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1. Introduction
'rhis paper contributes two new primitives:

verifiable secret sharing in the area of cryptographic
protocols and si!IlUltal1eous broadcast in the field of
fault tolerant cOlnputation. Many problenls, such as
distributed coin flipping and "uninfluenced" voting,
can be reduced to the solution of our plimitive prob­
lems.

Verifiable secret sharing is a cryptographic pro­
tocol that allows one to break a secret in 11 pieccs
and publicly distribute thcln to 11 people so that tile
secret is reconstructible given only sufficiently many
pieces. 'rhe novelty is that everyone can verify that
all received a "valid" piece of the secret without hav­
ing any idea of what the secret is. One application of
this tool is the simulation of simultaneous-broadcast
networks on semi-synchronous broadcast networks.

Sitnultaneous-broadcast networks are a power­
ful kind of communication networks. Infolmally, they
guarantee that all processors send Inessages simul­
taneously (at designated tilnes) and all processors
receive messages simul~1ncously (at designated
times). fJcsigning distributed protocols robust

against Byzantine faults (as well as proving their
corrcctness) is extremely easy for such networks.

Under the assumption that it is infeasible to
invert the ]{SA function, we show how to construct
a SilTIultlneous-broadcast network with n processors
and t J3yzantinc faults from a sClni-synchronous net­
work with n processors and t llyzantine faults. Our
construction actually consists of a conlpiler that
tranSfOl1TIS algorithms, robust against t Byzantine
failures in a simultaneous network, to equivalent
algorithms robust against t Ilyzantinc failures in a
scmi-synchronous network.

The transfonned algorithms require 0(1)
rounds of conlmunication for every original round
and 0 (2 t ) local computation time. 'fhus, it is fully
polynomial in 11 when t == 0 (log n). Similar results
are proved for t == loglogll under the assumption that
factoring is intractable.

2. Simultaneous Broadcast
The idea of a simultaneous broadcast network

is best illustrated by the following realUfe example.

Exaillplc: Let A 1,.., An denote Il people in a room.
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E:ach Ai has his own blackboard and piece of chalk.
No one can erase or write on others boards. rrhe
room they are in is designed so that it is lighted for
onc hour., dark for the next., then lighted again for an
hour, dark for the next, and so on. A 1,..., An com­
municate as follows. When the room is dark, each
onc writes a message on his board. No one can read
the lTIeSsage till the light comes on. When the light
switches on, everyone silliultaneously reads everyone
clses blackboard. rrhe j-th message of Ai is defined
to be what appears on Ai'S black board at the begin­
ning of the j-th "lighted" interval. Whatever is writ­
tcn whcn the light is on is ignored.

2.1 Intuition

lne above intuitive model of communication
possesses three interesting properties. rrhese proper­
ties hold even if some people decide to secretly talk
to one another during tlle darkncss interval, in order
to decide what to put on tlleir boards.

Infonnally,

1) If Ai does not collaborate with anyone upto the
j-th round, everybody's j-th message is
"independent" of Ai'S j-th message.

2) No message can be "erased" or altered after
the light switch goes on. (If Ai'S board is
empty, he has delivered the empty message).

3) All of A 1,..., An agree on what the j-th mes­
sage of everyone is.

The first property captures simultaneity. 11le last
two capture broadcast

Let us now formalize all of the above in the
notion of ideal simultaneous broadcast.

2.2 Broadcast and Simultaneous Broadc:lst Nct\vorks

Let NET denote a cOlnmunication network
whose processors A 1,..., An communicate by sending
and receiving messages over a comlnon communica­
tion channel.

In addition to sending messages to one another
the processors perform internal computations (toss
coins, read their work tapes, etc).
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With respect to an execution of a given proto­
col J>/l()T., a processorAp is proper if it always com­
putes according to }>/l()T. 1\ processor which is not
proper is called faulty. r;'aulty processors can coordi­
nate their strategies to try to disrupt the system. 'rhis
is done as follows. When an execution of a protocol
!)R()T is started.. an execution of a special algorithm,
the adversary, also begins. l'he adversary chooses
which processors to tnake faulty in a dynamic fashion
during the execution of PROT.

Once the adversary chooses a processor to be faulty,
it takes control over the messages that processor
sends. l~et us stress that

all protocols and algorit111TIS considered in this
paper arc probabilistic.

Definition 1 (Ilroadcast Networks): A comtnunication
network is a broadcast network if

1) a unique lTICSsage (string) 111ij is associated with
each processor Ai and each positive integer j.

mij is called the j-th round message of Ai.

Let Hj=={(i,},mi,x): 1 < i < n,l ~ x ~ j}
be the history of communication up to and
including round j.

A broadcast network is an n-t-broadcast-network if
for all protocols PI{OT and all adversaries ADV, the
following holds:

2) ADV makes at most t processors faulty during
an execution of PROT.

l-'he set of processors that arc chosen to be

faulty at round j +1, Fj + h is computed by
}

ADV on inputs Hj and U Fj .
x=-l

3) A proper processor Ap computes lnp J+l by
running PROT on inputs p and Hj .

4) The round .i messages of the faulty processors
are computed by A1JV on inputs Hj and the
messages of the proper processors at round
j+1.

Let the algorithms PROT and ADV in a n-l-ISB
network NET be given. Then,
Hj(NET,}JROT,ADV) will denote the conditional
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probability distribution on Hj givcn Hj -I. '"ll1C pro­
bability is taken over all coin tosses ofP]~Ol' and
Al)V.

