Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults

(Extended Abstract)

Benny Chor®

Shafi Goldwasser®

Silvio Micali® Baruch Awerbuch®

Massachusetts Institute of Technology

ILaboratory for Computer Science
545 Technlogy Square, Cambridge MA 02139

1. Introduction

This paper contributes two ncw primitives:
verifiable secret sharing in the arca of cryptographic
protocols and simultaneous broadcast in the field of
fault tolcrant computation. Many problems, such as
distributed coin flipping and "uninfluenced” voting,
can be reduced to the solution of our primitive prob-
lems.

Verifiable sccret sharing is a cryptographic pro-
tocol that allows one to brcak a sccret in n pieces
and publicly distribute them to n people so that the
secret is reconstructible given only sufficiently many
picces. The novelty is that every onc can verify that
all received a "valid"” picce of the sccret without hav-
ing any idea of what the secret is. One application of
this tool is the simulation of simultancous-broadcast
networks on scmi-synchronous broadcast nctworks.

Simultancous-broadcast networks ar¢ a power-
ful kind of communication nctworks. Informally, they
guarantee that all processors send messages simul-
tancously (at designated times) and all processors
rcceive messages simultancously (at designated
times). Designing distributed protocols robust

against Byzantinc faults (as well as proving their
correctness) is extremely casy for such networks.

Under the assumption that it is infcasible to
invert the RSA function, we show how to construct
a simultancous-broadcast nctwork with n processors
and ¢ Byzantinc faults from a secmi-synchronous net-
work with n processors and ¢ Byzantine faults. Our
construction actually consists of a compiler that
transforms algorithms, robust against ¢ Byzantine
failurcs in a simultancous network, to ecquivalent
algorithms robust against ¢ Byzantinc failures in a
semi-synchronous network.

The transformed algorithms require O(1)
rounds of communication for every original round
and 0O(2") local computation time. Thus, it is fully
polynomial in n when f=0(log n). Similar results
are proved for ¢ =loglogn under the assumption that
factoring is intractable.

2. Simultaneous Broadcast

The idca of a simultancous broadcast network
is best illustrated by the following real life example.

Example: Let A4,,.., 4, denotc n people in a room.

(1) Research supported by IBM Graduate Fellowship and Bantrell Postdoctoral Fellowship.

(2) Rescarch Supported by NSIF Grant DCR-8509905.
(3) Rescarch Supported by NSI Grant DCR-8413577.
(4) Research Supported by Weitzmann Postdoctoral Fellowship.

0272-5428/85/0000/0383$01.00 © 1985 IEEE

383

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

Each 4; has his own blackboard and picce of chalk.
No onc can crase or writc on others boards. The
room they arc in is designed so that it is lighted for
onc hour, dark for the next, then lighted again for an
hour, dark for the next, and so on. A4jy...., 4, com-
municate as follows. When the room is dark, cach
onc writes a message on his board. No onc can recad
thc mcessage till the light comes on. When the light
switches on, cveryone simultaneously rcads cveryone
clscs blackboard. The j-th message of A; is defined
to be what appcars on A;’s black board at the begin-
ning of the j-th "lighted"” interval. Whatever is writ-
ten when the light is on is ignored.

2.1 Intuition

The above intuitive model of communication
possesses three intercsting properties. Thesc proper-
tics hold even if some people decide to sccretly talk
to onc another during the darkness interval, in order
to decide what to put on their boards.

Informally,
1) If A; does not collaborate with anyone upto the

j-th round, cverybody’s j-th message is
"independent” of A;’s j-th message.

2) No message can be "crascd" or altered after
the light switch goes on. (If A;’s board is
empty, he has delivered the empty message).

3) Al of A;,.., 4, agree on what the j-th mes-
sage of everyone is.

The first property capturcs simultaneity. The last
two capture broadcast.

Let us now formalize all of the above in the
notion of idcal simultancous broadcast.

2.2 Broadcast and Simultancous Broadcast Networks

Let NET denote a communication network
whose processors 471,..., 4, communicatc by sending
and receiving messages over a common communica-
tion channel.

In addition to scnding messages to one another

the processors perform internal computations (toss
coins, read their work tapes, etc).

384

With respect to an exccution of a given proto-
col PROT, a processor A, is proper if it always com-
putes according to PROT. A processor which is not
proper is called faulry. Faulty processors can coordi-
nate their strategics to try to disrupt the system. This
is done as follows. When an cxccution of a protocol
PROT is started, an exccution of a special algorithm,
the adversary, also begins. ‘The adversary chooses
which processors to make faulty in a dynamic fashion
during the cxecution of PROT.

Once the adversary chooses a processor to be faulty,
it takes control over the messages that processor
sends. 1.ct us stress that

all protocols and algorithms considered in this
paper arc probabilistic.

Definition 1 (Broadcast Networks): A communication
nctwork is a broadcast network if

1) a unique message (string) my; is associated with
cach processor A4; and cach positive integer j.

m;; is called the j-th round message of A;.
Let Hj={(i,jmy):1<i <nl<x <)}
be the history of communication up to and
including round j.
A broadcast nctwork is an n-t-broadcast-network if
for all protocols PROT and all adversarics ADV, the
following holds:

2) ADYV makes at most ¢ processors faulty during
an cxccution of PROT.

The set of processors that are chosen to be
faulty at round j+1, F;,;, is computed by
J
ADV on inputs H; and U F;.
x=1
3) A proper procecssor Ap computes my, ;.1 by
running PROT on inputs p and H;.

