Article Author: Berlekamp

Article Title: A construction for partitions which avoid long arithmetic progressions
A CONSTRUCTION FOR PARTITIONS WHICH AVOID LONG ARITHMETIC PROGRESSIONS

E. R. Berlekamp

(received January 2, 1968)

For \(k \geq 2, \ t \geq 2 \), let \(W(k, t) \) denote the least integer \(m \) such that in every partition of \(m \) consecutive integers into \(k \) sets, at least one set contains an arithmetic progression of \(t+1 \) terms. This paper presents a construction which improves the best previously known lower bounds on \(W(k, t) \) for small \(k \) and large \(t \).

1. Introduction. For \(k \geq 2, \ t \geq 2 \), let \(W(k, t) \) denote the least integer \(m \) such that in every partition of \(m \) consecutive integers into \(k \) sets, at least one set contains an arithmetic progression of \(t+1 \) terms. According to a well-known theorem of van der Waerden (1925), \(W(k, t) \leq \infty \). It is obvious that

\[
W(k, t) \leq W(k, t+1) \tag{1}
\]

Using random coding arguments, Erdős and Rado (1952) have shown that

\[
W(k, t) \geq [2t \cdot k^t]^{1/2} \tag{2}
\]

By a more refined nonconstructive argument, Schmidt (1962) has shown that

\[
W(k, t) \geq k^{(t+1)} - c[(t+1)\log(t+1)]^{1/2} \tag{3}
\]

where \(c \) is an absolute constant. The major result of this paper is

THEOREM 1. If \(k \) is a prime-power, and if \(\tilde{w} \) is an integer such that

\[
\tilde{w} \leq t(k^t-1)/k^{d-1} \tag{4}
\]

for all \(d \) which are proper divisors of \(t \), and if

\[
\tilde{w} \leq t(k^t-1)/D \tag{5}
\]

for all \(D < t \) which are divisors of \(k-1 \), then

\[
W(k, t) > \tilde{w} \tag{6}
\]

The proof consists of a construction, based on the Galois field
$GF(k^t)$, which partitions W consecutive integers into k sets, none
of which contains any arithmetic progression longer than t. In some
cases this construction can be extended by special arguments, to give

THEOREM 2. If t is prime, $W(2, t) > t 2^t$.

The bound of Theorem 2 is stronger than equation (3). If t is
the square of a prime or the product of two large primes whose
difference is small, then Theorem 1 again represents a slight
improvement over equation (3). However, for most values of t, the
bound of Theorem 1 can be improved by decreasing t to the next
smaller prime and invoking equation (1). Although this technique
gives the best known bound for small k and large t, the construction
of L. Moser (1960) still gives the best known bound for small t and
large k, namely,

$$W(k, t) > t k^c \log k$$ \hspace{1cm} (7)

The bound of Theorem 2 is also disappointing for small values
of t. Theorem 2 shows only that $W(2, 3) > 24$, yet J. Folkman (1967)
has shown that $W(2, 3) > 34$ by the following construction: For
$i = 0, 1, 2, \ldots, 33$, let $i \in S_0$ if $i = 0, 11$, or a quadratic nonresidue
mod 11. It is believed that Folkman's partition is the best possible,
and that $W(2, 3) = 35$. Similar constructions using quadratic
residues modulo certain larger primes may be used to obtain other
lower bounds on $W(2, t)$, but the general form of these bounds is
unknown for large values of t.

2. **Proof of Theorem 1.** Let a be a primitive element in
$GF(k^t)$. Then every nonzero element in $GF(k^t)$ is a power of a, and
$a^i = a^j$ if and only if $i \equiv j \mod k^t - 1$. Let $\beta_1, \beta_2, \ldots, \beta_t$ be a set of
elements in $GF(k^t)$ which are linearly independent over $GF(k)$. Since
these elements form a basis of $GF(k^t)$ over $GF(k)$, there exist
elements $A_{i, j} \in GF(k)$ such that

$$a^j = \sum_{i=1}^{t} A_{i, j} \beta_i$$

The field element a^j is the root of some irreducible monic
polynomial, $f(j)(x) = \sum_{n=0}^{t} f_n x^n$, where $f_n \in GF(k)$. The degree of
$f(j)(x)$ is a divisor of t.

