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A canonical version of the multidimensional version of van der Waerden’s 
theorem on arithmetic progressions is proved. 

1. INTRODUCTION 

The starting point for our investigations is Theorem A which is due to 
Erdijs and Graham [ 11. 

THEOREM A. For every positive integer m there exists a positive integer 
n such that for every coloring A: (O,..., n - 1) + w there exists an arithmetic 
progression a, a + d,..., a + (m - 1)d of length m such that the restriction of 
A to {a, a + d,..., a + (m - l)d} is either a constant or a one-to-one mapping. 

This theorem is the so called canonical version of van der Waerden’s 
theorem on arithmetic progressions [7]. Originally, the consideration of 
canonical partition theorems goes back to Erdiis and Rado [2 1 who proved 
this generalization of Ransey’s theorem known as “Erd6s-Rado 
canonization theorem.” 

THEOREM B. Let k and m be positive integers. Then there exists a 
positive integer n satisfying, 
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(CAN) For every coloring A: [n]” -+ (o of the k-element subsets of n 
with arbitrarily many colors, there exists an m-element subset X E [nlm and 
a (possibly empty) subset K G {O,..., k - 1 } such that for every two k-element 
subsets {aO...., a k-l}, {PO ,..., Pk-,} of X, (where a0 <a, < s-e < ak-, and 
PO <PI < *.. <Bk-l), A(~a,,..., ak-l})=A((po,...,Pk-l}) iffai=Pifor every 
i E K. 

In contrast to Theorem A, here one does not only have the alternative 
“either constant or one-to-one.” None of the 2k many types of colorings 
given in Theorem B, however, may be omitted without violating the property 
(CAN). For a general definition and further examples of canonical partition 
theorems, see [4]. 

The multidimensional version of van der Waerden’s theorem on arithmetic 
progressions is due independently to Gallai (see [5]) and Witt [8]. 

THEOREM C. Let t be a positive integer. Then for every positive integer 
M there exists a positive integer N such that for every coloring A: N’ + 2, 
where N’={(a, ,..., a,-,)EZ’: O<a, ,..., a,-,<N} there exists a 
monochromatic homothetic copy of M’, i.e., there exist a positive integer d 
and a vector a = (a, ,..., a,-, ) E Z’ such that &(M’) = {a + d. (A,, ,..., ,I- ,): 

(1 O,“‘, A,- I) E kf’) is a subset of N’ and A 1 $@P), i.e., the restriction of A 
to $i(M’), is a constant mapping. 

The main result of this paper is a canonical version of this theorem. For 
convenience, we shall use equivalence relations rather than colorings with 
arbitrarily many colors. The main theorem may be stated in the following 
way. Think of M’ as being embedded into Q’, the t-dimensional vector space 
over the rationals. A vector v # 0 is a cross direction for M’ iff there exists a 
line a + (v) which intersects M’ in at least two points, Let U(M, t) be the set 
of subspaces U of Q’ possessing a basis of crossing directions. Furthermore, 
add the null space (0) to U(M, t). Suppose U E U(M, t). An equivalence 
relation 7c on M’ is said to be of type z(v) iff it is the coset equivalence 
relation on M’ modulo U which is defined by 

x z y mod rr iff x + U= y + U, where x, y E M’. 

These equivalence relations are defined in a rather natural way and if Z’ is 
partitioned according to n(U), then each homothetic copy of M’ is 
partitioned according to n(U) as well. Thus, a canonical version of 
Theorem C has to consider at least the equivalence relations z(U), 
U E U(M, t). Our main result is that it suffices to consider just these 
equivalence relations. 

MAIN THEOREM. Let t be a positive integer. Then, for every positive 
integer M, there exists a positive integer N* which satisfies: 
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(CAN*) For every equivalence relation IZ on the points of N’, where 
N > N*, there exists a homothetic copy #i(M’) G N’ of 44’ and there exists a 
linear subspace U E U(M, t) such that z 1 (@P) = n(U), i.e., the restriction 
of n to &(M’), is of type n(U). Moreover, the set { $17): U E U(M, t)} is the 
unique minimal set of equivalence relations satisfying (CAN*). 

Remark (i). For t = 1 this is only Theorem A, since n({O}) is the 
identity and n(Q) is the one-block equivalence relation (corresponding to the 
constant coloring in Theorem A). 

