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Universally Ideal Secret-Sharing Schemes 
Amos Beimel and Benny Chor 

Abstmct-Given a set of parties {l,. - - , n ) ,  an access structure 
is a monotone collection of subsets of the parties. For a certain 
domain of secrets, a secret-sharing scheme for an access struc- 
ture is a method for a dealer to distribute shares to the parties. 
These shares enable subsets in the access structure to recon- 
struct the secret, while subsets not in the access structure get no 
information about the secret. A secret-sharing scheme is ideal if 
the domains of the shares are the same as the domain of the 
secrets. An access structure is uniuersu& ideal if there exists an 
ideal secret-sharing scheme for it over every finite domain of 
secrets. An obvious necessary condition for an access structure 
to be universally ideal is to be ideal over the binary and ternary 
domains of secreb. In this work, we prove that this condition is 
also sufficient. We also show that being ideal over just one of the 
two domains does not suffice for universally ideal access struc- 
tures. Finally, we give an exact characterization for each of these 
two conditions. 

Index Terms-Secret-sharing, ideal access structures, matroids, 
cryptography. 

I. INTRODUCTION 

SECRET-sharing scheme involves a dealer who has A a secret taken from a finite domain, a finite set of n 
parties, and a collection d of subsets of the parties called 
the access structure. A secret-sharing scheme for d is a 
method by which the dealer distributes shares to the 
parties such that any subset in st can reconstruct the 
secret from its shares, and any subset not in d cannot 
reveal any partial information about the secret in the 
information-theoretic sense (such schemes are sometimes 
referred to as pe$ect). A secret-sharing scheme can only 
exist for monotone access structures, i.e., if a subset A 
can reconstruct the secret, then every superset of A can 
also reconstruct the secret. If the subsets that can recon- 
struct the secret are all the sets whose cardinality is at 
least a certain threshold t, then the scheme is called a t 
out of n threshold secret-sharing scheme. Secret-sharing 
schemes were first introduced for the threshold case by 
Blakley [l] and by Shamir [2]. Secret-sharing schemes for 
general access structures were first defined by Ito, Saito, 
and Nishizeki in [3]. Given any monotone access structure, 
they show how to build a secret-sharing scheme that 
realizes the access structure. Benaloh and Leichter [4] 
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describe a more efficient way to realize general secret- 
sharing schemes. 

Even with the more efficient scheme of [41, most gen- 
eral access structures require shares of exponential size: 
Even if the domain of the secret is binary, the shares are 
strings of length 28(n), where n is the number of partici- 
pants. The question of lower bounds on the size of shares 
for some (explicit or random) access structures is still 
open. On the other hand, certain access structures give 
rise to very economical secret-sharing schemes. A secret- 
sharing scheme is called ideal if the shares are taken from 
the same domain as the secrets. An access structure is 
called m-ideal if there is an ideal secret-sharing scheme 
which realizes the access structure over a domain of 
secrets of size m. 

Brickell [5] was the first to introduce the notion of ideal 
access structures. Brickell and Davenport [6] have shown 
that such structures are closely related to matroids over a 
set containing the participants plus the dealer. They give a 
necessary condition for an access structure to be m-ideal 
(being a matroid) and a somewhat stronger sufficient 
condition (the matroid should be representable over a 
field or algebra of size m). Certain access structures, such 
as the threshold ones, are m-ideal for m that is at least n. 
However, for domains of secrets which contain m ele- 
ments where m is smaller than n, the threshold access 
structures are not m-ideal (for threshold t such that 
2 I t I n - 11, as proved by Karnin, Greene, and 
Hellman [7]. This qualitative result was improved by Kil- 
ian and Nisan [SI, who showed that the t out of n 
threshold secret sharing scheme over a binary domain of 
secrets requires that the t out of n threshold secret 
sharing scheme over a binary domain of secrets requires 
shares from a domain that is at least of size n - t + 2 (for 
2 I t  I n  - 1). 

We say that an access structure is universally ideal if for 
very positive integer m 2 2, the access structure is m- 
ideal. Universally ideal access structures are particularly 
convenient to work with because they are very efficient no 
matter what the domain of secrets is. A simple example of 
a universally ideal access structure is the n out of n 
threshold access structure. In this work we give a com- 
plete characterization of universally ideal access struc- 
tures. Our work builds upon results of Brickell and 
Davenport which relate ideal access structures to ma- 
troids, as well as some known results from matroid theory. 
An obvious necessary condition for an access structure to 
be universally ideal is to be both 2-ideal and 3-ideal. 
Interestingly, our main result states that this condition is 
also sufficient. We give examples which demonstrate that 
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just one of these two requirements is not a sufficient 
condition to be universally ideal. 

The remainder of this paper is organized as following. 
In Section I1 we given formal definitions and quote the 
results of Brickell and Davenport. Section I11 states our 
main theorem, and details its proof. Section IV illustrates 
some cladying examples. 

11. DEFINITIONS AND RELATED RESULTS 
This section contains formal definitions of secret-shar- 

ing schemes, some background on matroids, and known 
related results, that will be used in the rest of this paper. 

A. Secret-Sharing Schemes 

Definition 2.1: Let {l;-.,n} be a set, called the set of 
parties. A collection d c 2(19-9") is monotone if B EH 
and B L C implies C E&. An access structure is a mono- 
tone collection d of nonempty subsets of (l;.-,n}. The 
sets in d are called the reconstructing sets. 