4) The round j messages of the faulty processors
are computed by ADV on inputs H; and the
messages of the proper processors at round
Jj+1L

Let the algorithms PROT and ADV in a n-1-ISB

network NET be given. Then,

H;(NET,PROT,ADV) will denote the conditional

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

probability distribution on H; given H;_j. The pro-
bability is taken over all coin tosses of PROT and
ADV.

Definition 2 (ISB networks): A n —r-broadcast net-
work is n-t-ideal simultaneous network if the follow-
ing more restrictive condition 4’ hold for the mes-
sages sent by the faulty processors instcad of of con-
dition 4:

4) The round j messages of the faulty processors
arc computed by ADV only on input H;.

(Comment: if in definition 2, j is interpreted as
time, then all messages of round j cannot depend on
current messages of proper proccssors. The only
dependence allowed is on their past messages.)

2.3 The Power of ISB Networks

Simultancous broadcast nctworks are a fundamental
primitive as simultaneity lics at the heart of many
protocols: coin flipping, fair voting, contract signing,
exchanging secrets etc.

All these protocols are in fact extremcly easy to
implement in an simultancous broadcast nctwork. Let
us consider two examples.

Coin flipping: All proper processors should
agree on a randomly selected bit. In a simultaneous
broadcast nctwork, it is cnough that at common time
i all processors broadcast a randomly chosen bit. At
time i+ 1, all proper processors will take the XOR of
the broadcasted bits as the outcome of the coin toss.
(Remember that all processors are forced to broad-
cast. If they broadcast something different from 0 or
1, their bit will be considered to be 0 by default).
The outcome of the coin toss will be the same
because of property (1) of a broadcast Network. It is
enough that a single proper processor belongs to the
nctwork for the outcome to be unbiased.

Uninfluenced voting: Informally, cach processor
should vote for its "best” candidate, uninfluenced by
the vote of others. (For example, there may be some
tendency to votc for the eventual winner!). This is
casily achieved by having all processors votc at time

385

i and takc thc majority at time i +1.

2.4 Simulation of ISB Networks

‘Though very powcrful, ISB nctworks appear to
be quite an idealized model of communication. One
contribution of this paper is showing that ISB net-
works can bc simulated on broadcast networks. The
proposced simulation necessarily only "approximates”
the mechanism of an 1SB, but captures all of its pro-
pertics with respect to poly time computation.

Our simulation of an ISB nctwork is a virtual
onc. Roughly, the processors in the broadcast net-
work will actually cxchange auxiliary mcssages for
which property 4’ of a ISB nctwork does not hold.
The messages {m ',~j}, that satisfy "all" properties of
messages sent in an ISB nctwork, are never sent but
arc computed from the auxiliary messages. Let us
formalizc this notion of simulation.

Definition 3 (compiler): A compiler is a pair of algo-
rithms (C,D). C is called the coding algorithm and D
the decoding algorithm.

Let PROT be a protocol defined for an n-t-ISB net-
work. On input (a description of) PROT, C com-
putes (a description of) a protocol PROT¢ defined
for an n-t broadcast network NET".

Let the proper processors of an n-t broadcast net-
work cxecute the protocol PROT in presence of an
adversary ADV'. Let h; be the sct of all messages
sent from round ¢(j —1)+1 to round c-j during such
an exccution. Algorithm D, on input 4; and integer
1 < i < n computes a string m';;. (Here ¢ is a con-
stant determined by the compiler only).

Let H'j={(ixm'i)1<i<nl<x<Lj-1}
For given compiler (C,D), protocol PROT and
adversary ADV', let H';(NET'.C,D,PROT,ADV')
denote the conditional probability distribution on
H'j given H'; ;.

Definition 4 (simulator): Let NET' be an n-t-
broadcast nctwork and NET be an n-t-ISB nctwork.
An n-t-simulator is an cfficient compiler (C,D) such
that for all cfficient protocols PROT dcfined for
NET, and for all cfficicnt adversarics ADV' defined
for NET', there is an cfficient adversary ADV for

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

NET such that, for all j>0

H'{(NET'.C.D . PROT,ADV Yand ‘H(NET ,PROT . ADV')

arc polynomial-time indistinguishable.

(Here cfficient means running in probabilistic
polynomial-time in somc common sccurity parameter
K, presented as input to all processors).

The notion of polynomial-time indistinguish-
able probability distributions is that of [GMR] (which
is derived from [GM] and [Y1]). For convenience,
this dcfinition is recalled in the next subsection.

Comment: Intuitively, dcfinition 4 says that
whatever the faulty processors can achieve in a
broadcast network simulating a ISB network, can also
achicve in a truc ISB nctwork. In other words, if the
messages produced by a protocol satisfy certain pro-
pertics in an ISB network the messages "sent” in the
simulation of thc protocol on a broadcast nctwork
satisfy the samc propertics (with respect to
polynomial-time obscrvers). Therefore “correct” pro-
tocols get mapped to "correct” protocols.

2.4.1 Indistinguishability of probability distributions

One more technical definition- that of polyno-
mial indistinguishability (taken from [GM],
[Y1,IGMR])) is nceded in order to describe our
results.

Let ICZ™ be an infinite index set (of the
security paramcter) and let ¢ a positive constant. For
cach K€1, let Agx be a probability distribution over
thc K¢ long binary strings (messages). We call
A={Ag | K€I} an I-c-ensemble. By saying that A
is an ensemble or an I-ensemble we mean, respec-
tively, that there exist / and ¢ or simply ¢ such that
A is a I-c-cnsemble.