410
For each $\xi \in GF(k)$, we define the set of integers S_{ξ} by the rule
\[i \in S_{\xi} \text{ if and only if } 0 \leq i < \tilde{W} \text{ and } A_{1,i} = \xi. \]
Similarly, for each $\xi \in GF(k)$, we define the set of nonzero field elements, T_{ξ}, by the rule $\alpha^i \in T_{\xi}$ for each $i \in S_{\xi}$.

We now claim that no S_{ξ} contains any arithmetic progression of length $> t$. Let us suppose that for some $b \neq 0$,
\[(8) \quad \{a, a+b, a+2b, \ldots, a+tb\} \subset S_{\xi}.\]

Since $0 \leq a < a+tb < \tilde{W}$, we have
\[(9) \quad b < (k^t-1)/(k^d-1)\]
and
\[(10) \quad b < (k^t-1)/D\]
from equations (4) and (5). We now consider separately the cases $\xi \neq 0$ and $\xi = 0$.

Case 1: $\xi \neq 0$. Since $x_1(b) (\alpha^b) = 0$, we have $0 = \sum_{n=0}^{t} f_n(b) a+bn = \sum_{n=0}^{t} f_n(b) \sum_{j=1}^{t} A_j, a+bn \beta_j$. Since $\beta_1, \beta_2, \ldots, \beta_t$ are linearly independent, this implies that for every j,
\[(11) \quad \sum_{n=0}^{t} f_n(b) A_j, a+bn = 0.\]

In particular, since $A_1, a+bn = \xi$ for $n = 0, 1, \ldots, t$, we may set $j = 1$ in equation (11) and obtain $\xi \sum_{n=0}^{t} f_n(b) = 0$. If $\xi \neq 0$, this implies that $0 = \sum_{n=0}^{t} f_n(b) = f_n(b)(1)$. Therefore, $f_n(b)(x)$ is divisible by $x-1$.

Since $f_n(b)(x)$ is irreducible, $f_n(b)(x) = x-1$, $a = 1$, and $b \equiv 0 \mod k^t-1$, contradicting both equations (9) and (10).
Case 2: $\xi = 0$. A weakened form of equation (8) is

\[(a+b, a+2b, \ldots, a+tb) \subset S_0.\]

By definition of T_0, equation (12) implies that T_0 contains the elements $a+b, a+2b, \ldots, a+tb$. We claim that these elements are distinct, for if $a+nb = a+mb$, then $(n-m)b \equiv 0 \mod k-1$, contradicting equation (10). Since T_0 is a subspace of dimension $t-1$ over $GF(k)$, any t distinct elements in T_0 must be linearly dependent. Therefore, there exist $B_1, B_2, \ldots, B_t \in GF(k)$ such that

\[\sum B_a a^n = 0.\]

This implies that α^b is a root of the polynomial

\[\sum_{n=1}^{t} B_a x^{n-1}.\]

Since the degree of this polynomial is less than t, $\alpha^b \in GF(k^d)$, where d is a proper divisor of t. Thus, $(\alpha^b)^{(k^d-1)} = 1$, so $b(k^d-1) \equiv 0 \mod k-1$, contradicting equation (9). We conclude that equation (12) is possible only if b is larger than the bounds of equation (9) or equation (10).

Proof of Theorem 2. If p and t are odd primes, then Fermat's theorem shows that $2^{(p-1)} \equiv 1 \mod p$ so $2^t \not\equiv 1 \mod p$ unless $p \equiv 1 \mod t$. In other words, if D is any divisor of 2^t-1, then $D \geq t+1$, so Theorem 1 asserts that $W(2,t) > \tilde{W}$, where $\tilde{W} = t(2^t-1)$. We shall now show that the construction of Theorem 1 can be extended to include additional consecutive integers.

