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Abstract. Using a random deal of cards to players and a computation-
ally unlimited eavesdropper, all players wish to share a one-bit secret key
which is information-theoretically secure from the eavesdropper. This can
be done by a protocol to make several pairs of players share one-bit se-
cret keys so that all these pairs form a spanning tree over players. In
this paper we obtain a necessary and sufficient condition on the number
of cards for the existence of such a protocol. Our condition immediately
yields an efficient linear-time algorithm to determine whether there exists
a protocol to achieve such a secret key sharing.

1 Introduction

Suppose that there are k (≥ 2) players P1, P2, · · · , Pk and a passive eavesdrop-
per, Eve, whose computational power is unlimited. All players wish to share a
common one-bit secret key that is information-theoretically secure from Eve. Let
C be a set of d distinct cards which are numbered from 1 to d. All cards in C are
randomly dealt to players P1, P2, · · · , Pk and Eve. We call a set of cards dealt to
a player or Eve a hand. Let Ci ⊆ C be Pi’s hand, and let Ce ⊆ C be Eve’s hand.
We denote this deal by C = (C1, C2, · · · , Ck; Ce). Clearly {C1, C2, · · · , Ck, Ce} is
a partition of set C. We write ci = |Ci| for each 1 ≤ i ≤ k and ce = |Ce|, where
|A| denotes the cardinality of a set A. Note that c1, c2, · · · , ck and ce are the sizes
of hands held by P1, P2, · · · , Pk and Eve respectively, and that d =

∑k
i=1 ci + ce.

We call γ = (c1, c2, · · · , ck; ce) the signature of deal C. In this paper we assume
that c1 ≥ c2 ≥ · · · ≥ ck; if necessary, we rename the players. The set C and the
signature γ are public to all the players and even to Eve, but the cards in the
hand of a player or Eve are private to herself, as in the case of usual card games.

We consider a graph called a key exchange graph, in which each vertex i
represents a player Pi and each edge (i, j) joining vertices i and j represents a
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Fig. 1. A generating process of a key exchange graph.

pair of players Pi and Pj sharing a one-bit secret key rij ∈ {0, 1}. (See Figure
1.) Refer to [8] for the graph-theoretic terminology. If the key exchange graph
is a spanning tree as illustrated in Figure 1(e), then all the players can share a
common one-bit secret key r ∈ {0, 1} as follows: an arbitrary player chooses a
one-bit secret key r ∈ {0, 1}, and sends it to the rest of the players along the
spanning tree; when player Pi sends r to player Pj along an edge (i, j) of the
spanning tree, Pi computes the exclusive-or r ⊕ rij of r and rij and sends it to
Pj , and Pj obtains r by computing (r ⊕ rij) ⊕ rij .

For the case k = 2, Fischer, Paterson and Rackoff give a protocol to form a
spanning tree, i.e. a graph having exactly one edge as the key exchange graph
by using a random deal of cards [2].

Fischer and Wright [3,6] extend this protocol for any k ≥ 2, and formalize a
class of protocols called “key set protocols,” a formal definition of which will be
given in the succeeding section. Furthermore they give the so-called SFP protocol
as a key set protocol. We say that a key set protocol works for a signature γ
if the protocol always forms a spanning tree as the key exchange graph for any
deal C having the signature γ [2,3,4,5,6]. Let Γ be a set of all signatures, where
the number k of players and the total number d of dealt cards are taken over all
values. Define sets W and L as follows:

W = {γ ∈ Γ | there is a key set protocol working for γ}; and

L = {γ ∈ Γ | there is no key set protocol working for γ}.
Thus {W, L} is a partition of set Γ . Fischer and Wright show that their SFP
protocol works for all γ ∈ W [3,6]. Furthermore they prove that a sufficient
condition for γ ∈ W is ck ≥ 1 and c1 + ck ≥ ce + k. They also show that it is
a necessary and sufficient condition for the case k = 2 [3,6]. However, a simple
necessary and sufficient condition for the case k ≥ 3 has not been known so far
[3,6].

Since the SFP protocol works for all γ ∈ W , one can determine whether
γ ∈ W or not by simulating the SFP protocol for γ. However, it is necessary to
simulate the protocol for all “malicious adversaries,” and hence the time required
by this simulation is exponential in k and such a simulation is impractical.