Informally, we say that two ensemblcs (or pro-
bability distributions) are indistinguishable if no
polynomial-time computation can tcll them apart.
Formally,

A distinguisher is a probabilistic polynomial-
time algorithm D that on input a string b outputs a
bit b. Let A2:{A2'K |K€l} and AI:{AI.K |K€T}
be two I-c-ensembles. Let p,l()_l denote the probabil-
ity that D outputs 1 on a K°-bit long input string

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

386

randomly sclected with probability distribution Aj .
Symmectrically, p,'()'z denotes the probability that D
outputs 1 on a K¢-bit long input string randomly
sclected with probability distribution A g.

Definition 5: We say that the cnsembles Ay and A;
arc indistinguishable if for all distinguishers D,

| Pl{’),l — p,{?'z | < -Kl—d for all d and sufficiently long
K.

2.5 Our result
Theorem: Under the intractability assumption for the
RSA function (scction 3.4), we cxhibit an

n — 0 (logn) simulator.

More gencrally, under the assumption that for
large cnough K it is infcasible to invert RSA on
moduli product of two K bit long primcs, we show
how to perform the following simulation:

A protocol for simultancous broadcast networks
with n processors and ¢ faults (1 <4n) is simu-
lated on a broadcast nctwork with n proces-
sors and ¢ faults (1 <4n). The simulation over-
head is O(1) in communication rounds and
02" + K) in local computation time.

While in gencral fully polynomial time algo-
rithms are preferable, there arc some important cases
where O(2") processing time is acceptable. One such
example is Bracha’s randomized Byzantine agrcement
algorithm [Br], where n denotes the size of a sub-
committee. These subcommittes are logarithmic in
the size of the whole nctwork, and so (single)
exponent in the size of the subcommittee is still poly-
nomial in the size of the whole network.

2.6 Discussion

Simultancous Broadcast versus Byzantine Agrecment

Tollerating O(log n) faulty processors is an
almost trivial task with respect to the problem of
achieving Byzantinc Agrcement on a point-to-point
synchronous nctwork. This may Icad us to the belief
that tollerating O(log n) faulty processors with
respect to achicving simultancous broadcast on a

semi-synchronous broadcast nctwork is cqually
trivial. However, achicving simultancity appcars to be
a much harder problem than achicving Byzantine
agreement. ‘This is best illustrated by the following
"flawed™" attempt to rcach simultancous broadcast on
a synchronous broadcast network.

A naive and flawed attempt:

To send the j-th message my;, processor 4; of a
broadcast network sends the encryption of my; at
round 2j+1. All proper processors rcad all such
ciphertexts. [f a processor sends nothing or two or
more ciphertexts, a fact noted by all processors, then
its m;; is considered to be the empty message. At
round 2j+2 all processors should send the decryp-
tion of their messages. Failure of sending this
dccryption is again intcrpreted as the empty message.
(We arc assuming that the cncryption scheme is such
that there is a unique possible decoding for cach
ciphertext. Morcover, for this example, we assume
that, on input x and y, one may dccide whether "y
is the encoding of x™).

Notice that the above procedure does not make the
network simultaneous. In fact, beforc round 2j +3,
all faulty processors know what the proper proces-
sors’ messages are. By either sending or not sending
the decryption of its message, a faulty processor has
an option of sending its originally chosen message or
the empty one. As it can make this dccision after
having scen the other processors’ messages, this
violates the "simultaneity” condition. Just seec how
disruptive this could be in the coin flipping protocol
above described. Once a faulty processor sces the
decryptions of the bits of all other processors he can
choose whether to send the decryption of his own bit
or not. In onc case the network chooscs the XOR of
all bits as the outcome of the coin toss, in the sccond
one the XOR of "0" and all other bits.

2.7 Implications of the main result

Given a "compiler” for simultaneous-broadcast
networks, protocols for coin flipping and fair voting
can immediately and correctly be implemented on a
semi-synchronous broadcast nectwork (or even

387

weaker type of networks) with O(log n) faulty pro-
cessors. ‘These implementations arc obtained by
"compiling” the simple protocols outlined above for
simultancous broadcast nctwork. As for any gencral
simulation, some of these compiled solutions can be
more cfficicntly solved by ad hoc algorithms. For
cxample, coin flipping is as rigorously but more cffi-
ciently solved in [Y2] and [ABCGM]. However, some
other problems reccive their first solution through
our general compiler, as is the case for fair voting.
For both coin flipping and fair voting, what is strik-
ing is the extreme simplicity of the original protocols.
This exemplifics the power of simultancous broadcast
as a ncw primitive.

Our simulation uscs as a subroutinc the new
tool of Verifiable Sccret Sharing (VSS). In the next
section, we describe the concept and implementation
of VSS.

3. Verifiable Secret Sharing

3.1 Properties

In [S], Shamir proposed a method to share a
sccret that is bricfly describe below. A dealer wants
to break a secrct b into n picces by, ..., b, so that
b cannot be reconstructed from any collection of ¢
picces (1 <n), but it can be casily reconstructed from
any collection of ¢ +1 picces. The dealer does so by
choosing at random a polynomial P(x), of degree ¢
over the field Z, (for a suitably large prime p), so
that b is the frec term of P(x). Then
by=PQ), - b, =P(n) are the desired picces.

Shamir’s scheme is secure in an information
theoretic sensc. However, this is based on having a
non-faulty dealer with the ability to distribute pieces
privately. In the context of a distributed network with
faulty processors, it is not possible to send pieces in
cleartext over the public network. If a dealer still
wishes to distribute the pieces, he can send s;
cncrypted under the recipicnt public key - Ej(b;).
However, at this point thc scheme is at most as
sccure as the encryption function £. It is even con-
ccivable that I is sccurce, but s can be reconstructed
from I (by),... E,(sy). A more scvere difficulty is

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

the following:

Assume that thc dcaler is dishonest. Then,
given onc picce b;, there is no way to verify that
indeed b; is a "valid" picce of the sccret. In fact, the
owner of b; can never be surc that the polynomial
interpolating the points not in his possession (and
which he does not know) indeed passes through his
own point (i,P(i)). Even worse (from some point of
view), there is no secret to speak of. l.c. there is no
specification of the sccret given in advance.

