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example there does not exist a sequence of domains Dy, Dz, D3, ... closing down on the
point O and such that, for each #, the boundary of D, is compact.

4 Jones, F. B., “Concerning Certain Topologically Flat Spaces,” Trans. Am. Math.
Soc., 42, 53-93 (1937).

5 See Axiom 1.

6 See the proof of Theorem 1 of Chapter I.

7 See the proposition labeled “Theorem 25’ in Chapter II. That this proposition is
not a consequence of Axioms 0, 1 and 2 may be seen with the aid of Example 1.
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Let S be a set of non-negative integers, all different from one another.
We say briefly that .S is ‘“‘progression-free” if any three distinct integers
of S never form an arithmetical progression, i.e., if ¢ + a’ 5 2a” whenever
a, a’, a” are different and belong to S.

If the elements of a progression-free set .S do not exceed a given N, then
the number of elements of .S has clearly a maximum » = »(V).

It has been widely conjectured that, as N — =, »(V) = 0(N)* where «
is a positive constant inferior to 1. A more precise conjecture has assigned
to « the value log 2/log 3 which corresponds to the progression-free se-
quence of integers whose digits in the ternary scale are 0 and 2 only.!

The purpose of the present note is to prove that the conjecture »(V) =
0(IN®) is false for every @« < 1. We shall prove that, as N — «,

1— log2 4+ e
V(N) >N log log N

for every ¢ > 0.
Let d be an integer >2 and » an integer divisible by d. Having fixed
d and n, let S(d, ) be the set of all integers given by the expression

A=a+ a2 — 1) + ... + an(2d — 1)

where the ‘‘digits”’ @, are integers subjected to the following condition:
exactly #/d digits are equal to zero, #/d digits are equal to 1, »/d digits
are equal to 2, etc...., and n/d digits are equal to d — 1. Thus the
number of integers of .S(d, #), all different, is
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n!

wd, n) = ———— 1
o/ )T M

On the other hand, for all numbers 4 of S(d, #) we have
A< (2d — )" 2

The set S(d, #) is progression-free. Suppose that 4, 47, 4" belong to
the set and that 4 + A’ = 24". Let ay, a,, a," be the digits of rank ¢ in
A, A', A", respectively. Since a; + a,/ £ 2d — 2 and 2¢,” < 2d — 2, the
equality 4 4+ A’ = 24" implies a; + a,” = 2a," forall<. Now there are in
A" exactly n/d digits equal to zero, and if a,” = 0, then necessarily a; =
a,’ = 0; ie., the n/d digits equal to zero occupy the same places in 4,
A’ and A”. Next, there are, in A", n/d digits equal to 1, and if ¢;” = 1,
then since a; ¥ 0 and a;’ = 0, the equality a; + a;’ = 2a," implies a; =
a;’ = 1; i.e., the n/d digits equal to 1 correspond in 4, 4’, 4”. Generally,
ifa;" = m, a; and @, being different from0, 1,2,. ..m — 1,thena, =q;’ =
m and the n/d digits equal to m have the same ranksin 4, A’, A”. Going
uptom = d — 1, we prove that A = 4’ = A", that is to say S(d, ») is
progression-free.

Now if # and n/d are large enough we have by (I)

n'V 2 e~ " 1
[(/d)"* V 2m(n/d) =] C°
C being a constant (as near to 1 as we please). Thus

w(d, n) > (@d/ym)**d" (6))

v being a constant (as near to 27 as we please).
Let us now fix an IV and let us choose d such that

| (2d _ l)dw(d) é N< (Zd + 1)(d+1) w(d + 1) (4)

w@) |
logd

u(d, n) >

where w(d) is an integer increasing mﬁmtely with d and such that —=

log w(d)
ut log d
dw(d). We have by (2), (3) and (4)

— 0asd — . Let us construct the set S(d, ) with# =

da/2
V(N) [(2d — 1)dw(d)] ,u(d dw(d)) >< 1(d)> ddw(d)

v ( 1 )d/z J40@
N yo(d) (2d + )@ FDe@FD

Now,as N — «,d—> «, and
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log (%) < @+ Dw@+ 1) log (2d + 1) — dw(d) log d +

d d
élog w(d) + élog v = dw(@)[log 2 + o(1)], (5)
if we suppose, as we may, that w(d) increases regularly enough to have
w(d + 1) — w(d) = o(1). By (4)
log N 2 dw(d) log (2d — 1)
loglog N < log (d 4+ 1) + log w(@ + 1) + log log (24 + 1)
and so
log N
log log N

From (5) and (6) it plainly follows that, as N — o

1 __log 2+ e
V(N) >N log log N

> do(@)[1 + o(D)]. (6)

for every ¢ > 0.

Remark.—The sequence constructed above is finite and the construction
depends on N. Therefore it should be pointed out that by a slight modi-
fication of the argument, we can form an infinite ‘‘progression-free’” se-

quence of integers such that the number of terms of the sequence not
a

exceeding N is, for N— «, greater than N1 loglog N 4 heing a constant.

Extension to Sets of Points.—Let E be a set of points in (0, 1) such that
if x and y belong to E, then (x4 ) /2 belongs to E if and only if x = y (property
P). Itis known that E is of measure zero.? An adaptation of the above
argument yields a perfect set £ having the property P and whose Hausdorff
dimensionality is greater than every < 1. The proof, together with other

remarks on sets of points having the property P, will appear elsewhere.

! See Erdos and Turan, Jour. London Math. Soc., 11, 261-264 (1936).
2 See Ruziewicz, S., Fundamenta Mathematicae 7, 141-143 (1925).



