y ∈ [W ] with
y − x ∈ F , x and y have different colors.

• W = W (F ; c) is the least number such that there is no (F ; c)-proper coloring of [W ].
If no such number exists, we set W (F ; c) =∞.

We leave the following easy lemma to the reader.

Lemma 2.3 Let c ∈ N+.

1. If 0 ∈ F then W (F ; c) = 1.

2. Assume f ∈ F . Let F ′ = F ∪ {−f}. Then W (F ; c) = W (F ′; c).

We now prove an easy theorem which will lead to a nice lemma.

Theorem 2.4

1. W (x2; 2) = 5 = 4 + 1.

2. W (ax2; 2) = (W (x2; 2)− 1)a+ 1 = 4a+ 1.

Proof:
1) W (x2; 2) ≤ 5: Assume, by way of contradiction, that COL is an (x2; 2)-proper coloring
of [5]. Assume that COL(1) = R. Since 1 is a square we have COL(2) = B, COL(3) =
R, COL(4) = B, COL(5) = R. Then COL(1) = COL(5) with 5 − 1 = 22, which is a

contradiction.
W (x2; 5) ≥ 5 via the following (x2; 2)-proper coloring of [4]:
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1 2 3 4
R B R B

2) W (ax2; 2) ≤ (W (x2; 2) − 1)a + 1 = 4a + 1: Assume, by way of contradiction, that COL
is an (ax2; 2)-proper coloring of [4a + 1]. We use COL to define COL′, an (x2; 2)-proper
coloring of [5].

COL′(1) = COL(1)
COL′(2) = COL(a+ 1)
COL′(3) = COL(2a+ 1)
COL′(4) = COL(3a+ 1)
COL′(5) = COL(4a+ 1)
By using that a and 4a are forbidden distances for COL, one can show that COL′ is an

(x2; 2)-proper coloring of [5], which is a contradiction.
W (ax2; 2) ≥ (W (x2; 2)− 1)a+ 1 = 4a+ 1: Let COL be an (x2; 2)-proper coloring of [4].

We use COL to define COL′, an (ax2; 2)-proper coloring of [4a].
Let 1 ≤ x ≤ 4a. Let 0 ≤ i ≤ 3, and 1 ≤ j ≤ a be such that x = ia+ j. Let

COL′(x) = COL′(ia+ j) = COL(i+ 1).

By using that 1 and 4 are forbidden distances for COL, one can show that COL′ is an
(ax2; 2)-proper coloring of [4a].

Using the ideas behind Theorem 2.4.2 one can show the following:

Lemma 2.5 Let p(x) ∈ Z[x], a ∈ Z, and c ∈ N. Then W (ap(x); c) = a(W (p(x); c)− 1) + 1.

3 Linear polynomials

For completeness we cover linear polynomials, for which we obtain a complete solution.

Theorem 3.1 Let a ∈ Z and c ∈ N+. Then

W (ax; c) = |ac|+ 1 .

Proof: By Lemma 2.3 (1) we have the case of a = 0, and (2) we can assume that |a| is a
forbidden distance.

W (ax; c) ≤ |ac|+1: By setting x = 1, 2, . . . , c we get forbidden distances |a|, |2a|, . . . , |ca|.
So 1, |a|+ 1, |2a|+ 1, . . . , |ca|+ 1 must all be different colors, but there are only c colors.
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W (ax; c) ≥ |ac|: We can properly c-color [ca]: color 1, . . . , |a| by 1, color |a|+ 1, . . . , |2a|
by 2, . . . , color |(c− 1)a|+ 1, . . . , |ca| by c− 1.

4 Upper Bounds on W (p(x); 2) for any p(x) ∈ Z[x]
The following is our main lemma.

Lemma 4.1 Let s, t ∈ N+. Let g = gcd(s, t). Then

W ({s, t}; 2) =

{
s+ t− g + 1 if either s/g or t/g is even

∞ otherwise.

Proof:
Temporarily assume s and t are relatively prime, so g = 1.

Let z = s+ t. Let COL be a ({(s, t}; c)-proper coloring of [z − 1]. We are not aiming for
a contradiction; we are aiming to see that the entire coloring is forced.

Consider the list

s mod z, 2s mod z, 3s mod z, . . . , (z − 1)s mod z.