These difficultics make Shamir’s secret sharing
hard to usc in a fault tolerant distributed environ-
ment.

We provide an different mcthod to share a
sccret. Typically, the sccret is a single bit b that is
chosen cqual 1 with some a priori probability r
(without loss of generality, r=1,2). This type of
sccret is very general since by concatenation it allows
to have longer strings with arbitrary probability dis-
tributions.

e The security achicved by our protocol is that
it is infeasible for lcss than ¢ participants to cooperate
and distinguish & from a random bit. Morc formally,
no probabilistic polynomial time algorithm that moni-
tors the public communication in the cntire network
and has access to the internal state of any ¢ partici-
pants can output b correctly with probability greater

1
than —
an 2

large XK.

+ —1—0— for all constants ¢ and sufficiently

e On the other hand, n—¢ participants can
reconstruct b, from their shares, with very high pro-

bability (>1— 1 7)- Thus the ¢ faulty proces-

27! -3t -
sors cannot find b by themselves, but the n —¢
correct processors can, rcgardless of the faulty pro-
cessors behavior.

e The distribution of picces is done publicly , in
front of all participants. First, the dcaler cstablishes
the secrct b by announcing a public encryption key
E and an encryption E(b) of the sccret bit (where F
is a RSA based probabilistic encryption scheme
[GM]IACGS]). Then all participants, onc by one,

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

388

play an intcractive protocol with the dealer over the
nctwork channel to get their "share™ of b.

e The cffect of this protocol is that cach partici-
pant C gets onc verifiable picce b of A’s secret:
Every other participant D can verify that the picce C
got is indeced a legitimatc picce of the sccret.

3.2 Oblivious Transfer

A crucial component of our verifiable secret
sharing is a gencralization of the oblivious transfer
protocol. 'The beautiful notion of oblivious transfer
(OT) was introduced by Rabin [R2]. It involves two
partics 4 and B and an integer N4 (product of 2
large distinct primes) whosc factorization is known
only to 4. A and B would like to play a protocol at
the end of which

1) B is able to output N4’s factorization with pro-
bability essentially cqual to 1/2 and

2) A does not know whether or not B has
reccived N 4’s factorization.

Rabin originally suggested an implementation of OT.
Even, Goldreich and Lempcl [EGL] generalized it.
Fischer, Micali and Rackoff [FMR] found an interac-
tive protocol (four rounds of communication
exchange) which achieves the above properties (1)
and (2) and is its correctness is provably equivalent
to factoring.

In this paper, we use a generalization of the
[FMR] protocol to moduli N4’s that are product of /
primes. In this case the desired properties are
1) B gets exactly one split Ny =SS, with uni-

form probability distribution among all possible

splits (including the empty split Ny =N 4-1).

2) A4 should not know what split B actually

received with probability greater than -;I—

Oblivious Transfer between A and B on integer N4

Partl: B sends A a square modulo N4, u Az together
with a 0-knowledge proof that B knows one square
root of u} mod Ny4. (for dctails sce [FMR] or
[GMR]).

Part2: A gives B a random square root of u} mod
Ny,

Four rounds of message cxchanges arc required in
the implementation. The cffect of part 1 is that 4 is

convinced with probability grecater than 1 — ?i,—

that B knows onc squarc root of u Az but A gets no
information as to which root it is. By saying "B
knows a square root” wc mean that B can computed
such squarc root by running B; twice on the same
input and same coin tosses.

In the correctness proof for our VSS protocol, we
regard the oblivious transfer axiomatically, as a pro-
tocol with the specified propertics.

3.3 Our Verifiable Secret Sharing (VSS) Protocol

Codec for dealer 4
to verifiably share the secret bit b:
(for n participants, ¢ faults, sccurity parameter X)

Let /=27 +1.

Part I (Preparations).

1. Pick] primes py, ..., p; of length K bits each.

2. Compute Ny=py---- Di.

3. Pick xy4 GZ&A uniformly at random such that
x4mod N 4 has least significant b.

4. Compute yy =x} mod N4.

5. Broadcast N4 and y,4.
{at this point 4 is committed to b. }

Part 11 (Distribution of Picces).

6. Give every other participant C a random split
of N4 by running the oblivious transfer
between 4 and C on Ny4.

Part I1I (Reconstruction of Secret).

7. Each other participant C
broadcasts the split of N4 that C holds.

8. If C detects that A4 deviated from the protocol

389

before the turning point, C takes the default
b ="cmpty message". Otherwise, C takes all
(at lcast n —1) splits of N4, and trics to factor
N4 completely. If N4 docs factor, has cxactly [
prime factors, and the exponent 3 is relatively
prime to @(N4), then ¢’ computes x4 ="V y4
mod Ny4. C takes the lcast significant bit of x 4
to bc A’s sccret, b. If any of the above condi-
tions do not hold, C takes the decfault

b ="cmpty message”.

3.4 Proof of Correctness
We prove the following statcments:

1) If A deviated from the protocol before the turn-
ing point, then all non-faulty processors will take the
default b ="cmpty message”. If A followed the pro-
tocol till the turning point (steps 1--5) then, after the
turning point (at step 8), all non-faulty processors
will computc b (with overwhelming probability).
This is proved in Lemma 3.

