
Good but still Exp Algorithms for 3-SAT
and MIS

Exposition by William Gasarch

Credit Where Credit is Due

This talk is based on parts of the following AWESOME books:

The Satisfiability Problem SAT, Algorithms and Analyzes
by

Uwe Schoning and Jacobo Torán

Exact Exponential Algorithms
by

Fedor Formin and Dieter Kratsch

What is 3SAT?

Definition: A Boolean formula is in 3CNF if it is of the form

C1 ∧ C2 ∧ · · · ∧ Ck

where each Ci is an ∨ of three or less literals.

Definition: A Boolean formula is in 3SAT if it in 3CNF form and
is also SATisfiable.

OUR GOAL

We will show algorithms for 3SAT that

1. Run in time O(αn) for various α < 1. Some will be
randomized algorithms. NOTE: By O(αn) we really mean
O(p(n)αn) where p is a poly. We ignore such factors.

2. Quite likely run even better in practice, or modifications of
them do.

2SAT

2SAT is in P:

Convention For All of our Algorithms

Definition:

1. A Unit Clause is a clause with only one literal in it.

2. A Pure Literal is a literal that only shows up as non negated
or only shows up as negated.

Conventions:

1. If have unit clause immediately assign its literal to TRUE.

2. If have POS-pure literal then immediately assign it to be
TRUE.

3. If have NEG-pure literal then immediately assign it to be
FALSE.

4. If we have a partial assignment z .

4.1 If (∀C)[C (z) = TRUE then output YES.
4.2 If (∃C)[C (z) = FALSE] then output NO.

META CONVENTION: Abbreviate doing this STAND (for
STANDARD).

DPLL ALGORITHM

DPLL (Davis-Putnam-Logemann-Loveland) ALGORITHM

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
Pick a v a r i a b l e x (VERY CLEVERLY)
ALG(F ; z ∪ {x = T})
ALG(F ; z ∪ {x = F})

Key Idea Behind Recursive 7-ALG

KEY1: If F is a 3CNF formula and z is a partial assignment either

1. F (z) = TRUE , or

2. there is a clause C = (L1 ∨ L2) or (L1 ∨ L2 ∨ L3) that is not
satisfied. (We assume C = (L1 ∨ L2 ∨ L3).)

KEY2: In ANY extension of z to a satisfying assignment ONE of
the 7 ways to make (L1 ∨ L2 ∨ L3) true must happen.

Recursive-7 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
i f F (z) i n 2CNF use 2SAT ALG
f i n d C = (L1 ∨ L2 ∨ L3) a c l a u s e not s a t i s f i e d
f o r a l l 7 ways to s e t (L1, L2, L3) so t h a t C=TRUE

Let z ′ be z e x t e n d e d by t h a t s e t t i n g
ALG(F ; z ′)

VOTE: IS THIS BETTER THAN O(2n)?

IT IS!

Recursive-7 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
i f F (z) i n 2CNF use 2SAT ALG
f i n d C = (L1 ∨ L2 ∨ L3) a c l a u s e not s a t i s f i e d
f o r a l l 7 ways to s e t (L1, L2, L3) so t h a t C=TRUE

Let z ′ be z e x t e n d e d by t h a t s e t t i n g
ALG(F ; z ′)

VOTE: IS THIS BETTER THAN O(2n)?
IT IS!

The Analysis

T (0) = O(1)
T (n) = 7T (n − 3).
so
T (n) = 7n/3O(1) = O(((71/3)n) = O((1.913)n)

1. Good News: BROKE the 2n barrier. Hope for the future!

2. Bad News: Still not that good a bound.

Key Ideas Behind Recursive-3 ALG

KEY1: Given F and z either:

1. F (z) = TRUE , or

2. there is a clause C = (L1 ∨ L2) or (L1 ∨ L2 ∨ L3) that is not
satisfied. (We assume C = (L1 ∨ L2 ∨ L3).)

KEY2: in ANY extension of z to a satisfying assignment either:

1. L1 TRUE.

2. L1 FALSE, L2 TRUE.

3. L1 FALSE, L2 FALSE, L3 TRUE.

Recursive-3 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
i f F (z) i n 2CNF use 2SAT ALG
f i n d C = (L1 ∨ L2 ∨ L3) a c l a u s e not s a t i s f i e d
ALG(F ; z ∪ {L1 = T})
ALG(F ; z ∪ {L1 = F , L2 = T})
ALG(F ; z ∪ {L1 = F , L2 = F , L3 = T})

VOTE: IS THIS BETTER THAN O((1.913)n)?