In this paper for the case k ≥ 3 we give a simple necessary and sufficient
condition on a signature γ for the existence of a key set protocol to work for γ.
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Given a signature γ = (c1, c2, · · · , ck; ce), one can easily determine in time O(k)
whether γ satisfies our condition or not. Thus our condition immediately yields
an efficient linear-time algorithm for determining whether there exists a key set
protocol to work for a given signature γ. Our condition looks in appearance to
be similar to the condition for a given degree sequence to be “graphical,” and
the proof for our condition is complicated as well as those for a degree sequence
[1,7,8,10].

2 Preliminaries

In this section we explain the key set protocol formalized by Fischer and Wright,
and present known results on this protocol [2,3,6].

We first define some terms. A key set K = {x, y} consists of two cards x and
y, one in Ci, the other in Cj with i 6= j, say x ∈ Ci and y ∈ Cj . We say that a
key set K = {x, y} is opaque if 1 ≤ i, j ≤ k and Eve cannot determine whether
x ∈ Ci or x ∈ Cj with probability greater than 1/2. Note that both players Pi

and Pj know that x ∈ Ci and y ∈ Cj . If K is an opaque key set, then Pi and
Pj can share a one-bit secret key rij ∈ {0, 1}, using the following rule agreed
on before starting the protocol: rij = 0 if x > y; rij = 1, otherwise. Since Eve
cannot determine whether rij = 0 or rij = 1 with probability greater than 1/2,
the secret key rij is information-theoretically secure. We say that a card x is
discarded if all the players agree that x has been removed from someone’s hand,
that is, x 6∈ (

⋃k
i=1 Ci) ∪ Ce. We say that a player Pi drops out of the protocol if

she no longer participates in the protocol. We denote by V the set of indices i of
all the players Pi remaining in the protocol. Note that V = {1, 2, · · · , k} before
starting a protocol.

The key set protocol has four steps as follows.

1. Choose a player Ps, s ∈ V , as a proposer by a certain procedure.
2. The proposer Ps determines in mind two cards x, y. The cards are randomly

picked so that x is in her hand and y is not in her hand, i.e. x ∈ Cs and
y ∈ (

⋃
i∈V −{s} Ci)∪Ce. Then Ps proposes K = {x, y} as a key set to all the

players. (The key set is proposed just as a set. Actually it is sorted in some
order, for example in ascending order, so Eve learns nothing about which
card belongs to Cs unless Eve holds y.)

3. If there exists a player Pt holding y, then Pt accepts K. Since K is an opaque
key set, Ps and Pt can share a one-bit secret key rst that is information-
theoretically secure from Eve. (In this case an edge (s, t) is added to the key
exchange graph.) Both cards x and y are discarded. Let Pi be either Ps or
Pt that holds a smaller hand; if Ps and Pt hold hands of the same size, let Pi

be the proposer Ps. Pi discards all her cards and drops out of the protocol.
Set V := V − {i}. Return to step 1.

4. If there exists no player holding y, that is, Eve holds y, then both cards x
and y are discarded. Return to step 1. (In this case no new edge is added to
the key exchange graph.)
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These steps 1–4 are repeated until either exactly one player remains in the
protocol or there are not enough cards left to complete step 2 even if two or more
players remain. In the first case the key exchange graph becomes a spanning tree.
In the second case the protocol fails to form a spanning tree.