2) If RSA inversion is infeasible, then the probability
that the faulty processors can predict b before the

Turning Point is less than 1 + for any

1
2 poly(K)
polynomial P and sufficiently large K. This is
proved in theorem §.

Let N=p;--- p;. Then we call the pair of integers
(cd) a split of N if N=c¢d. Let
splits(N)={(c,d) | N=cd }

Fact 1. Let N4 be as specified in the above protocol.
On input pair (u,v) such that u*=v? mod Ngand v
was randomly picked among all the roots of u® mod
Ny, it is easy to compute a random split of Ng4.
Proof: A simple cxtension of Rabin’s digital signature
scheme argument.

Definition 5: Let N4 be as specified in the above
protocol, and let M =pip, divide N4. We say that
M is unseparated by a sct of 1 processors B)...,B, if
for cach of thc ¢ splits Ny :SiSﬂ that B; gets by
the oblivious transfer (i =1,.1), cither M divide S{

or M divide S%.
Notice that the notion of unscparated M

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

depends only on splits which arc reccived via the
oblivious transfer, and is thus well dcfined even if
factoring is easy.

Fact 2: If A is a correct processor, then for any ¢
processors there is at least one pair of primes pp)
which divide N4, such that M is unscparated by that
sct.

Proof: N4 has 2’ +1 prime factors, and every split
partitions them to two subscts. Different partitions
correspond to the subsets formed by intersections.
Since ¢ partitions can at most yicld 2’ subscts, there
must be at least onc pair of primes, py, py which
recmains in the samc subsct. Thus there is an
M =py-py unseparated by Bj,..., B, at the turning
point. QED

Lemma 3: Let N4 be a product of [distinct primes.
Supposc processor A behave according to the proto-
col upto the turning point. Then at step 8, the n —¢
non-faulty processors can factor N4 with probability

greater than 1 — —2—;,—43-:37

Proof: The non-faulty processors at step 8 have at
least n —¢ random splits of N4. We can represent
every split by a 0 - 1 coloring of the / primes: Two
primes arc colored the same according to a given
split if they are in the same factor of N4 according
to that split. What is the probability that there exists
a pair of primes p;,p; which are kept unseparate by
all n—1 splits? To answer this question, consider a
(n —1)-by-l matrix with zero-one entries. The [-th
row correspond to the /-th split, and the columns i,j
have the same entry (cither both 0 or both 1) iff the
primes p;, p; were not separated by this split.

Since each row correspond to a random split,
the matrix is a random zero one matrix. The proba-
bility that N4 is not totally split equals the probabil-
ity that there are two identical columns in the matrix.
But

1

Prob(column; = column;)= P

Hence

390

2

Pr(3 i, j with column; = columnj)<—2721n—:—t—

Substituting 3I by 2’ +1, this probability is bounded
t
above by % Hence with probability greater than
231

1— 2n+l

there exists no such pair i,j. In this case

the non-faulty processors can compute the complete
prime factorization of N4, using at most O(/(n —1))
arithmetic opcrations. QED

Before proving the unpredictability of the
sccret at the Turning Point , we state exactly the
RSA intractability assumption, and give two claims
that are used in the proof.

RSA Intractability Assumption (RIA)

Let F be a probabilistic polynomial algorithm that
takes as input an integer M, product of two K bit
primes, both congruent to 2 mod 3. lLet ap(K) be
the fraction of such moduli M on which F inverts
RSA (x3 mod N). Then, for all polynomial time

algorithms F, for all ¢ > 0, and for all sufficiently
1

large K, ap(K) < 7{7

Remark: As stated, the assumption is quite strong.
First, it corresponds to RSA with the specific power
3. Sccond, it requires that RSA be invertible on a
subpolynomial fraction of instances only. It is possi-

ble to relax this assumption by replacing the last sen-

w 1
tence by "—f¢ > 0 such that ap(K) < 1—7(—5-".
Using Yao’s exclusive-or construction [Y1], we can
modify our protocol to be proved correct under this
weaker assumption. Also the power 3 can be general-
ized. For this abstract, we chose to give the simpler
version of the protocol and make a stronger assump-
tion.

Our next result, Theorem 4, states that the bit
security of RSA over multi-prime modulus is not
compromised cven if almost all the factorization of
the modulus is known.

Theorem 4: The following three problems are com-
putationally cquivalent (each is probabilistic poly(K)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

time reducible to the other).

(1) Invert RSA (x® mod M) on the modulus
M =pip,, product of two K-bit long primes
where (e,p(M))=1.

Given M =p1p, (product of two K-bit long
primes), e such that (e,p(M))=1 and x¢ mod
M, gucss the least significant bit of x with suc-

. 1 1
cess probability greater than — + ——.
P Ve) poly(K)

Given N =Mps...p;, e such that (e,p(N))=1,
x* mod N and M,p;..p; (where
M =pips > 2" and all primes p; are K bits
long), gucss the lcast significant bit of x with

- 1 1
success probability greater than — + ———,
P Ve 27 poly(K)

Proof: The proof is a simple cxtension of the bit
security result for two prime moduli [ACGS], and is
omitted from this abstract. Dectails can be found in
[C]. QED

The reader might be tempted to think that fact
2 together with theorem 4 imply the unpredictability
of b at the Turning Point. Such impression is wrong
as we still have to show that the adversary essentially
cannot "gain any additional knowledge" in the
course of the protocol execution of part 2 (the distri-
bution of the ¢ splits of N4).

The success probability of an adversary in
determining b is averaged over all A’s choices of
primes pj ..,p; and over all exccutions of the verifi-
able secret sharing protocol (given a specific choice
of primes). In the proof, it will be more convenient
to think of the primes as fixed. To that end, suppose

03]

3)

the adversary can guess b with probability —%—+e.