Every pair of adjacent values has absolute value of the difference either s or t. Hence 2s mod z
is B, 3s mod z is R, 4s mod z is B, etc.

Since s is relatively prime to t, it is also relatively prime to z. Hence

{s mod z, 2s mod z, . . . , (z − 1)s mod z} = [z − 1],

Therefore we have forced a 2-coloring of (all of) [z − 1]. We discuss if the coloring can be
extended beyond z − 1.
Extend Beyond z − 1?: Whether this proper coloring can be extended beyond [z − 1]
depends on the parity of z:
CASE (1): Assume that either s or t is even. (The other must be odd because we have
assumed that g = 1.)

Then z − 1 = s + t − 1 must be even, so that the first number in the above alternating
list of colors, s mod z, and the last number, (z − 1)s mod z, must have different colors. But

(z − 1)s ≡ zs− s ≡ −s ≡ t mod z.

So z = s+ t cannot be R or B, implying that the coloring cannot be extended to z.
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CASE (2): Assume s and t are both odd.
The above alternating list of colors, makes the odd numbers all have the same color, say
R, and the even numbers B (because each addition changes the parity of the number being
colored). Any number at or above s+ t can be colored, but its color is forced by subtracting
s (or equivalently t). So the coloring can be uniquely extended to ∞.

We have proven the theorem in the case of g = 1. If g ≥ 2 then there is no interaction
of numbers x, y where x 6= y mod g. We leave it to the reader to use this to prove the g ≥ 2
case.

Theorem 4.2 Let p(x) ∈ Z[x] be a polynomial such that p(0) = 0. Then W (p(x); 2) is
bounded above by the min of {|p(i)|+ |p(j)| − g + 1}
such that

• i, j ∈ N

• p(i), p(j) 6= 0

• g = gcd(p(i), p(j)), and

• either p(i)/g or p(j)/g is even.

Proof:
Follows from Lemma 4.1.

5 W (ax2; 3) = 28a + 1

In this section we will show that W (x2; 3) = 29 and then W (ax2; 3) ≤ 28a+1. We first show
a weaker theorem which will be a good warm-up to our work on 4-colorings in Section 7.

Theorem 5.1 W (x2; 3) ≤ 1 + 412 = 1682.

Proof:
Assume, by way of contradiction, that COL is an (x2; 3)-proper coloring of [1 + 412]. we

can assume COL(1) = R and COL(17) = B. By Figure 1 we know that COL(26) /∈ {R,B},
hence COL(26) = G. Again by Figure 1 we have that COL(42) /∈ {B,G}, hence COL(42) =
R.
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26

42

16
=

4
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25 =
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9 = 32

25 =
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16
=

4
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Figure 1: In any (x2, 3)-proper coloring, COL(x) = COL(x+ 41)

Note that we have shown that COL(1) = COL(42). More generally we have shown that,
for all x, COL(x) = COL(x+ 41). Hence

COL(1) = COL(1 + 41) = COL(1 + 2× 41) = · · · = COL(1 + 41× 41) = COL(1 + 412).

This contradicts COL being an (x2; 3)-proper coloring.

The following theorem was proven by Matt Jordan and Bill Gasarch.

Theorem 5.2

1. W (x2; 3) = 29.

2. For all a ∈ Z, W (ax2; 3) = 28a+ 1. This follows from Part 1 and Lemma 2.5.

Proof:
W (x2; 3) ≤ 29: Assume, by way of contradiction, that there exists COL, a proper 3-

coloring of [29].
By Figure 2, COL(10) = COL(17). By similar reasoning one can show that

(∀x)[10 ≤ x ≤ 13 =⇒ COL(x) = COL(x+ 7)].

We refer to this fact as FORCE.
We can assume, without loss of generality, that COL(10) = R. Since 11 − 10 = 12 we

know that COL(11) 6= R. We can, without loss of generality, assume that COL(11) = B.
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26
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25 = 52
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Figure 2: In any proper (x2, 3)-coloring, COL(10) = COL(17)

17: By FORCE COL(17) = COL(10) = R

18: By FORCE COL(18) = COL(11) = B.

10 11 12 13 14 15 16 17 18 19 20
R B R B

19: Since COL(10) = R and COL(18) = B, COL(19) = G.

