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A canonical (i.e., unrestricted) version of the partition theorem for k-parameter
sets of Graham and Rothschild (Trans. Amer. Math. Soc. 159 (1971), 257-291) is
proven. Some applications, e.g., canonical versions, of the Rado-Folkman-Sanders
theorem and of the partition theorem for finite Boolean algebras are given. Also the
Erdos-Rado canonization theorem (J. London Math. Soc. 25 (1950), 249-255)
turns out to be an immediate corollary.

A. INTRODUCTION

“Classical” partition {Ramsey) theory investigates the behavior of
structures with respect to colorings of substructures with only a small
number of colors. The main question is whether it is possible to obtain
monochromatic (i.e., constantly colored) substructures. For a survey on
Ramsey theory see, e.g., [5]. Recent research considers more general
colorings, viz., colorings with an arbitrary number of colors. Of course,
generally one cannot expect to find monochromatic substructures. But
possibly one always can be restricted to certain types of colorings, for
example, structures on which the coloring is either constant or one-to-one.
An example of such a theorem is the so-called “canonical version” of
van der Waerden’s theorem on arithmetic progressions, which is due to Erdds
and Graham.

THEOREM. For-every positive integer k there exists a positive integer n
such that for every coloring 4:{0,...,n— 1} > w of the first n nonnegative
integers with arbitrary many colors (i.e., with an infinite number of colors)
there exists an arithmetic progression a, a + d,..,a+ (k— 1) - d of k terms
such that A| la,..,a+ (k—1)-d} is either a constant coloring or a one-to-
one coloring.

However, things do not always behave so nicely; sometimes it is certainly
not true that one can always be restricted to a constant or a one-to-one
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coloring. A prototypical result in this direction is the so-called “Erdés—-Rado
canonization theorem.” This may be viewed as the generalization of
Ramsey’s theorem to arbitrary colorings.

THEOREM [3]|. Let k, m be positive integers. Then there exists a positive
integer n such that for every coloring A: [n]* — w of the k-element subsets of
n={0,...,n— 1} with infinitely many colors there exists an m-element subset
X of n and a—possibly empty—subset %" < {0,...,k — 1} of k such that for
any two k-element subsets {ay,...a,_;} and {B,,...B_,} of X, where
g <+ < Qp_y and By < -+ <Py, it follows that A({og,e, ap_1})=
A{Boss Bie_1}) U @;=F; for all i € X",

In other words, with respect to colorings of k-element subsets there exist
2% different types of canonical colorings, viz., each .# C {0,..., k — 1} gives
rise to such a type and obviously none of these types may be omitted without
violating the assertion of the theorem.

In this paper we propose a definition of canonical colorings in arbitrary
structures. Then we state and prove a canonical version of the partition
theorem for k-parameter sets of Graham and Rothschild [4]. Since the
partition theorem for k-parameter sets admits as immediate corollaries
Ramsey’s theorem as well as the Rado—Folkman—Sanders theorem on finite
sums {or unions), the canonical partition theorem for k-parameter sets yields
as corollaries the Erdés—Rado canonization theorem and a canonical
Rado-Folkman—Sanders theorem. This also improves a resuit of Taylor
[10].

One remark concerning our notation: Because the “type of a coloring”
does not depend on the colors that were actually used but rather on the
equivalence relation given by the fibres of the coloring we prefer to use the
notion of “canonical sets of equivalence relations.” Consequently we shall
talk about “equivalence relations” instead of “colorings with an arbitrary
large number of colors.” However, the notion of colorings will be reserved
for situations where partition results are applied.

B. CaNoNicAL SETS OF EQUIVALENCE RELATIONS

In this section we use the language of categories in order to define the
notion of canonical sets of equivalence relations. Recall that a category C is
given by a set of objects 4, B, C,..., and for each two objects 4, B of C a set
C(4) of morphisms f: B A4 is defined. Finally morphisms f€ C(3) and
g€ C(%) may be composed yielding /- g € C(¢) and this composition is
associative. Since this is nearly all we need from category theory in
connection with partition (Ramsey) theory sometimes such categories C are
called “classes with binomial coefficients C( . ).”
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In all applications C(4) will be a set of rigidified monomorphisms, thus
C(4) represents the set of B-subobjects of 4.