From fact 2, we know that at least one pair of primes
M =p1p, is unscparated at the Turning Point. Let
Sm.n, be the conditional success probability of the

adversary in guessing b, given that A’s modulus is
N4, M divide N4 and that M is unscparated at the
Turning Point. The following fact is proved by a
simple counting arguments.

Fact 5: For at least ¢ fraction of of all M and N4

(where N4, M arc as above), S,,,_NA>-;— + %.

391

We will call M and N4 for which s,,,,NA>% + %

lucky number and lucky extension, respectively.

In the proof of the unpredictability thcorem, FF
will denote a probabilistic polynomial time algorithm
which tries to predict b. Bj...B, will dcnote the
probabilistic polynomial time algorithms correspond-
ing to ¢ faulty processors. /* has access to the internal
state of these ¢ B;-s (i.c can rcad their worktapes,
change the coin tosscs they use etc).

Theorem 5 (Unpredictability Theorem): Suppose A4
is a correct processor who chose his sccret bit b with
a priori probability 1/2. Then, under RIA, no poly-
nomial time adversary I° controlling any collection of
¢ processors can predict b before the turning point,

. . 1 1
with success probability greater than — + ———
P A 2 7 poly(K)

(for all polynomials poly and all sufficiently large K).
Proof Sketch: The high level plan of the proof is to
show that if an adversary I can predict b with suc-

cess probability %+ ¢ then he also can, by simulating

instances of the protocol, invert RSA, on ¢ fraction
of moduli M’s in expected time O(1/¢). Thus from
RIA & must be smaller than any polynomial fraction
Lpoly (K).

We now spccify a guessing algorithm G. G
takes as input a lucky compositc number M product
of two K -bit prime factors, both congruent to 2 mod
3, and a random cube y =x3mod M. G goal is to
guesses the least significant bit of x with success pro-

1 ¢
bability >—+—.
ability >t
algorithms B)...,B, of the faulty processors, and the

adversary prediction algorithm F.

G will use as subroutines the

G starts by picking at random /-2 primes
P3.-pp €ach K bits long and congruent to 2 mod 3.
Then, G computes Ny=M-p3p,--- p;, and a ran-
dom y, in the range 0<y, <N, satisfying y4=y
mod M. (Noticc that with probability at least &, Ng4
is a lucky cxtension of M.)

By now, G has simulated steps 1--5 of the
verifiable sccret sharing protocol. He now simulates

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

step 5, by broadcasting N4 and yg. To simulate
step 6 of the protocol, G must simulate A’s role in
n —1 oblivious transfers on the composite N4.

“ How can G do this? lct's concentrate on G's
interaction with the faulty processors. In the real OT
protocol A knew all factors of N4 and thus during
the course of the OT protocol, could give cach of
Bj,..., B, a random split of N4. G, on the other
hand, knows all factors of N4 except thosc which
split M and thus can’t give B; a random split of N4.
But what it can and will do is simulate runs of the
OT in which A4 gives B; a split of N4 picked at ran-
dom among all thosc splits which do not scparate M.
The interaction between G and Bjy,...,B, goes a fol-
lows.

First Bj,.... B, arc supposed to choose elements
Ulsenlly iN /16 (T'hey may do this jointly in any
fashion: randomly or otherwise but in polyno-
mial time.)

Sccond, they transmit to G (simulating A4), uf‘
mod Ny ,...,u,2 mod N4 and ‘“interactive
proofs” (as defined by the OT protocol) of the
fact that they "know" uj,...,u, (Each proof is

correct with probability greater than 1 — —2-117)._

At this point G can actually find out what uy,...,4
are by activating B;’s and causing them to print u;.
This can be done since "knowing" u; in the OT pro-
tocol actually means that u; can be computed by run-
ning B; twice on the same input and same coin
tosses. (A simpler way to think of this is that G can
read the contents of the work tapes of B;’s where y;
is written).

Recall that G' is supposed to return to each B;
a random root v; of u,~2 mod N4 that does not
scparate M. G can’t dircctly compute random
square roots of u,~2 mod N, from u,-2 mod N4. But
random squarc roots corrcspond, by Lemma 1, to
random splits of N4. So G can first compute (51,57
- a random split of N4 which does not scparated M.
He then uscs the Chincse Remainder algorithm to
compute v; mod N4 such that v;=u; mod §; and
vi=—u; mod 5. Finally, G gives v; to B;.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

392

The faulty processors Bj..., B, now have all
the "relevant” information they held at the turning
point of the actual protocol. They have
Ng=M-py-p;, yq and (u)vy)....(4 v;. G can now
invokc F a to predict the least significant bit of
X 2 v }Imod Ny

If N4 is a lucky cxtension of M, F succeed

with probability greater than —;— + % In other

words, G succeeded in realizing an oracle for the
Icast significant bit which is correct with probability

greater than —;— +%. By Thcorem 4, G can be

transformed to an cfficient algorithm for inverting ;3
mod M.

As an ¢ fraction of all cxtensions of M are
lucky, we will find such lucky cxtension in expected
0(5‘]) itcrations. Thus by RIA, & must be smaller
than /K€ for every ¢>0 and sufficiently large K.
QED

4. lImplementing Simultaneous Broadcast
using Verifiable Secret Sharing

We now give a high lcvel description of a simu-
lation of a given protocol PROT which is defined
(and works correctly) for an n-f-ideal simultaneous
broadcast network, on a n-f-broadcast network. In
other words we specify an n-t-simulator, as defined
in section 2.4. Our simulator, consists of a pair of
algorithms (C,D) which bchave as follow.