We now illustrate the execution of the key set protocol. Let γ = (3, 2, 2, 2; 1)
be the signature before starting the protocol. Thus there are four players P1, P2,
P3, P4 and Eve; P1 has a hand of size 3, P2, P3 and P4 have hands of size 2,
and Eve has a hand of size 1. At the beginning of the protocol the key exchange
graph has four isolated vertices and has no edge, as illustrated in Figure 1(a). In
Figure 1 a white circle represents a vertex corresponding to a player remaining
in the protocol, and the number attached to a white circle represents the size
of the corresponding player’s hand. Suppose that P4 is chosen as a proposer in
step 1. In Figure 1 a double white circle represents the vertex corresponding to
a proposer. In step 2, P4 proposes K = {x, y} such that x ∈ C4 and y /∈ C4.
Assume that y ∈ C3. Then step 3 is executed, P3 and P4 share a one-bit secret
key r34, and edge (3, 4) is added to the key exchange graph, as illustrated in
Figure 1(b). Since both cards x and y are discarded, the sizes of hands of both
P3 and P4 decrease by one. Further, since the size of P3’s hand was the same
as that of P4’s hand, the proposer P4 discards all her cards and drops out of
the protocol. Thus the resulting signature is γ1 = (3, 2, 1; 1). In Figure 1 a black
circle represents a vertex corresponding to a player who has dropped out of the
protocol. We now return to step 1. Assume that P2 is chosen as a proposer and
y ∈ Ce. Then step 4 is executed, and the sizes of hands of both P2 and Eve
decrease by one. Thus the resulting signature is γ2 = (3, 1, 1; 0), and no new
edge is added to the key exchange graph, as illustrated in Figure 1(c). Since step
4 terminates, we now return to step 1. Assume that P1 is chosen as a proposer
and y ∈ C3. Then edge (1, 3) is added to the key exchange graph as illustrated
in Figure 1(d). Since the size of P1’s hand decreases by one and P3 drops out
of the protocol, the resulting signature is γ3 = (2, 1; 0). We now return to step
1. Assume that P2 is chosen as a proposer. Then y ∈ C1 because only P1 and
P2 remain in the protocol and Eve’s hand has already been empty. Thus edge
(1, 2) is added to the key exchange graph, and the key exchange graph becomes
a spanning tree, as illustrated in Figure 1(e). Thus the protocol terminates. As
seen from the example above, during the execution of the key set protocol, each
connected component of the key exchange graph always has exactly one vertex
(drawn in a white circle) corresponding to a player remaining in the protocol.

Considering various procedures for choosing the proposer Ps in step 1, we
obtain the class of key set protocols.

First consider the procedure in step 1 for the case k = 2. Fischer, Paterson
and Rackoff show that, if the procedure always chooses the player with the larger
hand as a proposer Ps, then the resulting key set protocol works for any signature
γ = (c1, c2; ce) such that c2 ≥ 1 and c1 + c2 ≥ ce + 2 [2]. On the other hand,
one can easily see that if there exists a key set protocol working for a signature
γ = (c1, c2; ce) then c2 ≥ 1 and c1 + c2 ≥ ce + 2. Thus the following Theorem 1
holds [3].
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Theorem 1. [3] Let k = 2. Then γ ∈ W if and only if c2 ≥ 1 and c1+c2 ≥ ce+2.

Next consider the procedure in step 1 for the case k ≥ 3. As a key set
protocol, Fischer and Wright give the SFP (smallest feasible player) procedure
which chooses the “feasible” player with the smallest hand as a proposer Ps [3,6].
Let γ = (c1, c2, · · · , ck; ce) be the current signature. If ce ≥ 1, Pi with ci = 1
were chosen as a proposer, and y ∈ Ce occurred, then Pi’s hand would become
empty although she remains in the protocol, and hence the key exchange graph
would not become a spanning tree. On the other hand, if ce = 0, then y ∈ Ce

does not occur and hence the procedure appears to be able to choose Pi with
ci = 1 as a proposer; however, if y ∈ Cj and cj = 1, then Pj ’s hand would
become empty and hence the key exchange graph would not become a spanning
tree. Thus the procedure can choose Pi with ci = 1 as a proposer only when
ce = 0 and cj ≥ 2 for every j such that 1 ≤ j ≤ k and j 6= i, that is, only when
i = k and ck−1 ≥ 2. Remember that c1 ≥ c2 ≥ · · · ≥ ck is assumed. Hence, we
say that player Pi is feasible if the following condition (1) or (2) holds.

(1) ci ≥ 2.
(2) ce = 0, ci = 1 with i = k, and ck−1 ≥ 2.

Thus, if the hands of all the players remaining in the protocol are not empty,
i.e. ck ≥ 1, and the proposer Ps is feasible, then the hands of all the players
remaining in the protocol will not be empty at the beginning of the succeeding
execution of steps 1–4.

We define a mapping f from Γ to natural numbers, as follows: f(γ) = i if
Pi is the feasible player with the smallest hand (ties are broken by selecting
the player having the largest index); and f(γ) = 0 if there is no feasible player.
For example, if γ = (4, 3, 2, 2, 1, 1; 3), then f(γ) = 4. If γ = (4, 4, 3, 3, 1; 0), then
f(γ) = k = 5 because ce = 0, ck = 1 and ck−1 ≥ 2. If γ = (1, 1, 1; 2), then
f(γ) = 0 because there is no feasible player. Hereafter we often denote f(γ)
simply by f .