Remark (ii). All presently known proofs of Theorem A make use of the 
density version of van der Waerden’s theorem on arithmetic progressions, 
i.e., Szemeredi’s theorem [6]. Analogously, our proof of the main theorem 
uses Fiirstenberg and Katznelson’s density version of Theorem C [3]. Since 
the only available proofs of this density result involve heavy ergodic 
theoretic tools it still remains to find an elementary proof of our theorem. 

Let us state Ftirstenberg and Katznelson’s result explicitly: 

THEOREM D [3]. Let t be a positive integer. Then for every positive 
integer A4 and positive rational E > 0, there exists a positive integer N* such 
that tf S G N’, where N > N*, is a set of points of N’ with 1 S I> E 1 N’(, then 
there exists a homothetic copy #pd(M’) of M’ contained in S, i.e., #i(W) c S. 

Remark. The case t = 1 is Szemeredi’s density result on arithmetic 
progressions [ 61. 

Basically, the proof of the main theorem proceeds by induction on t, the 
case t = 1 being the canonical version of van der Waerden’s theorem, i.e., 
Theorem A. Each step involves a little counting. In Section 2, we prepare the 
tools for doing this. In Section 3, the case t = 1 is proved explicitly and 
Section 4 contains the inductive step from t to t + 1. 

2. SOME PRELIMINARIES 

Let G be a l-dimensional linear subspace of Q’+ ‘, i.e., G = ((go,..., g,)) 
for some vector (g 0 ,..., g,) # 0. One easily verifies that (g, ,..., g,) can always 
be chosen in such a way that: 

(a) if gi is the first nonzero entry, i.e., gi # 0 and g, = *+ * = gi- 1 = 0, 
then gi > 0, 

CB) go,...9 g, E z, 
(y) the numbers g, ,..., g, are relatively prime, i.e., g.c.d. 

(g o,..., g,) = 1. Throughout this paper we shall tacitly assume that (go,..., g,) 
satisfies (a), Cs), (~1, and G = ((go,..., s,>>. 

582a/34/3-6 
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Let xE Q . ‘+’ We say that the coset x + G is “a coset of G in M’+ I”, 
where M is a positive integer, iff (x + G) n M’+ ’ # 0. 

Fact 2.1 

Let G be a fixed l-dimensional subspace of Q” ‘. Then the number of 
cosets of G in M’+ ’ is O(M’) as M + co. 

ProojI Let giO be the first nonzero entry in g = (g,,,..., g,) and let 
g? = gj/giO, j = 0 ,..., t. Thus, (g,* ,..., g:) = (0 ,..., 0, 1, g$+ i ,..., g,*). The 
vectors (x,,,..., xt) E Q”’ with xi0 = 0 form a system of representatives for 
the cosets of G. Thus, we have to count the number of vectors 
x = (x0 )...) xJEQ’ with xiO=O and (x+(g))nMtt’#O. If gF>O, 
then xiE [-(M-l)g,F,M-l]nZ, and if gT<O, then xiE 
[0, (M - l)( 1 - g/*)1 n Z, where j = O,..., t, j # i,. This immediately gives 
the desired result. 1 

Fact 2.2 

Let G = (g) be a fixed l-dimensional subspace of Q”’ and let g = 
Max{1 g,]: i = O,..., t}. Then there exists a constant c (depending on G) such 
that the number of cosets of G in Mt+’ which contain precisely I points of 
M’+‘, where I < [M/g], is less than CM’-‘. 

Prooj Let us call a point (x0,..., xt) E M’+ ’ a “right-hand corner” iff 
there exists an i E IO,..., t) such that xi + gi > M or xi + gi < 0. 
Analogously, a point (x,,,..., xt) E M’+’ is a “left-hand corner” iff there exists 
an i E (O,..., t} such that xi - g, > M or xi - gi < 0. Now let x be a right- 
hand corner. Then, 1(x + G) n M’+ ’ I= 1 iff x - (1- 1)g is a left-hand corner. 
Thus, there exists a j E (O,..., t) with xj+gj>M or xj+gj<O and there 
exists a j* E {O,..., t} with Xj* - lgj. >M or xi, - ig,* < 0, but with 
x-.(1- l)gEM’+‘. 

We claim that j# j*. Assume to the contrary that j = j*. 