IT IS!

Recursive-3 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
i f F (z) i n 2CNF use 2SAT ALG
f i n d C = (L1 ∨ L2 ∨ L3) a c l a u s e not s a t i s f i e d
ALG(F ; z ∪ {L1 = T})
ALG(F ; z ∪ {L1 = F , L2 = T})
ALG(F ; z ∪ {L1 = F , L2 = F , L3 = T})

VOTE: IS THIS BETTER THAN O((1.913)n)?
IT IS!

The Analysis

T (0) = O(1)
T (n) = T (n − 1) + T (n − 2) + T (n − 3).

T (n) = O((1.84)n).

So Where Are We Now?

1. Good News: BROKE the (1.913)n barrier. Hope for the
future!

2. Bad News: (1.84)n Still not that good. Good News: Can
modify to work better in theory!!

IDEAS

Definition: If F is a fml and z is a partial assignment then z is
COOL if every clause that z affects is made TRUE.
BILL: Do examples and counterexamples.
Prove to yourself:
Lemma: Let F be a 3CNF fml and z be a partial assignment.

1. If z is COOL then F ∈ 3SAT iff F (z) ∈ 3SAT .

2. If z is NOT COOL then F (z) will have a clause of length 2.

Recursive-3 ALG MODIFIED MORE

ALG(F : 3CNF fml, z : partial assignment)

COMMENT: This s l i d e i s when a 2CNF c l a u s e not s a t i s f i e d .)
STAND
i f (∃C = (L1 ∨ L2) not s a t i s f i e d then

z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
ALG(F ; z1)
ALG(F ; z01)

e l s e (COMMENT: The ELSE i s on n e x t s l i d e .)

Recursive-3 ALG MODIFIED MORE

(COMMENT: This s l i d e i s when a 3CNF c l a u s e not s a t i s f i e d .)
i f (∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then

z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
z001 = z ∪ {L1 = F , L2 = F , L3 = T})
i f z001 i s COOL then ALG(F ; z001)

e l s e
ALG(F ; z1)
ALG(F ; z01)
ALG(F ; z001)

IS IT BETTER?

VOTE: IS THIS BETTER THAN O((1.84)n)?

IT IS!

IS IT BETTER?

VOTE: IS THIS BETTER THAN O((1.84)n)?
IT IS!

IT IS BETTER!

KEY1: If any of z1, z01, z001 are COOL then only ONE
recursion: T (n) = T (n − 1) + O(1).
KEY2: If NONE of the z0, z01 z001 are COOL then ALL of the
recurrences are on fml’s with a 2CNF clause in it.
T (n)= Time alg takes on 3CNF formulas.
T ′(n)= Time alg takes on 3CNF formulas that have a 2CNF in
them.
T (n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2) + T ′(n − 3)}.
T ′(n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2)}.
Can show that worst case is:
T (n) = T ′(n − 1) + T ′(n − 2) + T ′(n − 3).
T ′(n) = T ′(n − 1) + T ′(n − 2).

The Analysis

T ′(0) = O(1)
T ′(n) = T ′(n − 1) + T ′(n − 2).

T ′(n) = O((1.618)n).

So

T (n) = O(T (n)) = O((1.618)n).

VOTE: Is better known?
VOTE: Is there a proof that these techniques cannot do any
better?

Hamming Distances

Definition If x , y are assignments then d(x , y) is the number of
bits they differ on.

BILL: DO EXAMPLES
KEY TO NEXT ALGORITHM: If F is a fml on n variables and F is
satisfiable then either

1. F has a satisfying assignment z with d(z , 0n) ≤ n/2, or

2. F has a satisfying assignment z with d(z , 1n) ≤ n/2.

HAM ALG

HAMALG(F : 3CNF fml, z : full assignment, h: number) h bounds
d(z , s) where s is SATisfying assignment h is distance

STAND
i f ∃C = (L1 ∨ L2) not s a t i s f i e d then

ALG(F ; z ⊕ {L1 = T}; h − 1}
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 1)

i f ∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then
ALG(F ; z ⊕ {L1 = T}; h − 1)
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 1)
ALG(F ; z ⊕ {L1 = F , L2 = F , L3 = T}; h − 1)

REAL ALG

HAMALG(F ; 0n ; n/2)
I f r e t u r n e d NO then HAMALG(F ; 1n ; n/2)

VOTE: IS THIS BETTER THAN O((1.61)n)?