Definition 2.2: Let S = {O,-**,m - 1) be a finite set of 

dm such that i E B. That is, every party is an element of 
at least one minimal subset that can reconstruct the 
secret, therefore his share is "essential." 

Definition 2.4: A secret-sharing scheme II: S X R +- S, 
x 0 . 0  x S, is m-ideal if (S,I = IS,I = = IS,[ = ]SI = m .  
That is, the domain of the shares of each party has the 
same size as the domain of the secrets, and this domain 
contains m elements. An access structure d is m-ideal if 
there exists an m-ideal secret-sharing scheme that realizes 
d. An access structure d is universally ideal if for every 
positive integer m ,  the access structure d is m-ideal. 

B. Matroids 
In this section we recall the definition of matroids for 

the sake of completeness. Matroids are well-studied com- 
binatorial objects (see for example Welsh [9] ). A matroid 
is an axiomatic abstraction of linear independence. We 
give here one of the equivalent axiom systems that define 
matroids. A matroid F= W , 9 )  is a finite set V and a 
collection 9 of subsets of V such that (11) through (13) 
are satisfied. 

(11) 0 €9. 
secrets, let d c 2(12-,") be an access structure, and let R 
be a set of random input. Let { p,}, E be a set of probabil- 

(12) If X € S a n d  Y c_X,  then Y €3. ity distributions on the random inputs R (that is, for every 
(13) If X, Y are members of 9 with 1x1 = IY I + 1, s E S ,  p3: R +- [O, 11 is a probability distribution). A se- 

then there exists x E X \ Y such that Y U { x }  €9. cret-sharing scheme I1 with domain of secrets S is a 
mapping n: S X R + S, X S X e - .  X S, from the cross 
product of the secrets and the random inputs to a set of For example, every finite vector space is a matroid, in 
n-tuples (the shares). We denote the share of party i by which V is the set of vectors and 9 is the collection of the 
l l i ( s , r > .  A secret-sharing scheme II realizes an access linearly independent sets of vectors. The elements of V 
stucture d if the following two requirements hold. are called the points of the matroid and the sets in 9 are 

The secret s can be reconstructed by any subset in 
d. That is, for any subset B ( B  = { i 1 ; * * , i , , , } ) ,  
there exists a function h,: Si, X ... X ~ i l s l  -+ S such 
that for every random input r ,  if II(s, r )  = 

(sl, sz,-**, s,), then hs(si ,; . . ,  si,,,) = s. 
Every subset not in d cannot reveal any partial 
information about the secret (in the information- 
theoretic sense). Formally, for any subset B E d ,  for 
every two secrets a ,  b E S, and for every possible 
shares {sJi E ,, 

called independent sets. A dependent set of a matroid is 
any subset of V that is not independent. The minimal 
dependent sets are called circuits. A matroid is said to be 
connected if for every two elements of V, there is a circuit 
containing both of them. The maximal independent sets 
are called bases. Axiom I3 implies that in every matroid 
all bases have the same cardinality. This cardinality is 
called the rank of the matroid. 

Definition 2.5: A matroid is representable over a field 9 
if there exists a dependence-preserving mapping from the 
points of the matroid into the set of vectors of a vector 
space over the field. In other words, there exist k and a 

Pr [ A Hi(ayr) = si] = Pr [ A n i ( b , r )  = Si  . mapping 4: + 9 that satisfies: 

A c V is a dependent set of the matroid if and only 

P h )  ~ E B  pb(r.) is, 

Given a collection r G 2(13-9R), the closure of r, denoted 
by cl (r), is the minimum collection that contains r and is 
monotone. Given n access structure d, we denote dm to 
be the collection of minimal sets of d. That is, B €dm if 
B EM, and for every C B it holds that C E d .  If [lo]. 

if + ( A )  is linearly dependent. 

For more background on matroids the reader can refer to 
[9]. Discussion on representable matroids can be found in 

d = {B:  IBI 2 t } ,  then a secret-sharing scheme for d is 
called a t out of n threshold secret-sharing scheme, and c. Relation between Secret-Sharing Schemes and Matroids 
the access structure d is called the t out of n threshold 
access structure. troids. 

Definition 2.3: An access structure d is a nondegenerate 
access structure if for every i E (l,..., n} there exists B E 

The next definition relates access structures and ma- 

Definition 2.6: Let d be an access structure with n 
parties {l,..., n} and let F= ( V , 9 )  be connected matroid. 
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We say that the matroid 9 is appropriate for the access 
structure a’ if I/ = {O,..., n} and 

d = cl ({C \ (0):  0 E C and C is a minimal 

dependent set of f l). 
That is, the minimal sets of the access structure d corre- 
spond to the minimal dependent sets in the matroid which 
contain 0. Informally, the point 0 is added to the set 
{l,..., n} to “play the role” of the dealer. 

There are various properties which the collection of 
minimal dependent sets in a matroid must satisfy, and 
these properties do not necessarily hold for an arbitrary 
access structure. Therefore not every access structure has 
an appropriate matroid. But if a connected matroid is 
appropriate for an access structure, then it is the only 
matroid with this property (see 191, Theorem 5.4.1, and 
[ll], [12]). Brickell and Davenport [6] have found rela- 
tions between the two notions when d is an ideal access 
structure. The next two theorems almost characterize 
m-ideal access structures. The formulation of Theorem 
2.7 is implicit in [6] and explicit in the works of Jackson 
and Martin [lll, [121. 