12: By FORCE COL(12) = COL(19) = G.

10 11 12 13 14 15 16 17 18 19 20
R B G R B G

20: Since COL(11) = B and COL(19) = G, COL(20) = R.

13: By FORCE COL(13) = COL(20) = R.

10 11 12 13 14 15 16 17 18 19 20
R B G R R B G R

Now we have that COL(17) = COL(13) = R. But 17− 14 = 22. This is a contradiction.

W (x2, 3) ≥ 29:
We present a proper 3-coloring:

8



1 2 3 4 5 6 7 8 9 10 11 12 13 14
B G R G R B B B G R B G B G

15 16 17 18 19 20 21 22 23 24 25 26 27 28
R B R B G R B R B G R G R B

Note 5.3 By Figure 2 we easily show W (x2; 3) ≤ 68: For 10 ≤ x ≤ 68 then COL(x) =
COL(x+ 7), so

COL(10) = COL(17) = · · · = COL(59),

and note that 59− 10 = 49 = 72. This result is not as strong as W (x2; 3) ≤ 29; however, it
has a less detailed proof.

6 Upper Bounds on W (ax2 + bx; 3)

Def 6.1

(a) A coloring of [n] has repeat distance r if x and x + r have the same color, for all
1 ≤ x ≤ n− r.

(b) A coloring of [n] has repeat distance r under one-sided boundary condition b if x and
x+ r have the same color, for all 1 ≤ x ≤ n− r − b.

(c) A coloring of [n] has repeat distance r under two-sided boundary condition b if x and
x+ r have the same color, for all b < x ≤ n− r − b.

Lemma 6.2 In any 3-coloring of [n] with forbidden distances s, t, s+ t, where 0 < s < t:

(a) 2s+ t is a repeat distance.

(b) t− s is a repeat distance under two-sided boundary condition s.

(c) 3s is a repeat distance under one-sided boundary condition t.

Proof: Let u = s+ t.
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(a) Consider a 3-coloring satisfying the conditions of the lemma. Let 1 ≤ x ≤ n− (2s+ t).
Without loss of generality, we can assume that x is R. Then x+ s is not R, say B, and
x+u = (x+s)+t cannot be R or B so it must be G. Then (x+s)+u = (x+u)+s cannot
be B or G so it must be R. Since x and x+u+s are both R, (x+u+s)−x = u+s = 2s+t
is a repeat distance,

(b) Consider a 3-coloring satisfying the conditions of the lemma. Let s < x ≤ n−(t−s)−s.
Without loss of generality, we can assume that x is R. Then x−s is not R, say B, and
(x− s) + u = x+ t cannot be R or B so it must be G. Then (x− s) + t = (x+ t)− s
cannot be B or G, so it must be R. This process requires that x−s > 0 and x+ t ≤ n.
So (x+ t− s)− x = t− s is a repeat distance under two-sided boundary condition s.

(c) Take 2s + t from part (a) and subtract t − s from part (b). The repeat distance is
(2s+ t)− (t− s) = 3s. There is a one-sided boundary of size (t− s) + s = t from one
side of part (b).

Lemma 6.3 Assume [w] has a proper 3-coloring where s is a forbidden distance and r is
repeat distance under two-sided boundary condition b. If r|s then

w ≤ s+ 2b+ 1 .

Proof: Assume w > s + 2b + 1. Assume, without loss of generality, that b + 1 is R.
Then, by Lemma 6.2b, r + b + 1, 2r + b + 1, ..., s + b + 1 are also R, since b + 1 > b and
(s+ b+ 1) + b = s+ 2b+ 1 ≤ n. But s is a forbidden distance so b+ 1 and s+ b+ 1 cannot
both be R. Contradiction.

We give an example of the using Lemma 6.3 to get an upper bound on a set of poly Van
der Warden number. For one of them we have an exact value.

Theorem 6.4

1. For a, b > 0 and a|b, W (ax2 + bx; 3) ≤ 72b2/a+ 1.

2. W (x2 + x; 3) = 73.
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Proof: 1) Let p(x) = ax2 + bx. Let

x = 5b/a, y = 6b/a, z = 8b/a .

Then
p(x) = 30b2/a, p(y) = 42b2/a, p(z) = 72b2/a .