J)cfinition 2 (ISI1 networks): A 11 -[-broadcast net­
work is n-l-ideal silnultaneous network if the follow­
ing more restrictive condition 4' hold for the mes­
sages sent by the faulty processors instead of of con­
dition 4:

4') l'he round j Inessages of the faulty processors
arc cOlnputed by AI) V only on input Hj .

(C0l11ment: if in dcfinition 2, j is interpreted as
timc, then all 111cssages of round) cannot depend on
current tnessages of proper processors. 'rhe only
dcpendence allowed is on their past messages.)

2.3 rrhc Power of ISI1 Nctlvorks

SilTIultaneous broadcast networks are a fundamental
primitive as simultancity lies at the heart of Inany
protocols: coin flipping, fair voting, contract signing,
exchanging secrets etc.

A11 tJlcse protocols are in fact extremely easy to
implement in an silTIultaneous broadcast network. Let
us consider two examples.

Coin flipping: All proper processors should
agree on a randomly selected bit. In a simultaneous
broadcast network, it is enough that at common time
i all processors broadcast a randomly chosen bit At
time i +1, all proper processors \vill take the XOI{ of
the broadcasted bits as the outcolne of the coin toss.
(RClTICmbcr that all processors are forced to broad­
cast. If they broadcast something different from 0 or
1, their bit will be considered to be 0 by default).
The outcome of the coin toss will be the same
because of property (1) of a broadcast Network. It is
enough that a single proper processor belongs to the
network for the outcolne to be unbiased.

lJninnucnccd voting: Informally, each processor
should vote for its "best" candidatc, uninfluenccd by
the votc of others. (I:;or exampIc, there may be some
tendency to votc for the eventual winner!). l'his is
easily achieved by having all processors vote at time
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i and take the majority at time i +1.

2.4 Silllulation of ISH NctlYOrks

]'houghvcry powerful, ISB networks appear to
be quite an idealized model of comtTIunication. One
contribution of this paper is showing that 1811 net­
works can be silTIulated on broadcast networks. lbe
proposed simulation necessarily only "approxinlates"
the mechanism of an ISH, but captures ~lll of its pro­
perties with respect to poly tilTIC computation.

Our simulation of an 1811 network is a virtual
one.){oughly, the processors in the broadcast net­
work will actually exchange auxiliary lnessagcs for
which property 4' of a ISH network does not hold.
1'hc ITIessages {nl' ij}, that satisfy "all" properties of
messages sent in an 1513 network, are never sent but
arc computed from the auxiliary messages. Let us
formalize this notion of simulation.

l)clinition 3 (compiler): A cornpiler is a pair of algo­
rithlTIS (C ,D). C is called the coding algorithm and D
the decoding algorithm.

Let }>!{OT be a protocol defined for an n-t-ISB net­
work. On input (a description of) PI~orr, C com­
putes (a description of) a protocol PROTe defined
for an n-t broadcast network NET'.

Let the proper processors of an n-t broadcast net­
work execute the protocol PROTe in presence of an
adversary ADV'. Let hj be the set of all messages
sent froln round c(} -1)+ 1 to round c·} during such
an execution. Algorithm D, on input hj and integer
1 < i < n computes a string m'ij' (Here c is a con­
stant determined by the compiler only).

Let H'j=={(i,x,nl'i,X):l < i < n,l < x <j-I}.
For given compiler (C' ,D), protocol PROT and
adversary AD,V', let H'j(NET',C,}J,PROT,ADV')
denote the conditional probability distribution on
H'· H'j given j-I.

()efinition 4 (simulator): Let NET' be an n-t­
broadcast network and NET be an n-t-]SB network.
An n-t-sbnulator is an efficient compiler (C,D) such
that for all efficient protocols Pl~OT defined for
NET, and for all efficient adversaries ADV' defined
for NET', there is an efficient adversary ADV for
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Nl~T such that, for all .i>0
II 'j(N1~'T',C,I) ,/)/~()T,AJ)JI')and 'Hj(NI~'T,/)J?()T.A/) V)
are )Jolynolnial-time indistinguishable.

(11cre efficient means running in probabilistic
polynomial-tilne in some C0l11mOn security parameter
K, presented as input to all processors).

'rhe notion of polynolnial-time indistinguish­
able probability distributions is that of [GMH.] (which
is derived [rOITI [GM] and [VI]). .F"or convenience,
this definition is recalled in the next subsection.

C0l1l111cnt: Intuitively, definition 4 says that
whatever the faulty processors can achieve in a
broadcast network silTIulating a ISB network, can also
achieve in a true lSB network. In other words, if the
messages produced by a protocol satisfy certain pro­
perties in an ISB network the tnessages "sent" in the
simulation of the protocol on a broadcast network
satisfy the same properties (with respect to
polynomial-time observers). lbereforc "correct" pro­
tocols get Inapped to "correct" protocols.

2.4.1 Indistinguishability of probability distributions

One Inore technical definition- that of polyno­
mial indistinguishability (taken from [OM],
[Yl],[GMI{]) is needed in order to describe our
results.

Let Ic;,Z+ be an infinite index set (of the
security parameter) and let c a positive constant. For
each K EI, let aK be a probability distribution over
the K C long binary strings (messages). We call
a=={dK I KEf} an l-c-ensel11ble. By saying that d
is an ensernble or an I-ensenlble we mean, respec­
tively, that there exist I and c or simply c such that
a is a I-c-cnsemble.