From now on let γ = (c1, c2, · · · , ck; ce). Note that the definition of f imme-
diately implies the following Lemma 2. Lemma 2(a) provides a trivial necessary
condition for γ ∈ W .

Lemma 2. The following (a) and (b) hold.

(a) If k ≥ 3 and γ ∈ W , then ck ≥ 1 and f(γ) ≥ 1 [3].
(b) If ck ≥ 1, then ci = 1 for every i such that f(γ) + 1 ≤ i ≤ k.

The SFP procedure chooses a proposer Ps as follows:

s =
{

f(γ) if 1 ≤ f(γ) ≤ k;
1 if f(γ) = 0.

The key set protocol resulting from this procedure is called the SFP protocol.
The following Theorem 3 has been known on the SFP protocol [3,6].
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Theorem 3. [3,6] Let γ ∈ Γ . Then there exists a key set protocol working for
γ, i.e. γ ∈ W , if and only if the SFP protocol works for γ.

Furthermore the following Lemma 4 is known on a sufficient condition for
γ ∈ W [3,6].

Lemma 4. [3,6] If ck ≥ 1 and c1 + ck ≥ ce + k, then γ ∈ W .

The sufficient condition in Lemma 4 is not a necessary condition in general.
For example, γ = (3, 3, 2, 1; 1) does not satisfy the condition in Lemma 4, but
the SFP protocol works for γ and hence γ ∈ W [3,6]. In this paper we obtain
a simple necessary and sufficient condition for γ ∈ W for any k ≥ 3. As shown
later, γ = (3, 3, 2, 1; 1) satisfies our necessary and sufficient condition.

3 Necessary and Sufficient Condition

For k = 3, we obtain the following Theorem 5 on a necessary and sufficient
condition for γ ∈ W .

Theorem 5. Let k = 3. Then γ ∈ W if and only if c3 ≥ 1 and c1 + c3 ≥ ce + 3.

Proof. Given in Section 5.

For k ≥ 4, we obtain the following Theorem 6 on a necessary and sufficient
condition for γ ∈ W . Hereafter let B = {i ∈ V | ci = 2}, and let b = b|B|/2c.
Note that, by Lemma 2(a), a trivial necessary condition for γ ∈ W is ck ≥ 1 and
f(γ) ≥ 1.

Theorem 6. Let k ≥ 4, ck ≥ 1 and f ≥ 1. Then γ ∈ W if and only if

ef∑
i=1

max{ci − h+, 0} ≥ f̃ , (1)

where

f̄ = f − δ, (2)

f̃ = f̄ − 2ε, (3)

h = ce − ck + k − f̄ , (4)

h+ = h + ε, (5)

δ =




0 if f = 1;
1 if 2 ≤ f ≤ k − 1;
2 if f = k and ck−1 ≥ ck + 1; and
3 if f = k and ck−1 = ck,

(6)
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Fig. 2. The evolution of a key exchange graph and the alteration of a signature.

and

ε =




max{min{c2 − h, b}, 0} if 5 ≤ f ≤ k − 1;
max{min{c2 − h, b − 1}, 0} if 5 ≤ f = k and ce ≥ 1; and
0 otherwise.

(7)

Proof. Given in Section 6.

[Remark] Since c1 ≥ c2 ≥ · · · ≥ ck is assumed, Eq. (1) is equivalent to

k∑
i=1

max{ci − h+, 0} ≥ f̃ (8)

where the summation is taken over all i, 1 ≤ i ≤ k, although the summation in
Eq. (1) is taken over all i, 1 ≤ i ≤ f̃ .

Figure 2(a) illustrates Eq. (1); the left hand side of Eq. (1) is equal to the
number of cards above the dotted line in Figure 2(a) where the rectangles stacked
on a player Pi, 1 ≤ i ≤ k, represent the cards of Pi’s hand.