Theorem 2.7 [6], [12], [ I l l  (necessaly condition): If a 
nondegenerate access structure d is m-ideal for some 
positive integer m, then there exists a connected matroid 
9 that is appropriate for d. 

Theorem 2.8 [6] (suflcient condition)’: Let q be a prime 
power, and d be a nondegenerate access structure. Sup- 
pose that there is a connected matroid 9 that is appropri- 
ate for d. If Y i s  representable over the field GF(q), then 
d is q-ideal. 

The two theorems of Brickell and Davenport almost 
characterize q-ideal access structures for q which is a 
prime power. However, there is still a remaining gap. If 
there is a connected matroid 9 that is appropriate for d 
but is not representable over the field GF(q), then the 
theorems do not determine whether or not d is q-ideal. 
Recently, Seymour [131 has proved that there exists an 
access structure which has an appropriate matroid, but is 
not m-ideal for any integer m. Therefore the necessary 
condition of [6] is not sufficient (even in a weak sense). 

111. THE CHARACTERIZATION THEOREM 
In this section we give a complete characterization for 

universally ideal access structure, and prove it. We recall 
that an access structure d is universally ideal if it is 
m-ideal for every integer m 2 2. Our main result is: 

Theorem 3.1: An access structure d is universally ideal 
if and only if a? is binary-ideal (2-ideal) and ternary-ideal 
(3-ideal). 

The proof of the theorem proceeds along the following 
lines. We strengthen Theorem 2.7 of Brickell and 
Davenport for ideal schemes over the binary and ternary 
domains of secrets. We show that over these domains, 

‘The theorem in [6] had a slightly weaker condition, which we omit for 
simplicity. 

every reconstruction function (of the secrets from the 
shares) can be expressed as a linear combination of the 
shares of the parties. This enables us to show that if an 
access structure d is binary ideal, then there is a matroid 
7 that is appropriate for a? and is representable over the 
binary field. The same result is proved for the ternary 
field. Then, using a known result from matroid theory, we 
conclude that if an access structure d is binary and 
ternary ideal, then there is a matroid Fappropriate for d 
which is representable over every field. Thus, by Theorem 
2.8 of Brickell and Davenport, the access structure is 
q-ideal for every prime power q. Using the Chinese Re- 
mainder Theorem, d is m-ideal over any finite domain, 
that is, it is universally ideal, as desired. 

A. Dependent and Independent Sets with Respect to Secret- 
Sharing Schemes 

Definition 3.2: Let II be a secret-sharing scheme for n 
parties {l;.., n}, and the dealer which we denote by 0. The 
secret will be considered as the share of party 0-the 
dealer-and will denoted by n,<s, r ) .  Let B c {O; . . ,  n} 
and i E {O,..., n} \ B. The parties in B cannot reveal any 
information about the share of i if for every distribution 
on the secrets, every possible share and every 
possible share si, si: 

In this case we say that i is independent of B with respect 
to n. 

This definition is related to the requirement for nonre- 
constructing sets in secret-sharing schemes (Definition 
2.2). The reader can verify that if B G a t  ( B  s {l,..., n}), 
then in every secret-sharing scheme realizing M, party 0 
(the dealer) is independent of the set B. The difference 
between this definition and Definition 2.2 is that here we 
treat the secret as the share of party 0, therefore we have 
to define a distribution on the secrets as well. 

Definition 3.3: A set B = {jl,..., jlpl} can reconstmct the 
share of party i if there exists a function h: Si, X a - -  X Si,,, 
+ Si such that for every s E Si and every r E R (satisfy- 
ing ps ( r )  > 0) it holds that 

In this case we say that i depends on B with respect to II. 
Definition 3.4: Let II be a secret-sharing scheme. We 

say that a subset B c (0, l;.., n) is dependent with respect 
to n if there exists an i E B such that i depends on 
B \ {i}. A subset B c ( O ; . . ,  n} is independent if for every 
i E B,  i is independent of B \ { i }  with respect to n. 

Notice that the notions of dependent and independent 
set with respect to a given secret-sharing scheme are not 
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complementary. There could be a subset B of parties 
which can neither reconstruct the share of any of its 
members (and thus B is not dependent), yet can reveal 
some information on the share of one of its members (and 
thus B is not independent). However, for an ideal secret- 
sharing scheme, the following theorem of Brickell and 
Davenport [6] establishes the desired relation between the 
two notions. 

Theorem 3.5 k61: Let II be an ideal secret-sharing 
scheme realizing a nondegenerate access structure d with 
n parties ( l , . . . ,n )  over some domain of secrets S. Let 
B L (O,..., nl. Then 

1) Every party i either depends on the subset B with 
respect to II, or is independent of B. 

2) The subset B is independent with respect to II if 
and only if B is an independent set in S; the 
appropriate matroid for d. 

B. Linear Secret-Sharing Schemes 

Definition 3.6: Let q be a prime power, and n a q-ideal 
secret-sharing scheme. We say that II is linear if for every 
set that is dependent with respect to IT, the reconstruc- 
tion function is linear. That is, for every B c {O;.., n] and 
every 0 I i I n such that i E B and i depends on B with 
respect to II, there are constants {ajIj E B ,  U such that for 
every secret s E GF(q) and choice of random inputs 
r E R, 

n i ( s ,  r )  = U + ajnj(s ,  r ) ,  
j E B  

where the constants and the arithmetic are in GF(q). 
For example, we describe the t out of n threshold 

secret-sharing scheme of Shamir [21, and show that it is 
linear. Let q be the size of the domain of secrets, where q 
is a prime-power that is bigger than n (the number of 
parties in the access structure). Let s E GF(q) be the 
secret. The dealer chooses independently with uniform 
distribution t - 1 random elements in GF(q), which we 
denote by r , , - - * , r , - , .  These elements and the secret s 
define a polynomial 

p ( x )  = r t - l x f - l  + r1 -2x ' -2  + + r , x  + s. 