The construction of Theorem 1 is valid for any choice of β's, so we may now choose these basis elements as follows:

\[(13) \quad \beta_1 = 1, \quad \beta_2 = 1+\alpha, \ldots, \beta_{(t+1)/2} = 1+\alpha^{(t-1)/2};\]

\[\beta_{(t+3)/2} = 1+\alpha^{-1}, \beta_{(t+5)/2} = 1+\alpha^{-2}, \ldots, \beta_t = 1+\alpha^{-(t-1)/2}.\]

If these β's were linearly dependent, then α would be a root of a polynomial of degree $\leq t-1$, contradicting the assumption that α is a primitive element in $GF(2^t)$.

With the basis chosen by equation (13), the proof of Theorem 1 partitions \{0, 1, 2, \ldots, \tilde{W}-1\} into disjoint sets S_0 and S_1, with the property that
(14) \(\{0, 1, 2, \ldots, (t-1)/2\} \subseteq S_t \)

and

(15) \(\{\bar{W}-1, \bar{W}-2, \ldots, \bar{W}-(t-1)/2\} \subseteq S_1 \).

We set \(S_0^+ = S_0 \cup S_0^- \cup S_0^u \) where

\[S_0^+ = \{-1, -2, \ldots, -(t-1)/2\} \]

\[S_0^- = \{\bar{W}, \bar{W}+1, \ldots, \bar{W}+(t-1)/2\} \).

Any arithmetic progression of length \(t+1 \) in \(S_0^+ \) would have to be of one of the following types:

1) Including an element in \(S_0^+ \) and another element in \(S_0^- \). This is impossible because the difference between any two such numbers is not divisible by \(t \).

2) Including two or more elements in \(S_0^+ \) (or \(S_0^- \)). This is blocked by equation (14) (or equation (15)).

3) Including one element in \(S_0^+ \) (or \(S_0^- \)) and an arithmetic progression of length \(t \) is \(S_0^- \). According to the proof of Theorem 1, the only arithmetic progressions of length \(t \) in \(S_0^- \) are those in which \(b \geq 2^t - 1 \). The total span of the extension of such a progression would be \(\geq t(2^t - 1) \), contradicting equation (15) (or equation (14)).

Therefore, \(S_0^+ \) and \(S_1^- \) partition the integers from \(-(t-1)/2\) to \(W+(t-1)/2 \) into two sets, neither of which contains any arithmetic progression longer than \(t \). This partition can be translated to a partition of the integers from 0 to \(t2^t - 1 \) (or from 1 to \(t2^t \)) by adding \((t-1)/2\) (or \((t+1)/2\)) to each element in \(S_0^+ \) and \(S_1^- \).

The construction of Theorem 1 may also be extended slightly for other values of \(t \) and \(k \), but the improvement is always relatively small.

3. **Example.** Let \(k = 2, t = 3, \bar{W} = 24 \). Take \(\omega \) as a root of \(x^3 + x + 1; \beta_1 = 1, \beta_2 = 1 + \omega + \omega^3; \beta_3 = 1 + \omega^2 = \omega \). For \(i = 1, 2, 3 \):

\[j = 0, 1, 2, \ldots, 24 \text{. \(A_{i,j} \) is given by} \]
\[S_1 = \{ 0, 1, 1, 6, 7, 8, 11, 13, 14, 15, 18, 20 \}; \quad S_2 = \{ 2, 3, 3, 9, 10, 12, 16, 17, 19 \}; \quad S_0 = S_1 \cup \{-1, 21, 22\} . \]

REFERENCES

J. Folkman, private communication (1967).

Bell Telephone Laboratories Incorporated
Murray Hill, New Jersey