Informally, we say that two ensclnbles (or pro­
bability distributions) are indistinguishable if no
polynomial-titne computation can tell them apart.
Fonnally,

A distinguisher is a probabilistic polynomial­
time algorithm D that on input a string b outputs a
bit b. Let d2=={d2.K IKE!} and dl-={dl,K IKE!}
be two I-c-ensetnblcs. Let pJ!J denote the probabil­
ity that D outputs 1 on a K C-bit long input string
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randolnly selected with probability distribution 112,K.

Sylnmetrically, pll,2 denotes the probability that D
outputs 1 on a K C-bit long input string randomly
selected with probability distribution 111.K.

)cfinition 5: We say that the ensembles d2 and &1
are ill(Jistinguishable if for all distinguishcrs D t

I [) D 1. ·
PK,l -PK,21 < K d for aU d and sufficIently tong

K.

2.5 Our result

rrhcorcnl: Under the intractability assumption for the
J~SA function (section 3.4), we exhibit an
n - ()(logll) simulator.

More generally, under the assulnption that for
large enough K it is infeasible to invert I{SA on
moduli product of two K bit long primes, we show
how to perform the following simulation:

A protocol for simultaneous broadcast networks
with Il processors and t faults (t <4n) is simu­
lated on a broadcast network with n proces­
sors and I faults (I <4n). The simulation over­
head is 0(1) in COlTImunication rounds and
0(21 + K) in local computation time.

While in general fully polynomial time algo­
rithms are preferable, there are some important cases
where 0 (21

) processing time is acceptable. One such
example is Bracha's randomized13yzantine agreelnent
algorithm [Ilr], where n denotes the size of a sub­
committee. These subcommittes are logarithmic in
the size of the whole network, and so (single)
exponent in the size of the subcolnmittee is still poly­
nOlnial in the size of the whole network.

2.6 Discussion

Shnultaneous llroadcast versus Byzantinc Agrecnlcnt

Tollerating O( log n) faulty processors is an
almost trivial task with respect to the problem of
achieving J3yzantine Agreement on a point-to-point
synchronous network. This Inay lead us to the belief
that tollcrating O(log n) faulty processors with
respect to achieving simultaneous broadcast on a
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scnli-synchronous broadcast network is equally
trivial. However, achieving sitnultancity appears to be
a much harder problenl than achieving Ilyzantinc
agrecment. rrhis is best illustrated by the following
"flawed" attelnpt to reach sitnultaneous broadcast on
a synchronous broadcast network.

A naive and flawcd attclupt:

'[0 send the j-th message 111ij, processor Ai of a
broadcast network sends the encryption of n1ij at
round 2} +1. All proper processors read all such
ciphertcxts. [f a proces.sor sends nothing or two or
more ciphertext'i, a fact noted by all processors, then
its n1U is considered to be the empty Inessage. At
round 2'; +2 all processors should send the decryp­
tion of their messages. Failure of sending this
decryption is again interpreted as the clnpty message.
(Weare assulning that the encryption scheme is such
that there is a unique possible decoding for each
ciphertext. Moreover, for this example, we aSSUlne
that, on input x and y, one may decide whether tty
is the encoding of XU).

Notice that the above procedure does not make the'
network sinlultaneous. In fact, before round 2j +3.
all faulty processors know what tlle proper proces­
sors' tTIcssages are. By either sending or not sending
the decryption of its lTIeSsagc, a faulty processor has
an option of sending its originally chosen message or
the empty one. As it can make tllis decision after
having seen the other processors' messages, this
violates the "simultaneity" condition. Just see how
disruptive this could be in the coin flipping protocol
above described. Oncc a faulty processor sees the
decryptions of the bits of all other processors he can
choose whether to send the decryption of his own bit
or not. In one case the network chooses the XOR of
all bits as the outcome of the coin toss, in the second
one tlle XOR of "0" and all other bits.

2.7 Ilnplications of the Blain result

Given a "compiler" for simultaneous-broadcast
networks, protocols for coin flipping and fair voting
can imlnediately and correctly be iJnplemented on a
semi-synchronous broadcast network (or even
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weaker type of networks) with O( log n) faulty pro­
cessors. 'I'hesc iInplclTIcntations arc obtained by
"co1l1piling" the Si1l1plc protocols outlined above for
sinlultaneol1s broadcast nctwork. As for any gencral
simulation, SOITIe of these cOlnpiled solutions can be
tTIore efficiently solved by ad hoc algorithnls. I~or

exalnple, coin flipping is as rigorously but ITIOre effi­
ciently solvcd in [Y2] and [AI1CGM]. lfowevcr, some
other probleJTIs rcceive their first solution through
our gencral compiler, as is the case for fair voting.
F"'or both coin flipping and fair voting, what is strik­
ing is the extreme silnplicity of the original protocols.
rrhis excJnplifies the power of sitnultaneous broadcast
as a new primitive.

Our sitnu]ation uses as a subroutine the new
tool of Verifiable Secret Sharing (YSS). In the next
section, we describe the concept and iInplemcntation
ofVSS.

3. Verifiable Secret Sharing

3.1. Properties

In [S], Shamir proposed a method to share a
secret that is briefly describe below. A dealer wants
to break a secret b in to 11 pieces b1, ••• , bn so that
b cannot be reconstnlctcd from any collection of t

pieces (t <11), but it can be easily reconstructed from
any collection of t +1 pieces. l'he dealer does so by
choosing at random a polynolnial /)(x), of degree t
over the field Zp (for a suitably large prime p), so
that b is the free tcrm of P(x ). Then
bl~ P(l), · · · ,bn =: /)(11) are the desired pieces.