We observe that p(0) = s. The dealer gives the share p ( i )  
to party i. Now each set of cardinality at least t can 
reconstruct p ( x )  by interpolation. That is, the set { i1 ; - - ,  i ,} 
holding the shares ( s i , ;* - ,  si,) computes the polynomial 

The secret is reconstructed by substituting 0 for x in this 
polynomial. Notice that the secret is a linear combination 
of the shares {s i , , -*- , s i ) ,  where the coefficient of si, is 
Uk + j i k / ( i k  - ij). The share of party l is computed by 
substituting 1 in the polynomial, and, in a similar manner, 
it is also a linear combination of the other shares and the 
secret. 

The sufficient condition of Brickell and Davenport ( 161, 
theorem 2.8) states that if an access structure d has an 
appropriate matroid which is representable over GF(q), 
then d is q-ideal. The scheme in their proof is a linear 
q-ideal secret-sharing scheme, using our terminology. Our 
next lemma states the reverse direction. 

Lemma 3.7: If an access structure d has a linear q-ideal 
secret-sharing scheme, then A? has an appropriate ma- 
troid which is representable over GF(q). 

Roo$ By Theorem 2.7 there is a matroid which is 
appropriate for B'. Let ll be a linear q-ideal secret-shar- 
ing scheme for the access structure af. Using II, we will 
construct a dependence-preserving mapping 4 from the 
set of points of the matroid, (O,..., n}, into a vector space 
of GF(q). 

The mapping (b will be constructed in two stages. In 
the first stage we will map V =  (O,-.-,n} to GF(q)qXIR', 
where R is the source of randomness used in II. (For 
simplicity of notations, we assume that R is finite, but this 
assumption is not essential.) For every a E V we define 

Intuitively +,(a) describes the shares of party a with 
respect to all secrets and all random inputs. For U E 
GF(q), let U denote the vector in GF(q)qXIRl in which 
every coordinate equals U .  By Theorem 3.5 the set B c 
{O;.., n} is dependent with respect to Yi f  and only if B is 
dependent with respect to the scheme II, i.e. if there 
exists a party i E B such that the parties in B \ {i} can 
reconstruct the share of i .  Since II is linear, the recon- 
struction function is linear, or in other words there exist 
constants {a,], E B,{ , l ,  U (all in GF(q)) such that for every 
secret s and every choice of random input r ,  

I I , ( s , r )  = a ,H, ( s , r )  - U .  

i=B\(r) 

This condition is equivalent to C, E c~,4~( j )  = U, where 
a, = -1. Therefore, the mapping 41 satisfies: The set 
B c (O;.., n} is dependent with respect to the matroid Y 
if and only if there exist constants {a,], E B ,  U E GF(q) 
(with at least one a, not equal to zero) such that 
C, E a,4,(j) = U. The mapping bl almost satisfies the 
requirements of a dependence-preserving mapping. The 
problem is that the linear combination of dependent 
elements should sum to 0, while ours sums to U which is 
no necessarily 0. 

&e now continue to the second stage of the construc- 
tion of 4, which will fur the problem of the first stage. Let 
us denote by Y the following linear subspace of 
GF(q)qx I R I ,  

Y = span (1, 41(0), 41(1),.. . ,  4 J n ) I ,  

and let us denote the rank of Y by t + 1. Let 
(b2: Y -+ GF(q)' be a linear mapping with kernel (&) = 

span{l}, i.e., &(x) = 0 if and only if x = U for some 
U E GF(q). Such mapping exists by elementary linear 
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algebra arguments. For every X c Y the set {42(x): x E 
X }  c GF(qY is linearly dependent if and only if there is a 
nonzero combination of the elements in X that is in 
span { l}: 

(Y,X = a for some U E GF(q)  and a, E GF(q) ,  
X € X  

a, not all identically 0. 

We conclude that these two mappings and +2 have 
the property that B c I/ is dependent in F if and only if 
42 0 4 , (B)  is linearly dependent in GF(q)‘. Thus 4 = 

& 0 is a dependence-preserving mapping, and by def- 
inition the appropriate matroid F is representable over 
GF(q). U 

C. Sensitive Functions 
By Definition 3.3 a party i depends on a subset B if 

there exists a reconstruction function of the share of party 
i from the shares of the parties in B. In this section we 
study the reconstruction functions in ideal secret-sharing 
schemes. We show that these functions must be sensitive 
to every change in any of their arguments. 

Definition 3.8: We say that a function f: S‘ - S is 
component sensitive if for every 1 I i I t, every 
S1,”’, si- 1, si, si, si+ I , * * * ,  s, E S (3:  # s;): 

In other words, every change in the value of one variable 
of f changes the value of f. 