As mentioned in Section 2, the SFP protocol works for γ = (3, 3, 2, 1; 1), but
γ does not satisfy the sufficient condition in Lemma 4 [3,6]. By the definition of
f we have f = f(γ) = 3. Since k = 4, we have 2 ≤ f = 3 = k − 1, and hence by
Eq. (6) δ = 1. By Eq. (2) f̄ = 3−1 = 2, and by Eq. (4) h = 1−1+4−2 = 2. Since
f = 3 < 5, by Eq. (7) we have ε = 0. Hence by Eq. (3) we have f̃ = 2−0 = 2 and
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by Eq. (5) h+ = 2+0 = 2. Therefore
∑

ef
i=1 max{ci−h+, 0} = (3−2)+(3−2) =

2 = f̃ . Thus γ satisfies Eq. (1), the necessary and sufficient condition in Theorem
6.

The following Corollary 7 follows from Theorems 1, 5 and 6. This corollary
provides a necessary and sufficient condition for γ ∈ W under a natural assump-
tion that all players have hands of the same size.

Corollary 7. Let k ≥ 2 and c1 = c2 = · · · = ck. Then γ ∈ W if and only if

c1 ≥



ce/2 + 1 if k = 2;
ce/2 + 3/2 if k = 3; and
ce/2 + 2 if k ≥ 4.

Corollary 7 means that the required size c1 of hands is the same for any
k ≥ 4 when c1 = c2 = · · · = ck. Note that the total number kc1 of required cards
increases when k increases.

The following Corollary 8 is immediate from Corollary 7.

Corollary 8. Let k ≥ 2 and c1 = c2 = · · · = ck = ce. Then γ ∈ W if and only
if

c1 ≥



2 if k = 2;
3 if k = 3; and
4 if k ≥ 4.

4 Malicious Adversary

In this paper we use a malicious adversary in order to prove Theorem 6.
If a key set protocol works for a signature γ, then the key exchange graph

must become a spanning tree for any deal C having the signature γ. Hence,
whoever has the card y contained in the proposed key set K = {x, y}, the
key exchange graph should become a spanning tree. The malicious adversary
determines who holds the card y. Considering a malicious adversary to make it
hard for the key exchange graph to become a spanning tree, we obtain a necessary
condition for γ ∈ W . On the other hand, if under some condition on a signature
γ a key set protocol always forms a spanning tree as the key exchange graph for
any malicious adversary, then the condition is a sufficient one for γ ∈ W .

We use a function A : Γ × V → V ∪ {e} to represent a malicious adversary,
as follows. Remember that Γ is the set of all signatures and that V is the set
of indices of all the players remaining in a protocol. Let e be Eve’s index. The
inputs to the function A(γ, s) are the current signature γ ∈ Γ and the index
s ∈ V of a proposer Ps chosen in the protocol. Its output is either the index t
of a player Pt remaining in the protocol or the index e of Eve; A(γ, s) = t 6= e
means that player Pt holds card y; and A(γ, s) = e means that Eve holds card
y.

From now on, we denote by γ = (c1, c2, · · · , ck; ce) the current signature, and
denote by γ′

(s,A) = (c′1, c
′
2, · · · , c′k′ ; c′e) the resulting signature after executing
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steps 1–4 under the assumption that Ps proposes a key set K = {x, y} and
y ∈ CA(γ,s).

The definition of a malicious adversary A immediately implies the following
Lemma 9.

Lemma 9. Let k ≥ 3. Then γ ∈ W if and only if there exists a proposer Ps

such that γ′
(s,A) ∈ W for any malicious adversary A. That is,

γ ∈ W ⇐⇒ ∃s ∀A γ′
(s,A) ∈ W,

in other words,
γ ∈ L ⇐⇒ ∀s ∃A γ′

(s,A) ∈ L.

From now on let k ≥ 3. If f = 0, then by Lemma 2(a) γ ∈ L. On the
other hand, if f ≥ 1, then the index s of the proposer Ps chosen by the SFP
procedure satisfies s = f . Furthermore, by Theorem 3 the SFP protocol works
for all γ ∈ W . Thus, if γ ∈ W , then γ′

(f,A) ∈ W for any malicious adversary A.
Hence, the following Corollary 10 immediately follows from Theorem 3.

Corollary 10. Let k ≥ 3 and f(γ) ≥ 1. Then γ ∈ W if and only if γ′
(f,A) ∈ W

for any malicious adversary A. That is,

γ ∈ W ⇐⇒ ∀A γ′
(f,A) ∈ W,

in other words,
γ ∈ L ⇐⇒ ∃A γ′

(f,A) ∈ L.