IT IS NOT! Work it out in groups anyway NOW.

REAL ALG

HAMALG(F ; 0n ; n/2)
I f r e t u r n e d NO then HAMALG(F ; 1n ; n/2)

VOTE: IS THIS BETTER THAN O((1.61)n)?
IT IS NOT! Work it out in groups anyway NOW.

ANALYSIS

KEY: We don’t care about how many vars are assigned since they
all are. We care about h.
T (0) = 1.
T (h) = 3T (h − 1).
T (h) = 3iT (h − i).
T (h) = 3h.
T (n/2) = 3n/2 = O((1.73)n).

KEY TO HAM

KEY TO HAM ALGORITHM: Every element of {0, 1}n is within
n/2 of either 0n or 1n

Definition: A covering code of {0, 1}n of SIZE s with RADIUS h is
a set S ⊆ {0, 1}n of size s such that

(∀x ∈ {0, 1}n)(∃y ∈ S)[d(x , y) ≤ h].

Example: {0n, 1n} is a covering code of SIZE 2 of RADIUS n/2.

ASSUME ALG

Assume we have a Covering code of {0, 1}n of size s and radius h.
Let Covering code be S = {v1, . . . , vs}.

i = 1
FOUND=FALSE
w h i l e (FOUND=FALSE) and (i ≤ s)

HAMALG(F ; vi ; h)
I f r e t u r n e d YES then FOUND=TRUE

e l s e
i = i + 1

end w h i l e

ANALYSIS OF ALG

Each iteration satisfies recurrence
T (0) = 1
T (h) = 3T (h − 1)
T (h) = 3h.
And we do this s times.
ANALYSIS: O(s3h).
Need covering codes with small value of O(s3h).

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).

THATS NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.
YOU”VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.
SO CRAZY IT MIGHT JUST WORK!

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).
THATS NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.

YOU”VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.
SO CRAZY IT MIGHT JUST WORK!

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).
THATS NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.
YOU”VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.

SO CRAZY IT MIGHT JUST WORK!

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).
THATS NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.
YOU”VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.
SO CRAZY IT MIGHT JUST WORK!

IN SEARCH OF A GOOD COVERING CODE-
RANDOM!

CAN find with high prob a covering code with

I Size s = n22.4063n

I Distance h = 0.25n.

Can use to get SAT in O((1.5)n).
Note: Best known: O((1.306)n).

What is Maximum Ind Set?

Definition: If G = (V ,E) is a graph then I ⊆ V is an Ind. Set if
(∀x , y ∈ V)[(x , y) /∈ E]. The set I is a MAXIMUM IND SET if it
is an Ind Set and there is NO ind set that is bigger.

Goal: Given a graph G we want the SIZE of the Maximum Ind.
Set. Obtaining the set itself will be an easy modification of the
algorithms which we will omit.
Abbreviation: MIS is the Maximum Ind Set problem.

OUR GOAL

1. Will we show that MIS is in P?

NO.

2. We will show algorithms for MIS that

2.1 Run in time O(αn) for various α < 1. NOTE: By O(αn) we
really mean O(p(n)αn) where p is a poly. We ignore such
factors.

2.2 Quite likely run even better in practice.

OUR GOAL

1. Will we show that MIS is in P?

NO.

2. We will show algorithms for MIS that

2.1 Run in time O(αn) for various α < 1. NOTE: By O(αn) we
really mean O(p(n)αn) where p is a poly. We ignore such
factors.

2.2 Quite likely run even better in practice.

2MIS

If all of the degrees are ≤ 2 then the problem is EASY.
(WE OMIT)

IMPORTANT DEFINITION

If G = (V ,E) is a graph and v ∈ V then

N[v] = {v} ∪ {u | (v , u) ∈ E}.

The NEIGHBORS of v AND v itself.

MIN DEG ALGORITHM

ALG(G = (V ,E): A Graph)

v = v e r t e x o f min d e g r e e
f o r u ∈ N[v]

mu = ALG (G − N[mu])
m = min{mu | u ∈ N[v]} .
RETURN(1 + m)

Analysis

Let N[v] = {v , x1, . . . , xd(v)}.