Lemma 3.9: Let II be a q-ideal secret-sharing scheme. 
Denote S = { O ; - - , q  - 1). Let i E {O,**-,n}, and B c 
(O,...,n} be a minimal subset such that i depends on B 
and i B. Let f: SIB1 + S be the reconstruction function 
of the ith share from the shares of the parties in B. Then: 

1) The reconstructing function f is defined over all the 

2) The reconstructing function f is component sensi- 

Prooj Without loss of generality we assume that 
B = {1,2, .- . ,  t). First, we prove that f is defined over all 
SIBI. That is, we prove that for every vector of shares in SI, 

there exists a secret s and a random input r with ps(r )  > 
0, such that the dealer, having s and r ,  will distribute this 
vector of shares to the parties in B .  Assume, by way of 
contradiction, that f is not defined for the vector of 
shares (sl, s2;-*, st> .  There exists an index j (1 I j I t )  
a n d  s h a r e s  s J ; + - ,  s i  E S s u c h  t h a t  
f(sl,---, si- si, si+ si) is well defined. This is true 
since we can choose j = 1 and the shares will be any 
shares that are distributed to the parties. Let j be the 
maximal such index. It holds that 

domain SIB1. 

tive. 

But 

Pr r ~ , ( s , r )  = $ 1  A ~ I , ( s , r )  = sk > 0. 
s ,  p&r)  [ I l k < ] - l  1 

Therefore the parties in {1;..,j - l} can reveal some 
partial information about the share of party j, and by 
Definition 3.2, this means that party j is not independent 
of the set B \ { j } .  Since the scheme II is q-ideal, Theo- 
rem 3.5 implies that party j depends on the set B \ { j ) ,  so 
the parties in B \ { j }  can reconstruct the share of party j .  
Therefore the parties in B \ { j }  can also reconstruct the 
share of party i ,  contradicting the choice of B as a 
minimal set that i depends upon. 

After establishing the fact that f is defined over all 
SIB1, assume now, by way of contradiction, that f is not 
component sensitive. In other words, there is some j E B,  
shares s,;..,s,-,,s,,s~, S,+,;~~,S, E S, and share s, E S 
such that s, # si and 

f(s l , - - - ,  s,- 1, SI 9 S I +  1 ;*-, s t )  = f(Sl,*.., s,- 1 ,  s;, S I +  1 s t )  
- - s,. 

Since f is defined over all SIBI, there exist secrets s, sr E S 
and random inputs r ,  r’ E R with p, (r )  > 0, ps,(rr) > 0 
such that 

0 For every k E B \ { j }  it holds that n k ( s ,  r )  = 

0 IT,($, r )  = s, and rIJ(s’, r’)  = si, which means that 

0 II,(s, r )  = II,(s’, r ’ )  = s,. 

The set B \ { j } ,  holding the vector of shares 
(sl,***, s,- sJ+ st ) ,  reconstructs the same value of the 
share of party i for two different values of the share of 
party j. Since there are only q possible values for the jth 
share, then there are at most q - 1 possible shares for 
party i ,  i.e., there are s,, si E S such that 

r I k ( S ’ ,  r’) = S k .  

rI,(s, r )  # rI,(s’, rl). 

Pr r I , ( s , r )  = s: A rI , ( s , r )  = s k  = 0, 
SES,  p&) [ l kcB\ I I I  I 
s e - S , p b ( r )  [ I k E B \ ( J }  1 

while 

Pr II , (S ,r )  = S  A n k ( s , r )  = s k  > 0,  

which means that the shares in B \ { j }  do reveal some 
partial information about the ith share. Therefore i is not 
independent of B \ { j } .  By Theorem 3.5, this implies that 
i depends on B \ { j } ,  contradicting the fact that B was a 

U minimal set such that i depends upon. 

D. Binary and Temary Domains of Secrets 
In this section we show that the only component-sensi- 

tive functiosn for the binary and for the ternary domains 
are linear. This is used to exactly characterize binary-ideal 
and ternary-ideal access structures. We start with the 
binary case. 

Lemma 3.10: Let f: GF(2)‘ -j GF(2) be a component- 
sensitive function. Then f can be expressed as a linear 
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function with nonzero coefficients over GF(2): 

f 

f(x,,.-, X') = a + x ,  (a E {O, 1)). 
r = l  

Prmfi Stated differently, this lemma claims that XOR 
and not-XOR are the only component-sensitive funtions 
over GF(2). Suppose, without loss of generality, that 
f(O,.-.,O) = 0. In this case we show that f(xl,...,xf) = 

C:= l x ,  = X0R(xl ; . . ,  xf). Given an element (xl,--*, xf) E 

GF(q)' of Hamming weight k, set up a sequence of 
elements in GF(2)' which starts at (0, O,..., O), ends at 
( x l , * * ~ , x f ) ,  has length k + 1, and successive elements in 
this sequence are at Hamming distance 1. Since f is 
component sensitive and its range is binary, we get that 
for the lth element in the sequence (1 = O,l;..,k), f 
attains the value 1 mod2. In particular, for the kth ele- 

0 

We use Lemma 3.10 to give an exact characterization of 
binary-ideal access structures. 

Corollary 3.11: An access structure d is binary-ideal if 
and only if there is a matroid which is representable over 
GF(2) and is appropriate for d. 

Proof Let ll be a binary-ideal secret-sharing scheme 
which realizes the access structure d. By Lemma 3.9 the 
reconstruction function of every dependent set is compo- 
nent sensitive. Therefore by Lemma 3.10 every recon- 
struction function is linear over GF(2), so by Definition 
3.6, ll is a linear scheme. By Lemma 3.7, we conclude that 
if AX' is binary-ideal then AX' has an appropriate matroid 
which is representable over GF(2). The other direction is 
implied by the sufficient condition of Brickell and Daven- 

0 

The next lemma parallels Lemma 3.10, this time for the 
ternary case. 