It follows from the definition of a key set protocol that if two players Pi and
Pj hold hands of the same size, that is, ci = cj , then

∀A γ′
(i,A) ∈ W ⇐⇒ ∀A γ′

(j,A) ∈ W.

Hence, if there exist two or more players Pi with ci = cs (including the proposer
Ps), then one may assume without loss of generality that Ps has the largest
index among all these players. We call it Assumption 1 for convenience sake.
Furthermore, if A(γ, s) = t 6= e and there exist two or more players Pi with
ci = ct and i 6= s (including Pt), then one may assume without loss of generality
that Pt has the largest index among all these players. We call it Assumption 2 for
convenience sake. Under the two assumptions above, γ′

(s,A) = (c′1, c
′
2, · · · , c′k′ ; c′e)

satisfies c′1 ≥ c′2 ≥ · · · ≥ c′k′ since γ satisfies c1 ≥ c2 ≥ · · · ≥ ck.
The total size

∑k
i=1 ci of all the players’ hands decreases by two or more if

A(γ, s) = t 6= e; it decreases by exactly one if A(γ, s) = e. If a key set protocol
works for γ, then A(γ, s) = t 6= e occurs k−1 times until the protocol terminates
because the key exchange graph becomes a spanning tree having k − 1 edges at
the end of the protocol. Furthermore A(γ, s) = e would occur ce times. Hence, if
a key set protocol works for γ, then

∑k
i=1 ci ≥ 2(k − 1) + ce = ce + 2k− 2. Thus

we have the following Lemma 11 as a trivial necessary condition for γ ∈ W .

Lemma 11. If γ ∈ W , then
∑k

i=1 ci ≥ ce + 2k − 2.



398 Takaaki Mizuki, Hiroki Shizuya, and Takao Nishizeki

5 Proof of Theorem 5

In this section we give a proof of Theorem 5.
Since Lemma 4 implies the sufficiency of the condition in Theorem 5, we

prove its necessity. That is, we show that if k = 3 and γ ∈ W then c3 ≥ 1 and
c1 + c3 ≥ ce + 3. In order to prove this, we use the following malicious adversary
A∗:

A∗(γ, s) =




3 if s = 1;
1 if s = 2;
e if s = 3.

We first have the following Lemma 12.

Lemma 12. Let k = 3, c3 ≥ 1 and c1 + c3 ≤ ce + 2. Then the following (a) or
(b) holds.

(a) γ ∈ L.
(b) γ′

(f,A∗) satisfies k′ = 3, c′3 ≥ 1 and c′1 + c′3 ≤ c′e + 2.

Proof. Let k = 3, c3 ≥ 1 and c1 + c3 ≤ ce + 2. If f = 0, then γ ∈ L by Lemma
2(a). Thus one may assume that 1 ≤ f ≤ 3. Then there are the following three
cases.
Case 1: f = 1.

In this case, by Lemma 2(b), we have γ = (c1, 1, 1; ce) and hence c2 = c3 = 1.
Thus, by c1 + c3 ≤ ce +2 we have c1 ≤ ce +1. Hence

∑3
i=1 ci ≤ (ce +1)+1+1 =

ce + 2k − 3. Therefore γ ∈ L by Lemma 11.

Case 2: f = 2.
In this case, by Lemma 2(b) we have γ = (c1, c2, 1; ce). Since f = 2, the

definition of f implies c2 ≥ 2 and ce ≥ 1. Furthermore, since c3 = 1 and
c1 + c3 ≤ ce +2, we have c1 ≤ ce +1. Since f = 2, let P2 be a proposer Ps. Since
A∗(γ, s) = 1 for s = 2, the size of the hand of P1 holding card y decreases by one
and the proposer P2 drops out of the protocol, and hence γ′

(f,A∗) = (c1−1, 1; ce).
Therefore c′1 + c′2 = (c1 − 1) + 1 = c1. Since c1 ≤ ce + 1 and c′e = ce, we have
c′1 + c′2 ≤ c′e +1. Thus by Theorem 1 γ′

(f,A∗) ∈ L. Therefore Corollary 10 implies
γ ∈ L.