Since p(x) + p(y) = p(z), by Lemma 6.2b, p(y) − p(x) = 12b2/a is a repeat distance under
two-sided boundary condition 30b2/a. But p(3b/a) = 12b2/a is a forbidden distance. Thus,
by Lemma 6.3, W (ax2 + bx; 3) ≤ 12b2/a+ 2 · 30b2/a+ 1 = 72b2/a+ 1.
2) By Part 1 W (x2 + x; 3) ≤ 73. We show W (x2 + x; 3) ≥ 73 by giving a (x2 + x; 3)-proper
coloring of [72].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R R G G R R B B R R B B G G B B G G

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
R R G G R R B B R R B B G G B B G G

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
R R G G R R B B R R B B G G B B G G

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
R R G G R R B B R R B B G G B B G G

Theorem 6.5 Let p(x) = ax2 + bx. Then W (p(x); 3) ≤ O(|a5b2|).

Proof: We prove the theorem for a, b ≥ 0. The other cases are similar.
Let

x0 = (2a+ 1)b, y0 = (2a2 + 2a+ 1)b, z0 = (2a2 + 2a+ 2)b .
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Then

p(x0) = (4a3 + 4a2 + 3a+ 1)b2

p(y0) = (4a5 + 8a4 + 8a3 + 6a2 + 3a+ 1)b2

p(z0) = (4a5 + 8a4 + 12a3 + 10a2 + 6a+ 2)b2

Thus p(x0) + p(y0) = p(z0). By Lemma 6.2b, 2p(x0) + p(y) is a repeat distance, and by
Lemma 6.2c, 3p(x0) is a repeat distance under one-sided boundary condition p(y). By a
Euclid’s algorithm-type argument (see Lemma A.1 in Appendix A) it is easy to check that
gcd(2p(x0) + p(y0), 3p(x0)) = db2 for some constant d (independent of a, b). Thus there exist
integers j, k such that j((2p(x0)+p(y0))+k(3p(x0)) = db2. By starting at 1 and adding repeat
distance 2p(x0) + p(y0) j times and subtracting repeat distance 3p(x0) k times, we see that
db2 is also a repeat distance. Furthermore, by interspersing the adds and subtracts so that we
subtract whenever the sum is greater than 2p(x0) + p(y0), the one-sided boundary condition
is (2p(x0)+p(y0))+p(y0) = 2(p(x0)+p(y0)). Thus for any integer α, αdb2 is a repeat distance
with the one-sided boundary condition 2(p(x0)+p(y0)) = O(a5b2). But p(db) = ad2b2+b2d =
(ad+ 1)db2 is a forbidden distance. So, W (p(x); 3) ≤ p(db) + 2(p(x0) + p(y0)) = O(a5b2).

Appendix B gives a table of some exact polynomial van der Waerden numbers for
quadratic polynomials and three colors.

7 Upper Bounds on W (x2; 4)

Recall that Figure 1 was the key to showing W (x2; 3) ≤ 1682. We now derive parameters
for a new figure that will be the key to an upper bound on W (x2; 4).

We need to find a, b, c, d, e, f, x, y, z ∈ N+ such that the following figure can be drawn:
Hence we need to find solutions in N+ to the following system of equations:

x2 + a2 = y2

x2 + b2 = z2

y2 + c2 = z2

x2 + d2 = w
y2 + e2 = w
z2 + f 2 = w

Each equation is a Pythagorean triple, for which we have a known formula with param-
eters k,m, n where m > n, and m,n are coprime but not both odd; we can use the Farey
sequence as an efficient algorithm to generate coprime pairs m,n. We used a computer
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Figure 3: In any (x2; 4)-proper coloring, COL(1) = COL(1 + w)

program and obtained the following:

Theorem 7.1 PW (4, {x2}) ≤ 1 + (290,085,289)2 = 84,149,474,894,213,522

Proof:
Assume, by way of contradiction, that COL is an (x2; 4)-proper coloring of [1+(290,085,289)2]

By Figure 4 we know that

COL(1) = COL(1 + 290,085,289)2).

More generally we have shown that, for all x,

COL(x) = COL(x+ 290,085,289)2).

Hence

COL(1) = COL(1 + 290,085,289)2) = · · · = COL(1 + (290,085,289)2).