Shamir's scheme is secure in an infonnation
theoretic sense. However, this is based on having a
non-faulty dealer with the ability to distribute pieces
privately. In the context of a distributed network with
faulty processors, it is not possible to send pieces in
cleartext over the public network. If a dealer still
wishes to distribute the pieces, he can send Sj

encrypted under the recipient public key - Ej(bj ).
However, at this point the scheme is at most as
sccure as the encryption function E. It is even con­
ceivable that E~ is secure, but s can be reconstructed
from E'1(b 1), ..... En (sn)· A more severe difficulty is
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the following:

Assunlc that the dealer is dishonest. 'l'hen,
given one piece bi , there is no way to verify that
indeed hi is a "valid" piece of the secret. In fact, the
owner of hi can never be sure that the polynomial
interpolating the points not in his possession (and
which he docs not know) indeed passes through his
own point (i ,l>(i». Even worse (from some point of
view), there is no secret to speak of. I.e. there is no
specification of the secret given in advance.

l'hese difficulties tnake Shalnir's secret sharing
hard to usc in a fault tolerant distribu ted environ­
ment

We provide an different method to share a
secret. rrypically, the secret is a single bit b that is
chosen equal 1 with some a priori probability r
(without loss of generality, r == 1/2). This type of
secret is very general since by concatenation it allows
to have longer strings with arbitrary probability dis­
tributions.

• rrhe security achieved by our protocol is that
it is infeasible for less than I participants to cooperate
and distinguish b from a random bit. More fonnally,
no probabilistic polynomial time algorithm that moni­
tors the public communication in the entire network
and has access to the internal state of any t partici­
pants can output b correctly with probability greater

than 1:. + _1_ for all constants c and sufficiently
2 KC

large K.

• On the other hand, n - t participants can
reconstruct b, from their shares, with very high pro-

bability (>1- ~t 1). Thus the I faulty proces-
2n -- -

SOl'S cannot find b by themselves, but the n - t
correct processors can, regardless of the faulty pro­
cessors behavior.

• The distribution of pieces is done publicly, in
front of all participants. First, the dealer establishes
the secret b by announcing a public encryption key
Eand an encryption E(b) of the secret bit (where E
is a RSA based probabilistic encryption scheme
[GM],[ACGS]). l'hen all participants, one by one,
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play an interactive protocol with the dealer over the
network channel to get their "share" of b.

• "rhc effect of this protocol is that each partici­
pant (: gets one verifiable piece be of A 's secret:
Every other participant J) can verify that the piece C
got is indeed a legitimate piece of the secret.

3.2 Oblivious "rransrcr

A crucial component of our verifiable secret
sharing is a g~nera1ization of the oblivious transfer
protocol. 'rhc' 'beautiful notion of oblivious transfer
(Orr) was introduced by I~abin (]~2]. It involves two
parties A and B and an integer NA (product of 2
large distinct primes) whose factorization is known
only to A. A and B would like to playa protocol at
the end of which

1) B is able to output NA's factorization with pro­
bability essentially equal to 1/2 and

2) A does not know whether or not B has
received NA 's factorization.

Rabin originally suggested an implementation of QT.
Even, Goldreich and L,empcl [EGL] generalized it.
F"ischcr, MicaH and Rackoff [FMR] found an interac­
tive protocol (fo~r rounds of communication
exchange) which achieves the above properties (1)
and (2) and is its correctness is provably equivalent
to factoring.

In this paper, we usc a generalization of the
[FMR] protocol to moduli NA 's that are product of 1
primes.· In this case the desired properties are

1) B gets exactly one split NA ==SrS2 with uni­
fonn· probability distribution among all possible
splits (including the empty split NA == NA ·1).

2) .A should not know what split B actually

received with probability greater than -t.
2

Oblivious l'ransfcr betwecn A and Jl on intcger NA­

Partl: B sends A a square modulo NA' ul together
with a O-knowledge proof that B knows one square
root of u1 mod NA • (for details sec [FMR1or
[GMI~]).
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))art2: A gives 11 a random square root of u} mod

NA·

Four rounds of message exchanges arc required in
the itnplclTIentation. 'Inc effect of part 1 is that A is

convinced with probability greater than 1 - ~-;-
2

that B knows one square root of ul but A gets no
information as to which root it is. fly saying "B
knows a square root" we mean that IJ can computed
such square root by running Jlj twice on the same
input and same coin tosses.

In the correctness proof for our VSS protocol, we
regard the oblivious transfer axiomatically, as a pro­
toco] with the specified properties.

3.3 Our Vcrifi~lble Secret Sharing (VSS) Protocol

Code for dealer A
to verifhlbly share the secret bit b:

(for n p&lrticip,lnts, 1 faults, security paraillctcr K)

Let 1==21 +1.

Part I (Preparations).

1. Pick I primes PI, .•• , PI of length K bits each.

2. Compute NA ==Pr • • • ·PI.

3. Pick XA EZ!J uniformly at random such that
.A

xA lnod NA has least significant b.

4. Compute YA ==xl nlod NA .

5. Broadcast NA and YA •

{at this point A is committed to b. }

Part II (Distribution of Pieces).

6. Give every other participant C a rand0l11 split
of NA by running the oblivious transfer
between A and C on NA .

-~--~~-----~-~--~-----~---~--------~--~----~~~~-

Turning Point

-~---~--~-~----~----~---
--------~---~-----~-----

Part III (I{cconstruction of Secret).