Case 1. (xi + gj > M). In particular it then follows that xi - lgj < 0. 
But xi - (I - l)gj > 0. This implies that M = (1- l)g, + R for some R, 
0 ( R < 2gj, contradicting the choice of I as being strictly smaller than 
1MlgJ. 

Case 2. (xi + gj < 0). In particular, xj + lgj > M. 
xj + (I - 1) gj < M which contradicts the choice of 1. 

However, 

Next, observe that there exist at most (‘:‘) possible choices for j and j*. 
Also, xi E ([0, gj) U [M - gj, M)) n Z and similarly, xjS - (I - 1) gj* E 
([0, gj*) u [M + gj*, M)) n z. Thus, it suffices to take c = 4g*(‘:‘). 1 
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Fact 2.3 

Let M be a fixed positive integer. The number of homothetic copies of M’ 
in N’ is at least cNtt ’ for a positive constant c depending only on t. 

Proof: Recall that each homothetic copy of M’ in N’ is given by 
&(M’) = {a t de x: x E M’}. 

3. PROOF OF THEOREM A 

Notation. For sets X, we denote by n(X) the set of equivalence relations 
on X. For x E X and 71 E If(X), let a(x) denote the block (equivalence class) 
of 7c containing x. Let N be a positive integer and E > 0 be a rational. An 
equivalence relation a E IT(N) is called e-injective iff 1 z(x) n NI < EN for 
every x E N, i.e., K is s-injective iff every block of K consists of less than an 
sth part of {O,..., N - 1). Thus, there exist at least l/e different equivalence 
classes. The name “s-injective” is justified by 

LEMMA 3.1. Let M be a positive integer. Then there exists a rational 
E > 0 and a positive integer N* such that for every positive integer N > N* 
and every e-injective equivalence relation x E l7(N) there exists an arithmetic 
progression a, a + d ,..., a + (M - 1)d of length M in N such that K 1 {a ,..., a + 
(M- l)d} is the identity, i.e., a + id&a t jd(mod K) for every 
O<i<j<M. 

Proof Choose E sufficiently small and N sufficiently large (to be 
specified later) and let K E IT(N) be an e-injective equivalence relation. We 
claim that there exists an arithmetic progression of length M satisfying the 
properties of Lemma 3.1. Assume to the contrary that for each arithmetic 
progression in N of length M there exist at least two members x and y with 
x z y(mod n). 

(*) By Fact 2.3 there exist at least cN2 two-element subsets 
{x, y} G N with x z y (mod K). 

However, n is e-injective. Thus, each block of rr provides at most e20(N2) 
such two-element subsets. 

One easily observes that the number of two-element subsets (x, y} EN 
with x z y (mod K) is maximized if the cardinalities of all blocks of E are as 
large as possible. Hence, there exist at most e20(N2) e - ’ = sO(N’) such 
two-element subsets. This, however, is a contradiction, provided E > 0 is 
sufficiently small and N is sufficiently large in order to violate (*). I 

Theorem A can now be proved as follows. Let M be a positive integer. Let 
E > 0 and N* be chosen according to Lemma 3.1. Also let N** be such that 
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for every N > N* * and every S 5 N with ISJ > EN, there exists an M- 
element arithmetic progression contained in S. The existence of such an N** 
is guaranteed by Szemerldi’s theorem, i.e., Theorem D with 1= 1. 

We claim that every N > max(N*, N* *) satisfies the requirements of 
Theorem A. For if n E A’(N) is &-injective, the assertion follows by 
Lemma 3.1. If 71 is not &-injective, then 1 x(X)] > EN for some x E N and the 
assertion follows by choice of N**. 

4. THE INDUCTIVE STEP FROM t TO t+ 1 

In this section, we assume that the main theorem is valid for some positive 
integer t. Under this assumption, we shall prove it for t + 1. In particular, the 
positive integer t will be fixed throughout this section. 

Notation. For positive integers M, let G(M) be the set of those l- 
dimensional linear subspaces of G of Q” ’ which are crossing directions for 
M’+‘, i.e., for which there exists a E Q”’ such that I(a t G)n M’+‘I > 2. 