Case 3: f = 3.
In this case ce ≥ 1; if ce = 0, then by c3 ≥ 1 and c1 + c3 ≤ ce + 2 = 2 we

have c1 = c2 = c3 = 1, and hence f = 0, contrary to f = 3. Since f = 3, let
P3 be a proposer. Since A∗(γ, s) = e for s = 3, the sizes of the hands of both
P3 and Eve decrease by one, and hence γ′

(f,A∗) = (c1, c2, c3 − 1; ce − 1), k′ = 3
and c′e = ce − 1. Since P3 was feasible, we have c′3 = c3 − 1 ≥ 1. Furthermore
c′1 + c′3 = c1 + (c3 − 1) ≤ (ce + 2) − 1 = c′e + 2. Thus (b) holds.

Define the size size(γ) of a signature γ as follows: size(γ) = ce + k.
We are now ready to prove the necessity of the condition in Theorem 5.
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(Proof for the necessity of the condition in Theorem 5)
Let k = 3. We shall show that if c3 = 0 or c1 + c3 ≤ ce + 2 then γ ∈ L.

If c3 = 0, then Lemma 2(a) implies γ ∈ L. Therefore it suffices to prove the
following claim: if c3 ≥ 1 and c1 + c3 ≤ ce + 2 then γ ∈ L. We prove the claim
by induction on size(γ) = ce + k. Let c3 ≥ 1 and c1 + c3 ≤ ce + 2. Since k = 3,
size(γ) ≥ 3.

First consider the case size(γ) = 3. In this case, ce = 0, and hence c1 + c3 ≤
ce + 2 = 2. Thus c1 = c2 = c3 = 1, and hence f = 0. Therefore by Lemma 2(a)
γ ∈ L.

Next let l ≥ 4, and assume inductively that the claim holds when size(γ) =
l − 1.

Consider any signature γ such that size(γ) = l. By Lemma 12, the following
(a) or (b) holds:

(a) γ ∈ L; and
(b) γ′

(f,A∗) satisfies k′ = 3, c′3 ≥ 1 and c′1 + c′3 ≤ c′e + 2.

Thus one may assume that (b) holds. Then, since size(γ′) = size(γ)− 1 = l − 1,
by the induction hypothesis we have γ′

(f,A∗) ∈ L. Therefore Corollary 10 implies
γ ∈ L.

6 Sketchy Proof of Theorem 6

In this section we outline a proof of Theorem 6.
One can easily prove Theorem 6 for the case f = 1 as follows. Let k ≥ 4,

ck ≥ 1 and f = 1. Then δ = ε = 0 and hence f̃ = f̄ = f = 1. By Lemma 2(b)
ck = 1 and hence h+ = h = ce−1+k−1 = ce +k−2. Thus, Eq. (1) is equivalent
to max{c1−ce−k+2, 0} ≥ 1, and hence equivalent to c1 ≥ ce +k−1. Therefore
Theorem 6 for the case f = 1 immediately follows from the following Lemma
13.

Lemma 13. Let ck ≥ 1 and f = 1. Then γ ∈ W if and only if c1 ≥ ce + k − 1.

Proof. The sufficiency immediately follows from Lemma 4. Therefore it suffices
to prove the necessity. Let ck ≥ 1, f = 1 and γ ∈ W . Then by Lemma 11 we
have

∑k
i=1 ci ≥ ce + 2k − 2. On the other hand, since f = 1, by Lemma 2(b)

γ = (c1, 1, 1, · · · , 1; ce) and hence
∑k

i=1 ci = c1 + k − 1. Therefore, c1 + k − 1 ≥
ce + 2k − 2 and hence c1 ≥ ce + k − 1.

We then sketch a proof of Theorem 6 for the case 2 ≤ f ≤ k. The detail
is omitted in this extended abstract. We sketch a proof only for the necessity
of the condition in Theorem 6. (One can prove the sufficiency by induction on
size(γ) = ce + k.) Let k ≥ 4, ck ≥ 1, 2 ≤ f ≤ k and γ ∈ W . Instead of proving
Eq. (1) we prove the following equation holds:

f̄∑
i=1

max{ci − h, 0} ≥ f̄ , (9)
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which is obtained from Eq. (1) by replacing f̃ and h+ with f̄ and h, respectively.
For simplicity, we assume that δ = 1, i.e. 2 ≤ f ≤ k − 1. (The proof for