7. Each other participant C
broadcasts the split of NA that C holds.

8. If C detects that A deviated from the protocol
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bcftlrC the turning point, C ulkcs the default
b =="elllpty ITIessagc". Otherwise, C takcs all
(at least 11 -I) splits of NA , and tries to factor
NA cOlnplctcly.lf NA does factor, has exactly I
prinlc factors, and the .cxponent 3 is rclativ£!r
prilne to <P(NA), then (' cOlnputcs xA .=3-/ YA
mod NA. (~' takes the Icast significant bit of XA
to be A'8 secret, b. If any of the above condi­
tions do not hold, (' takes the default
b =="empty message".

3.4 Proof of Correctness

We prove the following statements:

1) If A deviated from the protocol before the turn­
ing point, then all non-faulty proccssors will take the
default b .:="empty mcssage". If A followed the pro­
tocol till the turning point (steps 1--5) then, after the
turning point (at step 8), an non-faulty processorS
will cOlnpute b (with ovcrwhehning probability).
lbis is proved in IJcmlna 3.

2) If I~SA inversion is infeasible, thcn the probability
that the faulty processors can predict b before the

Turning Point is less than 1- + 1 for any
2 poly(K)

polynomial P and sufficiently large K. This is
proved in theorem 5.

Let N ==Pl · · · Pl. Then we call the pair of integers
(c ,d) a split of N if N ==c·d. Let
SplilS(N).:={(c ,d) I N =c·d}

Fact 1: Let NA be as specified in the above protocol.
On input pair (u,v) such that u2=:v2 mod NA and v
was randomly picked alTIOng all the roots of u 2 mod
NA, it is easy to COlnpute a random split of NA.

Proof: A sitnplc extension of I~abin's digital signature
scheme argument.

Definition 5: [,et NA be as specified in thc above
protocol, and let M ==PIP 2 divide NA. We say that
M is ullseparated by a set of I processors Bl,...,Bt if
for each of the t splits NA .:=~'is~ that Hi gets by
the oblivious transfer (i == 1,... ,/), either At! divide si
or AI divide S~.

Notice that the notion of unseparatcd M
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depends only on splits which are received via the
oblivious transfer, and is thus well defined even if
facto ring is easy.

Ifact 2: If A is a correct processor, then for any t

processors there is at least one pair of primes P11) 2

which divide NA, such that M is unscparatcd by that
sel

Proof: NA has 21 +1 prime factors, and every split
partitions them to two subsets. Different partitions
correspond to the subsets formed by intersections.
Since t partitions can at most yield 21 subsets, there
must be at least one pair of pritnes, Ph P2 which
remains in the same subset. 'rhus there is an
~f ==PrP2 unscparated by B1,..., Bt at the turning
point. QED

I.Jcluma 3: Let NA be a product of 1 distinct primes.
Suppose processor A behave according to the proto­
col upto the turning point. Then at step 8, the n - t

non-faulty processors can factor NA with probability
1

greater than 1 - 2n +1-31 •

Proof: The non-faulty processors at step 8 have at
lcast n - t random splits of NA. We can represent
every split by a 0 - 1 coloring of the 1 primes: l~wo

primes are colored the same according to a given
split if they are in the same factor of NA according
to that split. What is the probability that there exists
a pair of primes Pi,Pj which are kept unseparate by
all n - t splits? 1'0 answer this question, consider a
(n -/)-by-l matrix with zero-one entries. The I-th
row correspond to tile l-th split, and the columns i,j
have the same entry (either both 0 or both 1) iff the
primes Pi, Pj wcre not separated by tllis split.

Since each row correspond to a random split,
the matrix is a random zero one matrix. The proba­
bility that NA is not totally split equals the probabil­
ity that there are two identical columns in the matrix.
But

1
Prob( column; = column})= 2n -

1

Hence
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Pr(=l i. J with column; = columnj)< 2'2~2_t

Substituting I by 21 +1, this probability is bounded

above by 2;3~ 1 . Hence with probability greater than

231
1- 2n +1 there exists no such pair i ,J. In this case

the non-faulty processors can cotnpute the complete
prilTIe f£lctorization of Nfl, using at most O(l(n -t»
arithmetic operations. Q~=D

11cfore proving the unpredictability of the
secret at the 'furningPoint , we state exactly the

I~Si\ intractability assumption, and give two claims
that are used in the proof.

RSA Intractability Assumption (RIA)

Let F be a probabilistic polynomial algorithm that

takes as input an integer 'A1, product of two K bit
primes., both congruent to 2 mod 3. l ..et Qf..(K) be
the fraction of such Inoduli AI on which F inverts
RSA (x 3 mod N). 'fhen, for all polynomial time
algorithms F, for all c > 0, and for all sufficiently

1
large K, aF(K) < --.

KC

Rcnlark: As stated., the assumption is quite strong.
First, it corresponds to I~SA with the specific power
3. Second, it requires that RSA be invertible on a
subpolynomial fraction of instances only. It is possi­
ble to relax this assumption by replacing the last sen-

- 1tence by "=t c > 0 such that aF(K) < 1--".
KC

Using Yao's exclusive-or construction [Y1], we can
modify our protocol to be proved correct under this
weaker assulnption. Also the power 3 can be general­
ized. For this abstract, we chose to give the simpler
version of the protocol and make a stronger assump­
tion.

Our next result, 11leorcln 4, states that the bit
security of RSA over multi-prime modulus is not
compromised evcn if almost all the factorization of
the modulus is known.

l~hcorcln 4: The following three problems are com­
putationally equivalent (each is probabilistic poly(K)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 17,2010 at 15:17:25 EST from IEEE Xplore.  Restrictions apply. 



tinlc reducible to the other).