T (n) ≤ 1 + T (n − d(v)− 1) +
∑d(v)

i=1 T (n − d(xi)− 1)

≤ 1 + T (n − d(v)− 1) +
∑d(v)

i=1 T (n − d(v)− 1)
≤ 1 + (d(v) + 1)T (n − (d(v) + 1))

1. Runs in T (n) = O((31/3)n) ≤ O((1.42)n).

2. Works well on high degree graphs until they become low
degree graphs.

3. Upshot: Would not use in practice.

4. Makes more sense to take High degree nodes.

MAX DEG ALG

ALG(G)

1. If (∃v)[d(v) = 0] then RETURN(1 + ALG (G − v).

2. If (∃v)[d(v) = 1] then RETURN(1 + ALG (G − N[v]).

3. If (∀v)[d(v) ≤ 2] then CALL 2-MIS ALG.

4. If (∃v)]d(v) ≥ 3] then

4.1 Let v∗ be of max degree
4.2 Return MAX of 1 + ALG (G − N[v∗]), ALG (G − v∗).

ANALYSIS

T (n) ≤ T (n − d(v)− 1) + T (n − 1)
T (n) ≤ T (n − 4) + T (n − 1)

1. Runs in T (n) = O((1.38)n).

2. Works well on high degree graphs until they become low
degree graphs. But better than Min-Degree alg.

3. WORKS really well in practice.

BETTER ANALYSIS

Need to MEASURE progress better.

1. We measure a node of degree ≤ 1 as having weight ZERO.

2. We measure a node of degree 2 as having weight 1
2 .

3. We measure a node of degree ≥ 3 as having weight ONE.

SO we view |V | as

1

2
(number of verts of degree 2) + (number of verts of degree 3)

We still refer to this as n.

BETTER ANALYSIS

Have picked v∗.

1. Assume there are no vertices of degree ≤ 1 (else would not be
in v∗ case)

2. Assume v∗ has d2 vertices of degree 2.

3. Assume v∗ has d3 vertices of degree 3.

4. Assume v∗ has d≥4 vertices of degree ≥ 4.

BETTER ANALYSIS OF G − N[v] CASE

G − N[v∗]:

1. Loss of v∗ is loss of 1.

2. Loss of d2 vertices of degree 2: Loss is d2
2 .

3. Loss of d3 vertices of degree 3: Loss is d3.

4. Loss of d≥4 vertices of degree ≥ 4: Loss is d≥4.

Total Loss: 1 + d2
2 + d3 + d≥4.

Work to do:

T (n − (1 +
d2
2

+ d3 + d≥4))

BETTER ANALYSIS OF G − v CASE

G − v∗:

1. Loss of v∗ is loss of 1.

2. The d2 verts of deg 2 become d2 verts of deg ≤ 1. Loss is d2
2 .

3. The d3 verts of deg 3 become d3 verts of deg ≤ 2. Loss is d3
2 .

4. The d≥4 verts of deg ≥ 4. No Loss.

Total Loss: 1 + d2
2 + d3

2 .
Work to do:

T (n − (1 +
d2
2

+
d3
2

))

TOTAL ANALYSIS

T (n) ≤ T (n − (1 + d2
2 + d3 + d≥4)) + T (n − (1 + d2

2 + d3
2))

≤ T (n − 1) + T (n − (1 + d2 + 3d3
2 + d≥4))

≤ T (n − 1) + T (n − (d(v∗) + 1))

1. If d(v∗) ≥ 4 then get

T (n) ≤ T (n − 1) + T (n − 5)

2. If d(v∗) = 3 then get

T (n) ≤ T (n − 1) + T (n − 4)

HOW GOOD?

1. Runs in T (n) ≤ O((1.3248)n).

2. Using Deg2 weight 0.596601, Deg3 weigh 0.928643, Deg4
weight 1 can get O((1.2905)n).

3. Works well on high degree graphs until they become low
degree graphs. But better than Min-Degree alg.

4. WORKS really well in practice, and this analysis may say why.

BEST KNOWN

Best known runs in time

O((1.2109)n).

1. Order constant is REASONABLE.

2. LOTS of cases depending on degree.

3. Sophisticated analysis.