Lemma 3.12: Let f: GF(3)' -+ GF(3) be a component- 
sensitive function. Then f can be expressed as a linear 
function with nonzero coefficients over GF(3): 

ment, f ( x , ; . . ,  x r )  = k mod2 = XOR(x, , . - - ,  1'). 

port ( [61, theorem 2.8). 

f 

f (xl , -**,  xf) = a + 

Proofi The proof relies on the observation that any 
partial assignment to the variable of a component-sensi- 
tive function results in a new component-sensitive func- 
tion (of the remaining variables). In addition, a compo- 
nent-sensitive function of one variable is a permutation of 
its domain. 

For any finite field GF(q), any function which maps 
GF(q)' into GF(q) can be expressed as a multivariable 
polynomial over the field, in which every monomial of f 
contains variables whose powers do not exceed q - 1 
(since xq = x for every x in GF(q)). In our case q = 3 so 
the powers do not exceed 2. 

We first show that no term in the polynomial f contains 
a variable of degree 2. Suppose, without loss of generality, 
that x: appears in some monomial. The polynomial f will 

a l x r  (a, # O for all i). 
r = l  

have the form 

x:p1(xz , ' - - ,  x , )  + x1pz(x2 ,* . ' ,  x n )  + p3(x27*'*,  x n ) 7  

where the polynomial p 1  is not identically zero, and 
p 2 , p 3  are arbitrary polynomials. Hence there exists a 
substitution to the variables x 2 , * * * ,  x n  such that the value 
of p 1  after the substitution is nonzero. This substitution 
to f yields a polynomial in xl, of the form act + bx, + c, 
where a, the coefficient of xl, is nonzero. By the observa- 
tion mentioned above, the resulting function of x 1  should 
also be component sensitive, namely, a permutation. It is 
not hard to check that any degree-2 polynomial over 
GF(3) is not a permutation. (Every polynomial of the 
form ax1 + b, where a # 0, is a permutation. There are 
six such polynomials and there are six permutations over 
GF(3), therefore every degree-2 polynomial cannot be a 
permutation.) Thus f contains no variable of degree 2, so 
all its monomials are multilinear. 

Suppose f has a monomial with two or more variables. 
Take a minimum length monomial containing two vari- 
ables, and assume that these variables are x1 and x,. We 
set all variables in this minimum length monomial (except 
x 1  and x , )  to 1, and all remaining variables to 0. This 
leaves us with a function of x1 and x2 of the form 
a l x 2  + bx, + cx2 + d, where a # 0. This two-argument 
function should also be component sensitive. But rewrit- 
ing it as xl (ac2  + b )  + cxz + d, and setting x2 = -b /a ,  
we get a function of x 1  which does not depend on x, ,  and 
in particular is not component sensitive-a contradiction. 

Therefore f contains no degree-2 variables and no 
monomials with two or more variables, and so is linear, of 
the form a + C : = l a i x i .  All ai must be nonzero, for 
otherwise f would not depend on the corresponding vari- 
able. 0 

We remark that GF(3) is the largest field where every 
component-sensitive function is linear. Already for GF(41, 
there are 4! = 24 component-sensitive functions of one 
variable (permutations), but only 3 - 4 = 12 nonconstantt 
linear functions. Now using the same arguments as in the 
proof of Corollary 3.11 (for the binary case), we conclude 
with the following characterization of ternary-ideal access 
structures. 

Corollary 3.13: An access structure d is ternary-ideal if 
and only if there is a matroid which is representable over 
GF(3) and is appropriate for d. 

E. Conclusion of the Proof 
We saw that representability over GF(2) determines if 

an access structure is binary-ideal, and representability 
over GF(3) determines if an access structure is ternary- 
ideal. Therefore, if an access structure is both binary-ideal 
and ternary-ideal, then it has an appropriate matroid that 
is representable over GF(2) and over GF(3). The next 
proposition is due to Tutte [14] and can be found in 
Truemper ([lo], Theorem 9.2.9). The proposition states 
strong implications of the representability over the two 
finite fields. It will be used to complete the proof of our 
main theorem. 
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Proposition 3.Z4 (141: A matroid F is representable 
over GF(2) and over GF(3) if and only if F is repre- 
sentable over any field. 
Using this proposition we get: 

Corollary 3.15: If an access structure & is binary-ideal 
and ternary-ideal, then for every q such that q is a prime 
power, & is q-ideal. 

Proof If an access structure & is binary-ideal and 
ternary-ideal, then by Corollaries 3.11 and 3.13 the access 
structure ~3’ has an appropriate matroid 7 that is repre- 
sentable over GF(2) and it has an appropriate matroid 
that is representable over GF(3). Remember that there 
can be only one appropriate matroid for &, therefore & 
has an appropriate matroid F that is representable over 
both fields. Hence Proposition 3.14 implies that 7 is 
representable over any field. From Theorem 2.7 we con- 
clude that the access structure & is ideal over any finite 

0 
Corollary 3.16: If an access structure & is binary-ideal 

and ternary-ideal, then for every positive integer m, the 
access structure M is m-ideal. 

Proof Let S be a finite domain of secrets of size m. 
Let m = pilp;’ ... pit where p, are distinct primes. Given 
a secret s E S, we use the pf,-ideal secret-sharing scheme 
to share s modp,!~ for every 1 IJ 5 t, independently. 
Every subset of parties B E& can reconstruct s mod pf,, 
and so, using the Chinese Remainder Theorem, they can 
reconstruct the secret s. Since for each J the secret s 
modpf, is shared independently, then every subset B e& 
does not get any partial information about the secret s. 0 

This last corollary is a restatement of Theorem 3.1, so it 
completes the arguments in the proof of our main result. 