(1) Invert l~SA (x e lTIod M) on the modulus
NI == P11J 2, product of two K -bit long primes
where (e ,<p(M)=-l.

(2) Given AI ==J) 1P 2 (product of two K -bit long
prhnes), e such that (e,<p(AI»=-l and x e mod
M, guess the least significant bit of x with suc-

cess probability greater than ~ + POIY\K) '

(3) Given N == Mp3...P/, e such that (e ,<p(N»=-l,
x e mod Nand M,J)3,. .. ,PI (where
M ==J) 1P 2 > 21 and all primes 1); are K bits
long), guess the least significant bit of x with

b'l' th 1 1success proba llty greater an "2 + poly(K)'

Proof: l-'hc proof is a simple extension of the bit
security result for two prime Inoduli [ACGS], and is
omitted from this abstract. Details can be found in
[C]. QJ4:D

The reader might be tempted to think that fact
2 together with theorem 4 imply the unpredictability
of b at the rrurning Point. Such impression is wrong
as we still have to show that the adversary essentially
cannot "gain any additional knowledge" in the
course of the protocol execution of part 2 ( the distri­
bution of the t splits of NA ).

The success probability of an adversary in
determining b is averaged over all A'8 choices of
primes Pl,... ,PI and over all executions of the verifi­
able secret sharing protocol (given a specific choice
of primes). In the proof, it will be more convenient
to think of t11C pritncs as fixed. 1~0 that end, suppose

the adversary can guess b with probability ~ +e.

From fact 2, we know that at least one pair of primes
.M ==P1P 2 is unseparated at the l"'urning Point. Let
S N be the conditional success probability of them, .A

adversary in guessing b, given that A 's modulus is
NA, AI divide NA and that AI is unseparated at the
1'urning Point. The following fact is proved by a
simple counting arguments.

Fact 5: For at least e fraction of of all M and NA
1 e

(where NA , M are as above), Sm.N
A
>"2 + 4'
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We will call M and NA for which Sm.N
A
> ~ + :

lucky llu111ber and luc")} extension, respectively.

In the proof of the unpredictability theorem, F
will denote a probabilistic polynomial titne 'algorithm
which tries to predict b. Bl,. .. ,Bt will denote the
probabilistic polynomial titTIe algorithms correspond­
ing to 1 faulty processors. J~"' has access to the in ternal
state of t11ese 1 B; -s (i.e can read their worktapes,
change the coin tosses they usc etc ).

rrhCOrCI11 5 (Unprcdict«lbility l'hcorcm): Suppose A
is a correct processor who chose his secret bit b with
a priori probability 1/2. rrhen, under I~IA, no poly­
nomial time adversary F controlling any collection of
t processors can predict b before the turning point,

with success probability greater than ~ + POI/(K)

(for all polynomials poly and all sufficiently large K).

Proof Skctch: lbe high level plan of the proof is to
show that if an adversary F can predict b with suc-

cess probability ..!:. +e then he also can, by simulating
2

instances of the protocol, invert RSA, on £ fraction
of moduli 1-4's in expected time O(Ve). lnus from
J~IA e must be slnaller than any polynomial fraction
Vpoly(K).

We now specify a guessing algorithm G. G
takes as input a lucky composite number M product
of two K -bit prime factors, both congruent to 2 mod
3, and a random cube y =- x 3 mod AI. G goal is to
guesses the least significant bit of x with success pro-

bability >..!:. + ~, G will use as subroutines the
2 4

algorithms B l,. .. ,Bt of the faulty processors, and the
adversary prediction algorithm F .

G starts by picking at random 1- 2 primes
P3,...,Pl each K bits long and congruent to 2 Jnod 3.
']"'hen, G computes NA == M·P3P2 • · • PI, and a ran­
dom YA in the range O<yA <NA satisfying yA =Y
lnod M. (Notice that with probability at least £, N,A
is a lucky extension of M.)

By now" G has simulated steps 1--5 of the
verifiable secret sharing protocol. He now simulates
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step 5, by broadcasting NA and )'A. 'T'o simulate
stcp 6 of the protocol, G Inust sitnulatc A's rolc in
fl -1 oblivious transfers on the composite NA ·

How can G do this? l ..ct's concentrate on Gs
intcraction with the faulty processors. In the real Orr
protocol A knew all factors of NA and thus during
the course of the O'T' protocol, could give each of
B1,..., IJt a random split of NA • G, on the other
hand, knows all factors of NA except thosewhi~~

split AI and thus can't give llj a random split of NA..
I~ut what it can and will do is sitnulate runs of th~

Orr in which A gives Bj a split of NA picked at ran­
dom alnong all those splits which do not separate M.
l'hc intcraction betwecn G and IJI, ...,IJr goes a fol­
lows.

First Bl,...,Bt arc supposed to choose elelnents
-Ul, •••,Ut in ZN. (fhey may do this jointly in any

fashion: randolnly or otherwise but in polyno­
mial time.)

Sccond, they transmit to G (simulating A), u l
mod NA ,...,ur2 mod NA and "interactive
proofs" (as defined by the Orr protocol) of the
fact that they "know" Ul, •.. ,Ut (Each proof is

correct with probability greater than 1 - 2i )..
At this point G can actually find out what Ul, •.•,Ur
are by activating Bj '8 and causing theln to print Uj.