Notation. For a set X we denote by II(X) the set of equivalence relations
on X. In particular, I7(C(£)) denotes the set of equivalence relations on the
set of C-subobjects of 4. If 7€ II(X) and y, z€ X, then yxz (mod 7)
indicates that y and z are equivalent modulo 7.

Notation. Let n€ II(C(¢)) and f€ C(3). Then 7,€ II(C(Z)) denotes
the equivalence relation which is induced from f, viz.,

g~ h(mod 7)) iff  f-gxf-h(modn).

DEFINITION. A set & SII(C(%)) is a canonical set of equivalence
relations (or shorthand: . is canonical) iff & is a set of minimal
cardinality such that there exists an object A in C satisfying:

for every equivalence relation 7€ II(C({)) there exists an
embedding /€ C(}) such that 7, € & (can)

Remark. A priori it is not clear whether all minimal sets =7 < II{(C(2))
which satisfy (can) have the same cardinality or not. We do not know an
example of a category C with minimal sets of different cardinalities. Possibly
there exists some (weak) conditions satisfied in all relevant categories which
imply that all minimal sets .« < II(C({)) have the same cardinality.

It turns out that in general canonical sets of equivalence relations are not
uniquely determined. In particular, the canonical version of Schur’s theorem
(i.e., Theorem D.4) yields an example for this. More examples may be found,
e.g., in the category Fin Tree(m) of finite trees in which each element has at
most m immediate successors (see [1]). Thus in general it does not make
sense to say that a specific equivalence relation 7 € II(C(2)) is a canonical
equivalence relation. However, there always exist certain equivalence
relations 7 € II(C(Z)) which necessarily belong to each canonical set 7.
For example, the constant equivalence relation (where any two C-subobjects
are equivalent) is of that type and if |C(Z)> 1, also the one-to-one
equivalence relation (where each C-subobject is only equivalent to itself)
belongs to every canonical set .+«

DEFINITION. An equivalence relation n & II(C(2)) is a necessary
equivalence relation iff for every object 4 there exists an equivalence relation
n* € II(C(¢)) such that 7} = 7 for every f€ C(3).

Remark. Each canonical set of equivalence relations 7 € II(C(2))
contains every necessary equivalence relation # € II(C(2)). But in general a
canonical set may also contain equivalence relations which are not
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necessary. However, for certain categories it is true that the set of all
necessary equivalence relations is canonical, e.g., the FErdds-Rado
canonization theorem provides an example for this.

Notation. Let o/ < II(C(E)) be a canonical set of equivalence relations.
Adapting the well-known Ramsey-arrow we shall write 4 -5 (B) in order
to indicate that for every equivalence relation n € II(C({)) there exists an
f€ C(3) such that 7, € /. We shall suppress = and C if no confusion can
arise.

C. CANONICAL SETS FOR THE HALES-JEWETT CLASS [A]

The partition theorem of Hales and Jewett [6] as well as its generalization,
the partition theorem for k-parameter sets of Graham and Rothschild {4],
plays a central role in partition theory for finite structures. In this section we
study canonical versions of these theorems.

Basically the Hales—Jewett theorem considers partitions of vertices of the
n-dimensional cube A", where 4 is a finite set. The result is that for
sufficiently large n there always exists some monochromatic k-dimensional
subcube. The notion of a k-dimensional subcube is defined purely
combinatorically, that is, without any algebraic means.

DerINiTION C.1. Let 4 be a finite set and let k< n be nonnegative
integers. Then [A4](}) is the set of mappings /1 n— 4 U {4y,..., 4,_, }—where
without restriction 4 M {4, 4;,...,} = @—which satisfy

(1) for every j < k there exists some i < n with f(i) =4,,
(2) minfS~'(A;) <minf ~'(1)) for all i <j < k.