δ = 2, 3 is similar.) Then by Lemma 2(b) ck = 1. Furthermore f̄ = f − 1 and
h = ce + k − f . Thus Eq. (9) is equivalent to

f−1∑
i=1

max{ci − (ce + k − f), 0} ≥ f − 1. (10)

We prove the necessity of Eq. (10). Let 2 ≤ f ≤ k − 1. Then the signature is
γ = (c1, c2, · · · , cf , 1, 1, · · · , 1; ce). That is, there are exactly f feasible players
P1, P2, · · · , Pf , and each of the remaining k − f players Pf+1, Pf+2, · · · , Pk has
exactly one card. The key exchange graph has exactly k isolated vertices before
starting the protocol, as illustrated in Figure 2(a). In Figure 2, a white rectangle
represents a card in players’ hands. The SFP protocol chooses the feasible player
Pf with the smallest hand as a proposer. Consider a malicious adversary that
does not choose Eve and always chooses the player with the largest hand as
Pt with y ∈ Ct. Then Pf and the player Pt with the largest hand share a
one-bit secret key, the size of Pt’s hand decreases by one, Pf drops out of the
protocol, and an edge joining two vertices corresponding to these two players is
added to the key exchange graph, as illustrated in Figure 2(b). In the example
of Figure 2, the size of P1’s hand decreases by one, Pf discards all her cards
and drops out of the protocol, and edge (1, f) is added to the key exchange
graph. In Figure 2(b), we lightly shade the rectangle corresponding to the card
y discarded by Pt = P1, and darkly shade the rectangles corresponding to the
cards discarded by Pf who drops out of the protocol. At the next execution of
steps 1–4, the proposer is Pf−1. By considering the same malicious adversary as
above, Pf−1 and the player with the largest hand share a one-bit secret key as
illustrated in Figure 2(c). In Figure 2(b), since P1 has a hand of the same size
as P2, by Assumption 2 Pt = P2 and hence edge (2, f − 1) is added to the key
exchange graph as illustrated in Figure 2(c). Repeat such an operation until P1

becomes a proposer, i.e. there exists exactly one feasible player as illustrated in
Figure 2(d), and let γ∗ = (c∗1, c

∗
2, · · · , c∗k∗ ; ce) be the resulting signature. Then

k∗ = k − f + 1, c∗2 = c∗3 = · · · = c∗k∗ = 1, f(γ∗) = 1, and the size of Eve’s
hand remains ce. By Corollary 10 we have γ∗ ∈ W . Therefore, by Lemma 13,
c∗1 ≥ ce + k∗ − 1 = ce + k − f = h. The malicious adversary has chosen f − 1
players Pi in total as Pt so far, and hence there are exactly f − 1 lightly shaded
rectangles in Figure 2(d). The malicious adversary above implies that such a
player Pi, 1 ≤ i ≤ f −1, should have a hand of size greater than h when she was
chosen by the malicious adversary. Thus there are f−1 or more rectangles above
the dotted line in Figure 2(a). Therefore we have

∑f−1
i=1 max{ci − h, 0} ≥ f − 1,

and hence Eq. (10) holds.
We have sketched a proof of the necessity of Eq. (9). One can similarly prove

the necessity of Eq. (1).
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7 Conclusion

In this paper we gave a simple necessary and sufficient condition on signature
γ = (c1, c2, · · · , ck; ce) for the existence of a key set protocol to work for γ. In
other words we gave a simple complete characterization of the sets W and L.

Since the SFP protocol works for all γ ∈ W (Theorem 3), one can determine
whether γ ∈ W or not by simulating the SFP protocol for γ. However, it is
necessary to simulate the protocol for all malicious adversaries, and hence the
time required by this simulation is exponential in k and such a simulation is
impractical. Clearly one can determine in time O(k) whether our necessary and
sufficient condition, i.e. Eq. (1) or (8), holds or not. Thus one can determine in
time O(k) whether γ ∈ W or not.

This paper addresses only the class of key set protocols, and hence it still re-
mains open to obtain a necessary and sufficient condition for any (not necessarily
key set) protocol to work for γ [5].

An Eulerian circuit is more appropriate as a key exchange graph than a
spanning tree if it is necessary to acknowledge the secure key distribution. We
have given a protocol to achieve such a key exchange [9].
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