This can be done since "knowing" ui in the 01' pro"
tocol actually means that Ui can bc computed by run­
ning Bi twice on the same input and same coin
tosses. (1\ simpler way to think of this is that G can
read the contents of the work tapes of Bj's where Uj

is written).

Recall that G is supposed to return to each Bj

a randOln root Vi of Uj2 lTIod NA that does not
separate AI. G can't dircctly compute random
square roots of Ui

2 mod NA from u;2 mod NA. But
random square roots correspond, by Lemma 1, to
random splits of NA. SO G can first compute (,S l/~ 2)

- a randoln split of NA which does not separated M.
He then uses the Chinese I{cmainder algorithm to
compute Vi mod NA such that vi=ui Inod Sland
Vi=-Uj mod 512. Finally, G gives Vi" to Bi .
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The faulty processors IJ 1,..., Il( now .have all
the "relevant" infoflnation they held at the turning.
point of the actual protocol. 'fhcy have
NA ==Al'P3'''/J/, YA and (Ul,V]): •• ,(ut,Vt)- G can now
invoke F a to predict the lcast significant bit of

3 I .
xA== V YA modN,A,.

If NA .is a lucky extcnsion of !vI, F succeed

with probability greater than l. + .!.. In other
2 4

words, G. succeeded in realizing an oracle for the
least significant bit which is correct with probability

greater than ! +.!.. By Theorem 4, G can be
2 4

transfonncd to an efficient algorithm for invcrtin~ f3
modM.

As an £ fraction of all extensions of Mare
lucky, we will find such lucky extension in expected
o (e -- 1) iterations. '"rhus by RIA, £ I1Just be smaller
than VK c for every c>O and sufficiently large K.
QED

4. Implementing Sinlultaneous Broadcast
using Verifiable Secret Sharing

We now give a high level description of a siinu­
lation of a given protocol ])ROT which is defined
(and works ·correctly) for an n -I-ideal simultaneous:
broadcast network, on a n -t -broadcast network. III
other words we specify an n -I-simulator, as defined
in section 2.4. Our sitnu]ator, consists of a pair of
algorithms (C ,D) which bellave as follow.

Algorithm C takes PROT as input. Throughout
PROT, in every round j, processors A I,A b .•• I An
wish to send messages nlI,j,ln 2,j' •• " mnJ "simul­
taneously".

To achieve this simultaneous delivery in a
broadcast .network, C replaces cach original round j
by a "macro" round j which involves 7 message
exchange rounds in the broadcast network. In the
end of this "macro"-round, processors A h"" An run
algorithm D on the messages they received during
the last 7 broadcast network rounds to compute

ml,j. · · • , rnnJ.

A macro round j consists of each processor A j

(1 ::; i < 11) running a (slightly nlodificd, as
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described below) VSS protocol using its message 1niJ
( 1 < i < 11) as its secret. 'rile (slightly ITIodified)
VSS protocol involves seven steps of message
exchanges: each one of these must be done within
the same time interval by each processor. A comtnon
clock is used in order to enforce a titneout mechan­
ism. rrhus, if for instance processor Ai did not
broadcast a message in step 5 of the VSS on titne, his
message l11ij of the j -th macro round is is taken to be
the etnpty mcssager.

l'he VSS protocol executed for this application
lTIUst be modified as follows. Add step 5.5 to the end
of part 1. In this step the dealer A.. interactively
proves to every other processor C that he can invert
I~SA with exponent 3 on the modulus NA .

Step 5.5 is added for the following reason: all
processors A 1,..., An are executing concurrently n
\'SS protocols on their respective messages (secrets)
m 1,..., nZn; in step 5 of the VSS each must broadcast
an NAt and YAle 1'hese NA;,YA

i
pairs must appear in

the network channel within a certain time interval,
but can arrive in random order (i.e some may appear
earlier then others). 'Thus, a faulty processor AI may
wait till he sees the pair NA ,YA of SaIne proper pro-

p p

ccssor Ap and then choose his pair NAf,YA
j

depend-

ing on this pair without even knowing what secret he
himself is encoding. This choice of aAI depends on
the message of a proper processor Ap . This would
violate the definition of an SI1-nctwork. We thus
force each processor in the added step 5.5, to give a
O-knowledge (sec [GMlt] for definitions) proof to all
other processors tllat he knows the content of his
own message.

Th following protocol should be inserted as step 5.5
in the VSS of section 3.3.

Protocol for processor A to internctivcly prove to
processor C that A C~ln take cubic roots of D10dulo
NA

As usual let K == INA I.
1. For 1 < i,j, < K A picks XiJ at random in

Z:V
A

• A sends x?J mod NA to C.

2. For 1 < i,j < K C lets giJ be his guess as to
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what is the least significant bit of Xi,j. C sends
to A his guesses {gi.j}.

3. For 1 :s; j :s; K A lets Yj==gl,j .•• gK.j mod NA
( denotes concatenation). f~or

1 < i,j < K .. A sends to C Xi,j and Zj such
that z)3 ==Yj Inod NA (Zj is the cubic root of
Yj).

'rhe above protocol constitutes a O-Knowledge
proof of A to C that A is able to take cubic roots
tTIodulo NA.

'rhcorclu 6 (Sinlultancity rrhcorcln): Under the IRA9'
the cOlnpiler «(',D) described above constitute an
n-() (log Il )-simulator.

Rough ]lroof Sketch: Fix adversary ADV', protocol
l)/~()T and a broadcast network Nl~~T'. This deter­
mines a probability distribution
H'i(NET',C,D,l)l~OT,ADV') on the messages
delivered in the first i macro rounds. We wish to
show that this distribution is indistinguishable from
the probability distribution fli(Nlj'T,}>ROT,ADV) of
messages delivered in an ISB network NET for some
adversary algorithm ADV.