Usually the elements f€ [4](}) are called “k-parameter words of length
n.” Each f€ [4](}) represents a unique k-dimensional subcube in A", viz.,
the set {f+ (Agsees Ax_ 1) | Agses Ay € A}, where the parameters Aq,..., A,
which occur in f are replaced by elements of 4.

Originally these kinds of embeddings have been considered in the Hales—
Jewett theorem. Later on Graham and Rothschild [4] proved a more general
partition theorem for partitions of k-dimensional subcubes (i.e., k-parameter
words of length n).

In order to state this theorem explicitly we have to define the notion of a
k-dimensional subcube of an m-dimensional subcube in an n-dimensional
cube. Recall that for linear spaces these notions may be defined by
multiplying the corresponding matrices. For parameter words the following
composition is introduced:
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DerNITION C.2. Let f€ [4]() and g€ [4](%). Then f- g€ [A|(}) is
defined by

f-8@)=r() if fOEA,
=g() if fO)=4;

Motivation. The product f- g defines the notion of “a k-dimensional
subcube of an m-dimensional subcube of an n-dimensional cube.”
The partition theorem for Hales—Jewett cubes says:

THEOREM C.3 [6,4]. Let A be a finite set and let 3, k, m be nonnegative
integers. Then there exists a positive integer n satisfying:

for every coloring 4: [4](})— 6 of the k-dimensional subcubes
in A" with & colors there exists an m-dimensional subcube
fE€ [A](L) with all its k-dimensional subcubes in one color, i..,
the coloring 4,: [4](})— 6 with 4{g)=A4(f-g) is a constant
coloring. (HI)

Notation. For convenience we shall abbreviate (HJ) by n -4 (m)k.

For a short proof of this result see, e.g., [2]. Next a canonical version of
this theorem will be presented. We need a bit more preparation.

Notation. Let ¢ € II(X) and t € II(Y) be equivalence relations. We shall
write o<1 iff axb (modo) for a, bEXNY implies ax b (mod 7).
Observe that < is a quasiordering. However, 6 <1 and 7< ¢ imply that
o1 XNY=11XNY. We shall use this quasiordering only when X< ¥ or
YcX

DerFmniTION C.4. A sequence 7 = (7,,..., m,) of equivalence relations
mEIAU {Agys A;}), =0, k—1, and 7, € (AU {Agsry Ap_y}) Is k-
canonical iff

(D << <7y
(2) if A;x=c (modz;) for some cEAU {44, d; 1}, i<k, then
Tip1 S e

Remark. It turns out that k-canonical sequences determine certain
necessary equivalence relations in I7([4](})), comparable to the fact that in
the Erdés—Rado canonization theorem subsets .#” C {0,..., k — 1} determine
necessary equivalence relations in II([m]*). It remains to explain how k-
canonical sequences determine equivalence relations in II{({4 }(7)).

DerFmniTioN C.5. Let n= (ng,..., m,) be k-canonical and let f€ [4](}).
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The numbers w,(f;i), i=0,.,k—1, are defined by w,/fi)=
min{l > w(f,i— 1) f()) = 4; (mod x;)}, where for technical convenience
w,(f, =1)=—1 and w,(f, k) =m.

Le., w,(f, 0) denotes the first occurrence of an element which is equivalent
to A4, modulo 7,. Then w,(f; 1) denotes the first occurrence after w (f, 0) of
an element which is equivalent to 4, modulo 7,, etc. Suppose that in f entries
which are equivalent to A, modulo 7; shall be replaced by A;. Then the
numbers w,(f, 0), w,(f, 1),..., give earliest possible entries for doing this.

ExampLE. Let 4 = {0, 1,2}, k=3, and let the 3-canonical sequence (7,
Ty, Ty, ;) be given by

o= {{0} {1}, {2}, {Ao}}, 7= {0 Aohs {1, A1 {21},
1= {0 Aoh {L A1 {2,401 = {0, Ao}y {1, A1} {242}

Finally, let

1
f: (Oa 15 2,/10909 1s27/{1505 152,10a12509 1)6 [A]< 35 ) .
1

Then w,(f,0) =3, w,(f, 1)=35, w,(f, 2)=6.