DEFINITION. Let M and N be positive integers and E > 0 be rational. An 
equivalence relation 71 E n(N’+ ‘) is called e-injectiue with respect to M iff for 
every G E G(M) the following inequality is valid: 

~{~tG:yEQ’+‘,(ytG)nN’+‘#0,~~(x)n(~+G)nN”’I 

<~I(ytG)fINt+‘IforeveryxE(ytG)nN’+’}~ 

>(l-&)I {(ytG):yEQ’+‘, (ytG)nN’+‘f0}1. 

Remark. a E fl(N’+ ‘) is c-injective with respect to M iff for every 
G E G(M) the equivalence relation x acts E injectively (in the sense of 
Section 3) on at least an (1 - e)th of the cosets of G in N” ‘. Similar to 
Section 3, we have Lemma 4.1 (which justifies the name “&-injective”). 

LEMMA 4.1. Let M be a positive integer. Then, there exists a rational 
E > 0 and a positive integer N* such that for every equivalence relation 
n E 27(N’+ ‘), where N > N*, which is e-injective with respect to M, there 
exists a homothetic copy $i(M’+ ‘) c N’+ ’ such that nl )i(M’+ ‘) is the 
identity, i.e., ~1 &(M’+ ‘) = K( { 0)). 

Proof. Choose E > 0 sufficiently small and N suffkiently large (to be 
specified later) and let 7c E fl(N’+ ‘) be &-injective with respect to M. Assume 
that the conclusion of Lemma 4.1 fails to be true, i.e., for each homothetic 
copy &(Mttr)cNt+’ there exists at least one two-element subset 
{~,y}rp~(M’+‘) with xzy(mod7r) and x+G=y+G for some 
G E G(M). By Fact 2.3 there exist at least cN’+* such two-element subsets in 
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Nf+l, i.e., for some fixed G E G(M) there exist at least cN’+* two-element 
subsets (x, y } E N’+ r withx+G=ytGandxz=:(modn). 

Since K is .s-injective, then we can find an upper bound for such two 
element subsets using the s-injectivity of rr. The cosets x + G of G in N’+ ’ 
can be split into two disjoint sets: 

By Fact 2.1 we have IA U BI = O(N’) and since rr is c-injective, it follows 
that IB I< E IA U BI < cO(N’). Consider first those cosets x t G which 
belong to B. Assume that the worst possible case occurs, i.e., that 7c I (x + G) 
is the constant (one-block) equivalence relation for every coset x + G E B. 
Since 1(x + G) n Nft r I< N, this yields at most eO(N’) O(N*) = sO(N’ “) 
two-element subsets {x, y} E Nft ’ with x z y (mod)rr) and x t G = 
y-tGEB. 

Next, consider those cosets x + G which belong to A. Each block of 
z I (x + G) contains at most EN elements, and thus, provides at most .s*O(N’) 
two-element sets ( y, z) c (x t G) with y z z (mod x). Again, the number of 
such subsets is maximized iff the cardinalities of blocks of rc 1 (x t G) are as 
large as possible. Since IA I < O(N’) by Fact 2.1, then there exist at most 
O(N’) e’O(N*) &-I two-element subsets {x, JJ) s Nft ’ with x z y (mod z) 
and x + G = y t G. 

Putting the preceding remarks together we see that there exist at most 
eO(Nft ‘) + cO(N’+‘) = cO(N’+ ‘) two-element subsets (x, y} E N” ’ with 
x z y (mod z) and x t G = y + G. This, however, is a contradiction to the 
remark made at the top of the page, provided that E > 0 is sufficiently small 
and N is sufficiently large. I 

LEMMA 4.2. Let A4 be a positive integer and E > 0 be rational. Then, 
there exists a positive integer N* such that for every positive integer N > N* 
and every equivalence relation a E If(N” ‘) which is not E-injective with 
respect to M the following is valid: 

There exists a G E G(M) and there exists a homothetic copy $z(M’+ ‘) E 
N ft’suchthatx~y(mod~)forallx,yE~~(Mft1)withx+G=y+G. 

Proof. Let N be sufficiently large and let rr E IZ(N’+‘) be an equivalence 
relation which is not E injective with respect to M. Hence, there exists 
G E G(M) such that for a suitable c,, > 0, I B I > ec,N’, where A and B are 
defined as in the proof of Lemma 4.1. For each coset x + G E B let 
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S,E(X+G)~N’+’ besuchthatyz z (mod a) for every y, z E S, and such 
that 1 S,I > E 1(x + G) n N’+ ’ I. Let S be the union of all sets S,, x + G E B. 
In what follows, c,, c2 ,..., will denote suitably chosen positive constants. 