The outline of the proof is as follows.

For notational simplicity let tllC message mji

being sent by the Ajth processor during the i-th
macro round belong to {O,l} (essentially the same
proof will work for general 1l1ji'S). Similiarly, for
notational convinience, assume that exactly t proces­
sors are faulty and that processors A l,. •. ,An -1 are
proper and their messages are computed by the legal
protocol PROT.

Let
Eimjj)={x 3 mod NAj : least significant bit of x is mjJ

be the set of probabilistic cncodings of l11ji using pro­
cessor Aj's key NAj •

'fhe algorithm ADV' takes as input the history
H'i-1=={lnxj 11 :s; x < i-I, 1 <j< n} and the
probabilistic cncodings aplha 1EE l(ln l.i) ,...,

an -t,iEEn -t(ll1n-t), and computes the i-th
macro-round messages mn -1 +lti,...,llln,i of the faulty
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processors.

J-Jct d; denote the distribution of messages output by
AIJV' given the same history Hi - 1 and the proba­
bilistic encodings a 1EEl(O),..., an -tEEn -1(0).
Clearly, 11; is a distribution which can be achieved by
an advrcsary ADV in an lSD-network.

Let D/S"T be a polynomial-titne distinguishcr as
defined in 2.4.1. Denote by ql (q'}) the probability
that }J/ST(ml,i,...,mn.i)==1 where the messages mji
are picked according to 41 (and
H;(NET,C ,D ,PROT,ADV) respectively). Assume,

towards a contradiction. that Iq1-q21 > 1 for
poly(K)

infinitely Inany security parameters K. We will show
how to violate the security rcquirement for one of
thc probabilistic cncryption schemes hj (i.e violate
the RSA intractability assumption). In particular,
for some 1 < j < n -t we will implement a polyno­
mial timc algoritllm to distinguish bctwecn the set of
probabilistic encryptions Ej(O) and Ej (lnji) as fol­
lows:

Pick mIt; ,...,mn - t ,i of the proper processors
according to protocol PROT. Choose
alE E l(m l,i )•...,ajEf-j(mj,i),a j +1EEj +1(0),.:.,
Qn-tEEn-t(mn-t,i) at random and fced
aI, ... , an -t to the adversary box .4DV to
compute mn-t+lti,..., lnnt;. Now, replace aj by
Pj picked at random .in 1Jj(O) and feed
al,..,Pj,aj+l,..,an to the ADV to compute

, , C'm n-t+1,b ••• ,m n,i. omputlng
D(ml,i,...,mn,i) and
D(lnl,;, · · · ,mn -l,;,m'n -t+1,b • • ., min,;)
will yield a different response and thus a poly-
nomial time algorithm that can tell Ej(O) and
E.i(lnj,i) apart has been realized.

But by rfheorem 4 and [aM] this contradicts the
IRA. Thus, ~i must have becn indistinguishable
from H;(NET,C,D,PROT,ADV).

5. Applications to Point-to·Point Conununication
Networks \vith Byzantine :Faults

We now consider the problem of simulating
simultaneous broadcast on a point-to·point semi­
synchronous network. For simplicity, we outline the
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simulation on a synchronous network.

A chlrifying discussion.

J3eforc going any further, let us stress that
simulating a simultaneous network is not trivial, even
jf one starts from a synchronous network.. The fol­
lowing naive attempt may be of help in clarifying the
definition of simultaneity.

Given a synchronous network, let an ··cxtended
round" consist of first sending messages at prescribed
times i and then using subsequent (elementary)
rounds to achieve Byzantine agrcemcnt about what
was sent

Such extended rounds do not Inake the network
sbnultaneous.

Of course in a synchronous network all messages can
be sent only at exact times 1,2,3,... and will be
received exactly one unit of time latcr. 111us a mes­
sage sent at time i is necessarily independent of the
other nlcssagcs sent in tJle same round. However, a
faulty processor, }), may have sent (to different pro­
cessors) two different messages ml and m2, one of
which is possibly the empty message. When Byzan­
tine agrcement is run, P cannot prevent the correct
processors from agreeing on only one tncssage, How·
ever, it can influence and actually decide on which of
the two messages the agreement will be reached. I.e. t

it can decide which message to send in the extended
round. Notice that, at the start of the Byzantine
agreement algorithm, P already knows what mes­
sages it received from other processors. lnus what P
sends in an cxtended round effectively depends on
what other processors have send in the same round.

The Solution

The key idea is to use the power of Byzantine
agreement in order to simulate a semi-synchronous
broadcasting network. Once such network is con­
stnlctcd, apply our simulation of simultaneous broad­
cast network to it.

Sitnulating semi-synchronous broadcast by Byzantine
agreement adds an O(t) factor of communication
rounds and a polynomial factor of
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~ompuultion/comJnunication overhead.

p. Concluding ltclnarks

We introduced the notion of simultaneous
proadcast in fault-tolerant distributed computing. We
pave one implclTICntation of this notion, under the
jntractability assurnption of RSA.

Dur implementation requires computation and com­
1TIunication which are exponcntial (21

) in the number
vf faults, t. 1'hus to be polynomial in the size of the
petwork, 1l, t can be at most 0 (Iog 11 ) large. '"fhis
jeavcs the question of fully polynomial implctncnta­

cion for larger values of t open.
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