Algorithm C takes PROT as input. Throughout
PROT, in every round j, processors Ay 4y, ..., A,
wish to send messages mj j,myj, ..., my; “simul-
taneously”.

To achieve this simultaneous dclivery in a
broadcast network, C replaces cach original round j
by a "macro" round j which involves 7 message
cxchange rounds in the broadcast nctwork. In the
end of this "macro”-round, processors A41,..., 4, run
algorithm D on the messages they reccived during
the last 7 broadcast nctwork rounds to compute
My js oMy j.

A macro round j consists of each processor A;
(1 <i<n) running a (slightly modified, as

described below) VSS protocol using its message m;
(1< i< n)asits sceret. ‘The (slightly modified)
VSS protocol involves scven steps of message
exchanges: cach onc of these must be done within
the samc time interval by cach processor. A common
clock is used in order to enforce a timcout mechan-
ism. Thus, if for instancc processor 4; did not
broadcast a message in step S of the VSS on time, his
message my; of the j-th macro round is is taken to be
thc cmpty messager.

The VSS protocol exccuted for this application
must be modificd as follows. Add step 5.5 to the end
of part 1. In this step the dcaler A, interactively
proves to every other processor C that he can invert
RSA with cxponent 3 on the modulus N4.

Step 5.5 is added for the following rcason: all
processors A1,.., A, are exccuting concurrently n
VSS protocols on their respective messages (secrets)
M1,..., My in step S of the VSS cach must broadcast
an N 4, and Y4, These N ApYA, pairs must appear in
the network channel within a certain time interval,
but can arrive in random order (i.e some may appear
carlicr then others). Thus, a faulty processor 4, may
wait till he sees the pair N, A, V4, of some proper pro-
cessor 4, and then choose his pair N4 VA, depend-
ing on this pair without even knowing what secrct he
himsclf is encoding. This choice of a Ay depends on
the message of a proper processor A,. This would
violate the definition of an SB-network. We thus
force cach processor in the added step 5.5, to give a
0-knowledge (sce [GMR] for dcfinitions) proof to all
other processors that he knows the content of his
own message.

Th following protocol should be inserted as step 5.5
in the VSS of section 3.3.

Protocol for processor A to interactively prove to
processor C that A can take cubic roots of modulo
N4
As usual let K =|Ng4]|.
1. For 1<Li,j, <K A picks x;; at random in
Z;/ . A sends xi?j mod N4 to C.
4

2. Forl1<i,j< K Clets g ; be his guess as to

393

what is the lcast significant bit of x; ;. C sends
to A his guesses {g; ;}.

3. Forl<j<KAletsyj=gy..gx; mod Ny
(" denotes concatcnation). For
1<ij <K, Asends to C x;; and z; such

that zj3=yj mod Ny (z; is the cubic root of

Y-

The above protocol constitutes a 0-Knowledge
proof of A to C that A is able to take cubic roots
modulo N4.

Theorem 6 (Simultaneity Theorem): Under the IRA,
the compiler (C',D) described above constitute an
n-0(log n)-simulator.

Rough Proof Sketch: Fix adversary ADV’, protocol
PROT and a broadcast network NET'. This deter-
mines a probability distribution
H'{(NET',C,D,PROT,ADV') on the messages
delivered in the first i macro rounds. We wish to
show that this distribution is indistinguishable from
the probability distribution H{(NIT ,PROT,ADV) of
messages dclivered in an ISB network NET for some
adversary algorithm ADV.

The outline of the proof is as follows.

For notational simplicity let the message m;;
being sent by thc A;th processor during the i-th
macro round belong to {0,1} (cssentially the same
proof will work for gencral my’s). Similiarly, for
notational convinicnce, assume that exactly ¢ proces-
sors are faulty and that processors A4j..,A4,_, are
proper and their messages arc computed by the legal
protocol PROT.

Let

E j(mji)z{x3 mod NAj : least significant bit of x is
be the set of probabilistic encodings of mj; using pro-
cessor 4;’s key N Ay

The algorithm ADV' takes as input the history
H';i_1={myj | 1< x <i-1,1< ;< n}and the
probabilistic encodings aplha1€E1(m1;) e
ay—i€E,; _y(my_y), and computes the i-th
macro-round messages My, —; 41 j,...My ; Of the faulty

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

mj;}

Processors.

Let A; denote the distribution of messages output by
ADV' given the same history H;_; and the proba-
bilistic encodings a;€E1(0)...., a, €L, _,(0).
Clearly, A; is a distribution which can be achieved by
an advresary ADV in an ISB-network.

Let DIST be a polynomial-time distinguisher as
defined in 2.4.1. Dcnote by ¢; (g7) the probability
that DIST(my.,....m, ;)=1 where the mcssages mj;
are picked according to A; (and
H;(NET,C,D,PROT,ADV) respectively). Assume,

towards a contradiction, that |g1—q2|>——— for
poly(K)

infinitely many sccurity parameters K. We will show
how to violate the security requircment for one of
the probabilistic encryption schemes E; (i.e violate
the RSA intractability assumption). In particular,
for some 1 < j < n —1¢ we will implement a polyno-
mial time algorithm to distinguish between the set of
probabilistic encryptions £;(0) and Ej;(mj) as fol-
lows:
Pick my;...m,_,; of the proper processors
according to protocol PROT. Choose
a1€E1(m l,i)""’ajeEj(mj,i)’aj+1€Ej+l(0)""’
o, —€E, _((my_,;) at random and feed
ap...,a,_,; to the adversary box ADV to
compute My —; 41,5 My j- NOW, replace a; by
B; picked at random in [;(0) and feed
aj,..Bj,aj+1,-.ap to the ADV to compute

My plis oo M n Computing

D(my i,y i) and
’ 1

D(myj, oo My 1iM g~ 214 oo s M i)

will yicld a different responsc and thus a poly-
nomial time algorithm that can tcll £;(0) and
E;(m; ;) apart has been realized.