IV. EXAMPLES AND CONCLUDING REMARKS 
In this section we formulate several known construc- 

tions from matroid theory as ideal access structures. Our 
first two examples show that the condition of Theorem 3.1 
cannot be relaxed: Being either just 2-ideal or just 3-ideal 
is not sufficient for being universally ideal. Then, we 
demonstrate how graphic and agraphic matroids give rise 
to interesting classes of universally ideal access schemes. 

Example 4.1 (the 2 out of 3 threshold access structure): 
We recall that the 2 out of 3 threshold access structure is 
the access structure with three parties in which every two 
parties together can reconstruct the secret, and every 
party by itself does not know anything about the secret. 
Kamin, Greene, and Hellman [7] proved that this access 
structure is not 2-ideal. This access structure has an 
appropriate matroid, Y, in which V = (0,1,2,3} and 9 = 

(B:  IBI I 2}. It is easy to check that the matroid Y is not 

field, i.e., & is q-ideal for every prime-power q. 

4 , 0 

Fig. 1. Minimal sets of the access structure 9; 

access structure demonstrates that being 3-ideal does not 
suffice to guarantee that an access scheme is universally 
ideal. An additional example of this type is the following. 

Example 4.2: Consider the following access structure 9- 
(see Fig. 1). The set of parties is {1,2,3,4,5,6). The access 
structure is the closure of the set 

S, = {{1,4}, (2,5}, {3,6), {1,2,6}, {1,3,5}, 

(2,3,4), {4,5,6)}. 

The appropriate matroid of this access structure is the 
Fano matroid [9], which is representable only over fields 
of characteristic 2. Hence 9 is 2-idea1, and is not 3-ideal. 
The 2-ideal secret-sharing scheme for 9- uses two random 
bits r,,, rl which are chosen independently with uniform 
distribution. The scheme is described in Fig. 2. This access 
structure demonstrates that being 2-ideal does not suffice 
to guarantee that an access scheme is universally ideal. 

The access structure 9’ = cl(Fm U (3,4,5}) has a ap- 
propriate matroid that is representable over GF(3) but 
not over GF(2) 191. Actually, the 3-ideal secret-sharing 
scheme for 9’ is the same as the binary scheme for 
except here r,,, rl are chosen uniformly and independently 
from (0,1,2}. Notice that the parties (3,4,5} can recon- 
struct 2s over the two fields, which is useless over GF(2), 
but enables to reconstruct the secret over GF(3). This 
access structure demonstrates again that being 3-ideal 
does not suffice to guarantee that an access scheme is 
universally ideal. 

Example 4.3: Here we give a method for combining two 
ideal access structures for n and 1 parties into a new ideal 
access structure for n + 1 - 1 parties. Let & be a nonde- 
generate access structure with parties {l;.., n), and let dl 
be an access structure with parties {n + l ,*** ,n  + I}. We 
denote by a?’ = di, &,I the access structure with n + 1 - 
1 parties (l;..,i - 1,i  + l;.-,n, n + l;.., n + l}, and re- 
constructing sets 

representable over GF(2) (which, by Corollary 3.11, gives = cl ( { B :  E &  and B } )  { ( B  \ {i}) 
an alternative proof that the access structure is not 2- 
ideal). But the matroid ?Y is representable over GF(3), 
therefore the access structure is 3-ideal. 

Here is the corresponding 3-ideal scheme. Let s E 

{0,1,2) be the secret. The dealer chooses at random a 
number r E {0,1,2). The share of party 1 is r, the share of 
party 2 is r + s, and the share of party 3 is r + 2s. This 

uB,: B E M ,  i E B, and B, E M , } .  

That is, the sets that can reconstruct the secret in the new 
access structure are the supersets of sets from .a?’ that do 
not contain party i; and the sets from d that do contain 
party i, in which party i is replaced with the sets of d1. 
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4 5 0 
a a a 

ro + - 7’1 + .‘ r0 + + .\ 
Fig. 2. An ideal scheme for 9 with secret s and random independent 

inputs ro, rl. 

Let d be a nondegenerate access structure, let i be a 
party in d, and let dl be an access structure. We will 
show that if d and dl are universally ideal then AX?’ = 

di,dl) is also universally ideal, by describing (for every 
m) an m-ideal secret-sharing scheme for AX?’. Given a 
secret s, use an m-ideal scheme to generate shares for the 
parties in d. Let si be the random variable that denotes 
the share of party i in the scheme for d. Now use an 
m-ideal scheme for dl with secret si to generate shares 
for the parties in dl. 

It is easy to see that the 1 out of 2 threshold access 
structure is universally ideal (give the secret to each 
party). The 2 out of 2 threshold access structure is also 
universally ideal (give the first party a random input r ,  
and to the second party deal s + r modm). Using these 
two access structures as building blocks, and using the 
above construction recursively, we get a class of univer- 
sally ideal access structures. The resulting class of access 
structures is a special case of access structures whose 
appropriate matroids are graphic, a class which we discuss 
next. 