This contradicts COL being an (x2; 4)-proper coloring.

To find upper bounds on W (Ax2 + Bx; 4) we have several overlapping equations of the
form (Ax2 + Bx) + (Ay2 + By) = (Az2 + Bz). We need a way to generate such triples
(x, y, z) much like the generation of Pythagorean triples. First, we use the quadratic formula
to express z in terms of x and y.
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1

112,529,665

171,819,665

260,273,690 290,085,290

7,7002

12,155 2

10
,6
08
2

13,325 2

9,
40

5
2

13,108 2

10,875
2

16,1332 5,4602

Figure 4: In any (x2; 4)-proper coloring, COL(1) = COL(1 + 290, 085, 290)

z = f(x, y) =
−B +

√
4A2(x2 + y2) + 4AB(x+ y) +B2

2A

This equality holds in general, but we only want values with z ∈ N.
z is an integer iff 4A2(x2 + y2) + 4AB(x+ y) +B2 = (2Az +B)2 is an odd square. This

can be factored into (2Ax + B)2 + (2Ay + B)2 = (2Az + B)2 + B2, or m2 + n2 = k2 + B2

with some constraints on m,n, k.
A parameterizations of m2 + n2 = k2 +B2 would imply one for (x, y, z), and luckily this

equation is easier. Using the Bramagupta-Fibonacci identity with bc− ad = B, we get:

(ac− bd)2 + (ad+ bc)2 = (ac+ bd)2 +B2

So, with parameters a, b, c, d and constraints bc−ad = B, ac−bd > B, 2A|ac− bd−B, ad+
bc−B, we have:
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x =
ac− bd−B

2A
, y =

ad+ bc−B
2A

, z =
ac+ bd−B

2A

Rather than searching all (a, b, c, d), we can eliminate parts of the parameter space that
do not contain solutions. With fixed a and d, the first constraint implies that bc is some
factorization of ad + B. We can pre-compute a table of factorizations and use that to
cut the search space down to almost O(n2). You can see the code for this on GitHub at
https://github.com/zaprice/polyvdw

We can get bounds for PW (4, {x2 + Bx}) with this method with rather large values of
B, but only a few bounds for the more general Ax2 +Bx case; if such configurations exist, it
seems the numbers involved are much larger. See Appendix D for some of the upper bounds
we have. We note two things about these upper bounds:

1. The largest upper bound on W (x2 +Bx; 4) that we found was when B = 0. Note that
these are just the upper bounds we found. It is not clear how the real values compares.

2. For W (2x2 +Bx; 4) and W (3x2 +Bx; 4) the B for which we could find an upper bound
seem scattered and arbitrary. For example we were not able to find an upper bound
for any of W (2x2 +Bx; 4) for 0 ≤ B ≤ 56, but were able to for 57. And then not again
until B = 95. Again, this may be a limit to our methods and not a statement about
the actual values of W (2x2 +Bx; 4).

A GCD calculations

Lemma A.1 Let

p(x) = (4a3 + 4a2 + 3a+ 1)b2 and p(y) = (4a5 + 8a4 + 8a3 + 6a2 + 3a+ 1)b2

Then gcd(2p(x) + p(y), 3p(x)) = db2 for some d ≤ 34560.

Proof:

2p(x) + p(y) = (4a5 + 8a4 + 16a3 + 14a2 + 9a+ 3)b2 and 3p(x) = 3(4a3 + 4a2 + 3a+ 1)b2

They both have a common factor of b2, so we can drop that term and put it back in at
the end. We will use a Euclid’s algorithm type argument along with the facts that

gcd(ma, b) ≤ m gcd(a, b) and gcd(a, b) ≤ gcd(ma, b)
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Divide out 3 from 3p(x) this gives a starting point of

4a5 + 8a4 + 16a3 + 14a2 + 9a+ 3 and 4a3 + 4a2 + 3a+ 1

with 3b2 to be multiplied back in later.
Subtract a2 times the second from the first:

4a4 + 13a3 + 3a2 + 9a+ 3 and 4a3 + 4a2 + 3a+ 1

Subtract a times the second from the first:

9a3 + 10a2 + 8a+ 3 and 4a3 + 4a2 + 3a+ 1

Subtract 2 times the second from the first:

a3 + 2a2 + 2a+ 1 and 4a3 + 4a2 + 3a+ 1

Subtract 4 times the first from the second:

a3 + 2a2 + 2a+ 1 and − 4a2 − 5a− 3

Multiply the first by 4 and the second by -1:

4a3 + 8a2 + 8a+ 4 and 4a2 + 5a+ 3

Subtract a times the second from the first:

3a2 + 5a+ 4 and 4a2 + 5a+ 3

Subtract the first from the second:

3a2 + 5a+ 4 and a2 − 1

Subtract 3 times the second from the first:

5a+ 7 and a2 − 1

Multiply the second by 5:

5a+ 7 and 5a2 − 5
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Subtract a times the first from the second:

5a+ 7 and − 7a− 5

Add the first to the second:

5a+ 7 and − 2a+ 2

Add two times the second to the first:

a+ 11 and − 2a+ 2

Add two times the first to the second:

a+ 11 and 24

Multiply the first by 24:

24a+ 11 · 24 and 24

Subtract a times the second from the first:

11 · 24 and 24

These two numbers have gcd = 24. So the total is 24 · 3b2 = 72b2.
Thus the gcd ≤ db2 for some natural number d ≤ 72.

B Some Exact Values of W (ax2 + bx; 2)

Chart of W (p(x); 2) for p(x) = ax2 + bx for 0 ≤ a ≤ 10 and −10 ≤ b ≤ 10.
The values for a, b ≥ 0 were obtained from our formulas.
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a
0 1 2 3 4 5 6 7 8 9 10

-10 21 1 1 9 9 1 25 11 13 17 1
-9 19 1 9 1 7 5 7 37 15 1 23
-8 17 1 1 7 1 7 9 13 1 21 25
-7 15 1 7 5 5 25 11 1 19 61 29
-6 13 1 1 1 5 9 1 17 21 25 73
-5 11 1 5 13 7 1 15 49 25 29 31
-4 9 1 1 5 1 13 17 23 25 33 37
-3 7 1 3 1 11 37 19 25 31 73 41
-2 5 1 1 9 13 19 49 29 33 39 41
-1 3 1 7 25 17 21 27 61 37 41 47

b 0 1 5 9 13 17 21 25 29 33 37 41
1 3 13 13 17 23 49 33 37 43 85 53
2 5 11 25 21 25 31 33 41 45 51 97
3 7 13 19 37 29 33 37 73 49 49 59
4 9 17 21 27 49 37 41 47 49 57 61
5 11 25 25 29 35 61 45 49 55 97 61
6 13 23 25 31 37 43 73 53 57 61 65
7 15 25 31 49 41 45 51 85 61 65 71
8 17 29 33 39 41 49 53 59 97 69 73
9 19 37 37 37 47 73 55 61 67 109 77

10 21 35 49 45 49 51 57 65 69 75 121

The numbers tend to increase with increasing a and |b|. When a = b the values tend to
be large; this is because neither p(1)/g nor p(2)/g is even so W (p(x); 2) = p(3) + 1, which is
somewhat larger than p(1) + p(2)− g + 1 (the other possibility).

C Some Exact Values of W (ax2 + bx; 3)

Chart of W (p(x); 3) for p(x) = ax2 + bx for 0 ≤ a ≤ 5 and −5 ≤ b ≤ 5.
The values were obtained by computer.
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a
0 1 2 3 4 5

-5 16 1 64 61 217 1
-4 13 1 1 91 1 289
-3 10 1 10 1 135 171
-2 7 1 1 68 97 171
-1 4 1 49 105 190 183

b 0 1 29 57 85 113 141
1 4 73 76 65 156 253
2 7 64 145 123 151 ?
3 10 37 95 217 ? ?
4 13 65 127 ? 289 ?
5 16 55 ? 109 ? 361

D Some Upper Bounds on W (ax2 + bx; 4)

We give bounds for W (g(x); 4) where g is of the form Ax2 + Bx. Only bounds for coprime
coefficients (A,B) are presented. Each row of he table gives g, x, y, z, w (as in We give three
such tables.