But by Thcorem 4 and [GM] this contradicts the
IRA. Thus, A; must have been indistinguishable
from H(NET,C,D,PROT,ADV).

5. Applications to Point-to-Point Communication
Networks with Byzantine Faults

We now consider the problem of simulating
simultaneous broadcast on a point-to-point semi-
synchronous nctwork. For simplicity, we outline the

394

simulation on a synchronous nctwork.

A clarifying discussion.

Before going any further, let us stress that
simulating a simultancous nctwork is not trivial, even
if onc starts from a synchronous nctwork. The fol-
lowing naivc attempt may be of help in clarifying the
dcfinition of simultaneity.

Given a synchronous nctwork, let an “extended
round” consist of first sending messages at prescribed
times i and then using subscquent (clementary)
rounds to achicve Byzantine agrcement about what
was sent.

Such extended rounds do not make the network
simultaneous.

Of course in a synchronous network all messages can
be sent only at exact times 1,2,3,.. and will be
received exactly one unit of time later. Thus a mes-
sage sent at time i is neccssarily independent of the
other messages sent in the same round. However, a
faulty processor, P, may have sent (to different pro-
cessors) two different messages m; and mj, one of
which is possibly the empty message. When Byzan-
tine agrcement is run, P cannot prevent the correct
processors from agrecing on only one message, How-
ever, it can influence and actually decide on which of
the two messages the agreement will be reached. Le.,
it can dccide which message to send in the extended
round. Notice that, at the start of the Byzantine
agreement algorithm, P already knows what mes-
sages it received from other processors. Thus what P
sends in an extended round effectively depends on
what other processors have send in the same round.

The Solution

The key idea is to use the power of Byzantine
agreement in order to simulate a scmi-synchronous
broadcasting network. Once such network is con-
structed, apply our simulation of simultancous broad-
cast network to it.

Simulating semi-synchronous broadcast by Byzantine
agreement adds an O(¢) factor of communication
rounds and a polynomial factor of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

somputation/communication overhead.

p. Concluding Remarks

We introduced the notion of simultancous
proadcast in fault-tolerant distributed computing. We
gave one implementation of this notion, under the
jntractability assumption of RSA.

Pur implementation requires computation and com-
jnunication which are cxponential (2") in the number
of faults, ¢. Thus to be polynomial in the size of the
petwork, n, ¢ can be at most O(logn) large. This
jcaves the question of fully polynomial implementa-
gion for larger values of ¢ open.

Acknowledgements

We would like to thank Cynthia Dwork, Mike
fischer, Oded Goldreich, and Ron Rivest for their
most helpful comments.

6. References

[ACGS]W. Alexi, B. Chor, O. Goldreich, and C.P.

Schnorr, RS A/Rabin Bits are

L 1 Secure, Proc. of 25th FOCS,

2 poly(logN)
198S.

(ABCGM]B. Awerbuch, M. Blum, B. Chor, S.
Goldwasser, and S. Micali, How to Implement
Bracha’s O(logn) Byzantine Agreement Algo-
rithm, unpublished manuscript, 1984.

(Bl1] M. Blum, Coin flipping by telephone, 1EEE
COMPCON 1982.

(BI2] M. Blum, Three applications of the oblivious
transfer, Unpublished manuscript, 1981

[Br] G. Bracha, An O(logn) Rounds Randomized
Byzantine Agreement Algorithm, Proc. of 17th
STOC, 1985.

[BPT]R. Berger, R. Peralta, and T. Tedrick, On fixing
the Oblivious Transfer, Presented in Eurocrypt
1984.

[C] B. Chor, Two Issues in Public-Key Cryptogra-
phy, Ph.D. dissertation, MIT, 1985.

[CGG]B. Chyr, S. Goldwasser, and O. Goldreich, The
Bit Security of Modular Squaring Given Partial
Factorization of the Modulus, to appear in Proc.
of Crypto 85, 1987.

[EGL]Even, Goldrcich Lempel, A4 randomized proto-
col for Signing Contracts, CACM, Vol. 28 No.
6, 1985,

[FMR]M. Figcher, S. Micali and C. Rackoff, A Secure
Protocyl for the Oblivious Transfer, Eurocrypt
1984.

[GM]S. Goldwasser, and S. Micali, Probabilistic
Encryption, JCSS Vol. 28 No. 2, 1984.

[GMR]S. Goldwasser, S. Micali, and C. Rackoff The
Knowledge Complexity of Interactive Proof Sys-
tems, Proc. of 17th STOC, 1985.

[HR] J. Halpern and M.O. Rabin, A4 Logic to reason
about likehood, Proc. of 15th STOC, 1983.

[R1] M. Rabin, Digitalized Signatures and Public Key
Functions as Intractable as Factoring, Tech.
Rep. MIT/LCS/TR-212, MIT, 1979.

[R2] M. Rabin, How to Exchange Secrets by Oblivi-
ous Transfer, unpublished manuscript, 1981,

[RSAJR. Rivest, A. Shamir, and L. Adleman, A4
Method for Obtaining Digital Signatures and
Public Key Cryptosystems, CACM Vol. 21 No.
2, 1978.

[S] A. Shamir, How to Share A Secret, CACM Vol.
22 No. 11, 1979.

[Y1] A. Yao, Theory and Applications of Trapdoor
Functions, Proc. of 23rd FOCS, 1982.

[Y2] A. Yao, private communication.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore. Restrictions apply.