Example 4.4: Let G = (V, E) be an undirected graph. 
The cycles of G (as defined in graph theory) are the 
minimal dependent sets of a matroid 9TG) on the edge 
set E. In other words, the set of points of the matroid 
9(G) is the set of edges of G, and B G E is an indepen- 
dent set of 9(G) if B does not contain cycles, i.e., B is a 
forest in G. A matroid 9 is graphic if there exists some 
graph G such that 9 is isomorphic to the cycle matroid 
S G ) .  Every graphic matroid is representable over any 
field [9]. Therefore if an access structure d has a graphic 
appropriate matroid, then d is universally ideal. To be 
more precise, let G = (V,  E) where V = (0, l,..., n}, E G 
V x V ,  and let e, = (0,l) E E be a special edge which 
corresponds to the dealer. Let 

d( G )  = cl ((C \ [e,} : C c E is a minimal cycle 

that contains e,}). 

The dG) is universally ideal. The scheme rI for graphic 
matroids is actually quite simple. Let m be the cardinality 
of the domain of secrets. Let r = ( r l , r 2 , * - - , r , v , + l )  be the 
random input (IVl - 1 independent values from the do- 
main {O,...,m - l)). Then the share of edge ( i , j )  E E 

.\ j /( 
L/ 

0 

Fig. 3. The graph Go. 

(where i si) is 
ri - r . ,  i # 0, 

j ) ( s ,  r )  = i J  r l + s - r j ,  i = O .  

For every simple path which starts at node 1, and ends at 
node 0, it is possible to assign f 1 weights to the shares 
along the path, such that the weighted sum is equal to the 
secret s. 

We demonstrate this construction on a specific graph 
Go, shown in Fig. 3. The cycles in the graph are 

and these sets are the minimal dependent sets of .Y(G,). 
The access structure &(Go) is the closure of 
{{e2, e3}, {el, e2, e4}}. The dealer is the edge e,. The shares 
of the parties e2 and e3 are rl - r2 and rl + s - r2, 
respectively, and these parties can reconstruct the secrets 
by subtracting their shares. 

This scheme was found previously (not in the context of 
graphic matroids) by Benaloh and Rudich [15]. Their 
motivation was different: Given any monotone access 
structure d Benaloh and Leichter [41 show how to realize 
a secret-sharing scheme for &. One of the problems that 
Benaloh and Leichter raise in their paper [4] is that for 
most access structures their scheme is not efficient: if 
there are n parties in the access structure and the domain 
of seyets is S ,  then the domain of shares is of cardinality 
ISlec2 ). The question is if there are more efficient schemes, 
or are most access structures “not efficient” and require 
large shares. Attempts to prove such lower bounds can be 
found in [16], [17], [8]. The best lower bound that was 
proved is \SI2-‘ for any constant E > 0 [171. 

Let us focus on one approach to prove such lower 
bounds, and show that it fails. The secret-sharing scheme 
of [9] uses a monotone formula, that describes the access 
structure, to build a secret-sharing scheme. If the formula 
is of length L and the domain of secrets is S ,  then the 
domain of shares is of cardinality ISIo(L). Therefore every 
lower bound on the cardinality of the shares in secret- 
sharing schemes implies a lower bound on the length of a 
formula that describes the access structure. Since there 
are known exponential lower bounds on the length of 
monotone formulas for some functions, one would hope 
that they would imply lower bounds on the size of the 
domain of shares. We show that this approach is wrong by 
describing an access structure with a superpolynomial gap 
between the cardinality of the domain of shares (in an 

Ieo,e2,e3},{e0,e1,e2,e4},{el,e3,e4}, 
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efficient scheme) and the length of every formula that 
describes it. 

Let C be the clique with 1 nodes. We consider the 
access structure CON whose appropriate matroid is the 
cycle matroid of C (using our notation CON =d(C)). 
This access structure has n = - 1 parties, which are 
all the edges except (0, l), which is the dealer. The recon- 
structing sets of CON are all the undirected graphs such 
that adding the edge (0,l) to the graph closes a cycle. In 
other words, the access structure CON is the collection of 
all the graphs that contains a path from node 0 to node 1. 
Hence, the formula that describes CON is the 0 - 1- 
connectivity formula. Karchmer and Wigderson [ 181 prove 
that every monotone formula for the function 0 - 1- 
connectivity is of length n’(’Og ’). On the other hand, CON 
is universally ideal. 

Example 4.5: Let G = ( V , E )  be an undirected graph. 
A cut in G is a collection of edges, such that deleting 
them from G increases the number of connected compo- 
nents in the remaining graph. The cuts of G are the 
minimal dependent sets of a matroid P ( G )  on the edge 
set E. A matroid F i s  cographic if there exists some graph 
G such that 7 is isomorphic to the cut matroid P(G).  
Every cographic matroid is representable over any field 
[9]. Therefore if an access structure d has a cographic 
appropriate matroid, then s’ is universally ideal. Unlike 
graphic matroids, we do not know of a simple construction 
of universally ideal secret-sharing schemes for cographic 
matroids. 

To be more precise, let G = (V, E) where V = 
(0, l;.., n), E c V X V, and e, = (0,l) E E is a special 
edge which corresponds to the dealer. Let 
#(GI = c l ( {C\{e , ) :C~Eisamin imalcut  

that contains eo} ) .  
Then #(G)  is universally ideal. We again demonstrate 
this example on the graph Go shown in Fig. 3. The cuts of 
Go are 
(eo,el ,e3},  {eo,e2), {e0,e3,e4) ,  {e1 , e2 , e3 ) ,  

{el, eJ, {e2, e3, e4), 

and these are the minimal dependent sets of the matroid 
Y=+ (Go). 
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