1

g(x) + 1

g(y) + 1

g(z) + 1 w + 1

g(
x)

g(y)

g(z)
g(a)

g(b)

g(d)

g(
c)

g(e
)

g(f)

Figure 5: In any (g(x); ; 4)-proper coloring, COL(1) = COL(1 + w)
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Table for x2 +Bx where 0 ≤ B ≤ 20.

g x y z w W (g(x); 4) ≤
x2 10,608 13,108 16,133 290,085,289 84,149,474,894,213,522
x2 + x 299 302 327 113,262 12,828,393,907
x2 + 2x 91 127 211 257,463 66,287,711,296
x2 + 3x 35 43 53 3,308 10,952,789
x2 + 4x 80 84 92 10,197 104,019,598
x2 + 5x 70 81 100 11,250 126,618,751
x2 + 6x 70 86 106 13,232 175,165,217
x2 + 7x 638 785 923 988,338 976,818,920,611
x2 + 8x 160 168 184 40,788 1,663,987,249
x2 + 9x 35 37 44 3,242 10,539,743
x2 + 10x 144 150 165 36,075 1,301,766,376
x2 + 11x 364 472 727 1,263,252 1,595,819,511,277
x2 + 12x 140 172 212 52,928 2,802,008,321
x2 + 13x 119 129 143 38,016 1,445,710,465
x2 + 14x 66 96 135 25,395 645,261,556
x2 + 15x 120 138 215 54,364 2,956,259,957
x2 + 16x 75 99 141 45,177 2,041,684,162
x2 + 17x 123 165 255 232,908 54,250,095,901
x2 + 18x 70 74 88 12,968 168,402,449
x2 + 19x 65 66 69 6,852 47,080,093
x2 + 20x 84 96 115 24,261 589,081,342
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Table for x2 +Bx where 1980 ≤ B ≤ 2000.

g x y z w W (g(x); 4) ≤
x2 + 1,980x 1,683 2,145 2,915 25,524,829 651,567,434,640,662
x2 + 1,981x 1,674 1,735 2,026 14,236,652 202,710,462,976,717
x2 + 1,982x 1,248 1,495 1,731 6,882,723 47,385,517,451,716
x2 + 1,983x 3,498 3,549 3,664 24,967,678 623,434,455,617,159
x2 + 1,984x 860 975 2,585 12,424,497 154,392,775,905,058
x2 + 1,985x 867 1,098 2,365 11,200,200 125,466,712,437,001
x2 + 1,986x 1,900 2,432 2,908 19,712,552 388,623,855,480,977
x2 + 1,987x 3,048 3,393 3,987 39,165,018 1,533,976,455,831,091
x2 + 1,988x 508 738 1,194 6,489,996 42,132,950,192,065
x2 + 1,989x 2,023 2,288 3,094 18,950,528 359,160,204,078,977
x2 + 1,990x 1,364 1,610 2,100 13,163,856 173,313,300,862,177
x2 + 1,991x 1,330 1,519 1,814 7,817,030 61,121,521,727,631
x2 + 1,992x 975 1,065 1,871 10,120,498 102,444,639,800,021
x2 + 1,993x 1,985 2,349 4,373 68,596,488 4,705,614,878,734,729
x2 + 1,994x 1,246 1,350 1,716 8,551,440 73,144,177,644,961
x2 + 1,995x 891 1,185 1,464 10,543,450 111,185,372,085,251
x2 + 1,996x 705 995 1,793 7,390,317 54,631,536,433,222
x2 + 1,997x 1,081 1,136 1,391 8,040,026 64,658,074,012,599
x2 + 1,998x 1,292 1,732 3,704 39,649,768 1,572,183,322,690,289
x2 + 1,999x 1,235 1,757 2,789 14,633,322 214,163,364,766,363
x2 + 2,000x 184 280 984 5,592,000 31,281,648,000,001
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Table for 2x2 +Bx for assorted B.