We claim that ISI > e3c,N ‘+ i. One easily observes that I U BI > s2czN1+‘, 
for by Fact 2.2 it follows that 1(x + G) n N’+’ I = 1 for at most c3NL-’ cosets 
x + GE B, where I < [N/gJ and g is defined as in Fact 2.2. Set 
p = (l/c,N’- ‘) cc4 N’. Since I B 1 > EC, N’ it follows that 

I I u B >c,N’-’ 2 l=e*c,N’+‘. 
I=1 

Hence, 1 SI > EE*C, N’+’ = e3c, Ntt ‘. Now N may be chosen to be 
sufficiently large so that the Fiirstenberg-Katznelson theorem (Theorem D) 
applies. Thus, there exists a homothetic copy #i(M’+ ‘) of M’+ ’ which is 
contained in S. By construction &(M’+ ‘) has the desired properties. 1 

LEMMA 4.3. Let M be a positive integer. Then there exists a positive 
integer N* such that for every positive integer N > N* and every equivalence 
relation n E IZ(N’+ ‘) such that for some G E G(M) it follows that 
xzy(modrr)foraNx,yEN”’ with x + G = y + G, the following is true: 

There exists a homothetic copy &(M’+ ‘) of M’+ ’ in N’+ ’ and there exists 
a subspace U E U(M, t + 1) such that n I #i(M’+ ‘) = n(U). 

Proof Let N be sufficiently large and rr E fl(N’+ ‘) and G E G(M) be as 
above. More precisely, let G = (g), where (g,,,..., g,) E Z’ ’ I and the entries 
go,,.,, g, are relatively prime. Without loss of generality assume that 
g, = max(l gil: i = O,..., t}- a o 11 th er cases can be handled analogously. Put 
M* = g,(3M- 2) + 1. N should be large enough for the inductive 
hypothesis on M* and t to hold. Since G(M) is finite, we easily can find an 
N which is sufficiently large with respect to each G E G(M). 

Now, consider the equivalence relation i2 E ZI(N’) which is given by 
(x * ,..., x,) = (Y, ,*.*, y,) (mod 7i) iff (0, x, ,..., x,) E (0, y, ,,.., y,) (mod rr). 
Using the inductive hypothesis, there exists a subspace U* E U(M*, t) and a 
homothetic copy #$(M*‘) EN’ such that 

xz y(mod$) iff x+U*=y+U*, where x, y E o$(M*‘). 

Write 

a* = (a:,..., a,*) 

and let 

a = (0, a: + MgOd*,..., a: + Mg,d*) and d = g,d*. 
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Finally, let U’ be the subspace of Q” ’ which is generated by 
G u { (0, x1 ,..., xJ: (x1 ,..., x,) E U*}. We claim that 

x =: y (mod rc) iff x + U’ = y + U’, where x, y E #i(M’+‘) c N’+‘. 

The inclusion @i(M’+ ‘) c N’+ ’ is obvious. Let x E #i(M’+ ‘) be arbitrary, 
say x = (A0 g,d, a; + Mg,d + I, god,..., UT + Mg,d + At g,d), for some 

(A 0,“” A,) EM’+‘. Consider 2 = x - L,d( go ,...) g,) = (0, a: + ~(~go + 
1, g, - A0 g,) ,..., a: + d(Mg, + A, g, -A,, g,)). By the choice of x, it follows 
that .? = x(mod n) and since, 

it follows that x + U’ belongs to the block of x containing x, i.e.., 
(x + U') n #;(M’+ ‘) = rc 1 &(M’+ i)(x). Thus, K 1 #;(M’+ ‘) = x(U’). How- 

ever, U' E U(M*, t + 1) and possibly U' & U(M, t + 1). In this case, though, 
it is easy to find a subspace US U' such that U E U(M, t + 1) and 
x /#@4’+‘) = n(v). It only suffices to consider any maximal independent 
subset (v 1 ,..., v,} E U' such that (vi) E G(M), i = l,..., r, and set 
u = (v, )...) v?). This proves the lemma and the proof of the main theorem is 
complete. 1 
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