g x y z w W (g(x); 4) ≤
2x2 + 57x 3,969 4,035 4,295 38,199,155 2,918,353,062,779,886
2x2 + 95x 707 758 1,008 14,365,638 412,744,475,029,699
2x2 + 171x 11,907 12,105 12,885 343,792,395 236,386,480,508,171,596
2x2 + 285x 2,121 2,274 3,024 129,290,742 33,432,228,781,682,599
2x2 + 399x 27,783 28,245 30,065 1,871,758,595 7,006,961,222,744,427,456
2x2 + 455x 3,320 3,663 4,170 39,229,128 3,077,866,816,534,009
2x2 + 511x 2,772 3,367 6,282 131,899,720 34,795,139,672,913,721
2x2 + 627x 43,659 44,385 47,245 4,622,097,755 5,834,090,064,188,269,204
2x2 + 805x 1,210 1,303 2,920 87,446,025 15,293,684,970,651,376
2x2 + 855x 5,548 7,087 13,262 530,042,423 561,890,393,545,693,524
2x2 + 1,011x 5,164 6,568 9,889 318,517,859 202,907,575,025,443,212
2x2 + 1,153x 12,705 12,726 12,970 352,488,525 248,496,726,932,620,576
2x2 + 1,199x 8,245 8,710 9,748 221,108,291 97,778,017,806,722,272
2x2 + 1,295x 14,030 14,355 22,244 1,162,712,925 2,703,804,197,637,349,126
2x2 + 1,301x 25,622 26,105 28,172 1,638,880,116 5,371,858,201,423,377,829
2x2 + 1,365x 9,960 10,989 12,510 353,062,152 249,306,248,279,579,689
2x2 + 1,459x 954 1,174 1,379 58,465,486 6,836,511,407,576,467
2x2 + 1,545x 11,298 11,815 12,860 425,440,418 361,999,755,841,475,259
2x2 + 1,685x 10,695 10,968 11,570 289,144,125 167,209,137,251,881,876
2x2 + 1,753x 3,586 5,236 8,232 181,967,394 66,224,583,947,144,155
2x2 + 1,851x 50,031 51,441 55,164 6,379,649,159 7,612,882,297,751,201,408
2x2 + 1,913x 2,261 3,366 5,324 81,424,299 13,259,988,699,966,790
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Table for 3x2 +Bx for assorted B.

g x y z w W (g(x); 4) ≤
3x2 + x 42,273 42,660 43,375 5,738,872,934 6,570,267,294,984,419,923
3x2 + 143x 13,244 13,332 13,442 554,651,696 922,915,590,942,221,777
3x2 + 172x 4,452 4,712 5,189 88,862,311 23,689,546,233,099,656
3x2 + 200x 1,896 2,204 5,004 115,177,723 39,797,746,661,938,788
3x2 + 235x 11,155 11,270 11,610 583,594,418 1,021,747,471,306,964,403
3x2 + 274x 9,322 11,610 16,903 1,125,018,929 3,797,003,080,080,107,670
3x2 + 344x 8,904 9,424 10,378 355,449,244 379,032,617,455,054,545
3x2 + 361x 3,540 4,658 7,703 397,333,094 473,620,906,200,085,443
3x2 + 400x 3,792 4,408 10,008 460,710,892 636,763,762,306,663,793
3x2 + 407x 2,806 3,401 6,131 122,898,626 45,312,266,837,804,411
3x2 + 412x 2,077 2,829 5,839 392,773,686 462,813,667,064,838,421
3x2 + 520x 7,616 9,244 12,716 515,261,395 796,483,183,467,963,476
3x2 + 556x 9,400 9,408 9,451 273,674,799 224,693,838,986,259,448
3x2 + 592x 15,744 16,472 17,944 994,061,387 2,964,474,711,857,432,412
3x2 + 643x 50,932 51,357 52,351 8,273,167,696 2,421,731,687,255,606,001
3x2 + 688x 17,808 18,848 20,756 1,421,796,976 6,064,520,901,084,553,217
3x2 + 725x 3,172 3,185 3,278 34,869,750 3,647,723,675,756,251
3x2 + 728x 16,744 17,360 18,928 1,174,742,491 4,140,060,615,695,188,692
3x2 + 797x 2,847 3,082 3,524 148,907,272 66,520,245,642,541,737
3x2 + 814x 5,612 6,802 12,262 491,594,504 724,995,869,246,944,305
3x2 + 932x 1,820 2,229 2,799 37,745,311 4,274,160,686,090,016
3x2 + 1,085x 1,190 1,344 1,540 10,401,450 324,581,771,880,751
3x2 + 1,087x 9,800 9,909 11,434 604,108,526 1,094,841,990,223,645,791
3x2 + 1,112x 18,800 18,816 18,902 1,094,699,196 3,595,100,206,474,645,201
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