DerINITION C.6. Let n=(n,,.,n,) be k-canonical. The partition
n" € II([A](%)) is defined as follows: f~ g (mod n™) iff

fh=gd)  (modz.,)

for all I < m with w (f; i) <I< w(fii+1)and i=~1,0,...k— L.
Examples

(1) Let k=0. Each n € II(4) is O-canonical. Then n" € [I([4](7)) is
defined by applying 7 componentwise, i.€., (dgsw A1) = Boseers D)
(mod 7™) iff a;~ b, (mod x) for i < m.

(2) Let k=1. A pair n=(n,7,), where m,€II(4U {4}) and
m, € II(A\U {4,}), is 1-canonical iff 7, < 7, and if a = 4, (mod 7, for some
a€A, then n,=n,. Again =" is defined by applying (7,,7;)
componentwise, i.e., if 7, =7, then f=~ g (mod =) iff £ (/) = g(/) (mod 7,)
for every [<m and if 7y#7,, then f~g (mod=n™) iff min f~'(A,)=
min g~*(4,) and £ (!) =~ g(I) (mod r,) for every j < m and f (/) = g(/) (mod 7,)
for every min £ (A,) << m.
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(3) Again let k=1, but now 4 ={0}. There exist threc necessary
equivalence relations: Let f, g € [4](T),
frg it f=g,
iff minf~'(,)=ming ™ '(4,),
without any restriction.

The canonical version of the partition theorem for k-parameter words
(viz., Theorem C.3) may be stated as follows:

THEOREM C.7. Let A be a finite alphabet. Then {n"™|n k-canonical} is
the set of necessary equivalence relations. Moreover, {n™|n k-canonical} is a
canonical set of equivalence relations.

Proof of Theorem C.7. Fix the finite set A. We first show that {n"|m k-
canonical} satisfies (can), viz.,

LEMMA. Let k < m be nonnegative integers. Then there exists n such that
for every equivalence relation n € II([A](})) there exists an f€ [A](,,) such
that

7€ {n"|x k-canonical}.

Proof of Lemma. Let n’ be such that
7 A m
n' — (m+ Dihqam-

Such a number n’ exists according to the partition theorem for Hales-Jewett
cubes. Then let n be such that

A
yk+1
n— (" )inpareyhi-

It remains to show that n has the desired properties. Let 7 € JI([4](})) be
any equivalence relation. Consider first the coloring

A7 [A](kj_1>—>11 ([A](k: ! )) with 4'(g) =r1,.

Then there exists an £’ € [4]( %) such that 4’(f' - g)=4'(f’ - h) for all g,
hE [A](,%), in other words, 7., =7, for all g, L€ [A](,%)).
Next consider the coloring '

A[A](Z;)—»H([A](Z:)) with A(g)=n, .
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Then there exists an f” € [4](,", ) such that A(f" - g)=A(f" - h) for all g,
RE[A)("3 "), L&y Mooy =g, pu.y for all g, K€ [A]("57).

For convenience let us forget about f’ and f” and assume that
€ H([A](™F)) satisfies

t,=c  forall ge[A]<rZill>, (1)
and
1
n,=t for all gE[A](m;; ), 2)

where o € II([A](*}')) and © € TT({A (7).
Define the sequence = = (7y,..., 7;) as follows:

axb (modn;) iff
(Agrres Ai— 15 Oy Ajyrns A1)
R(Agys Ai_ 15Dy Ajyes Ay_y) (mod o).

Recall that actually 7, € II(4 U {A,..., 4;}) as no i, can occur at the ith
position of any parameter word for j > i.

The lemma is proved by a series of propositions showing that = is k-
canonical and that n™ =1t. For convenience let f€ [4](F};) be a fixed
parameter word and 7, € II([A](*}?)) the induced equivalence relation.

PROPOSITION 1. 7,7, for every i < k.

Proof. Let ax b (modm), ie.,
(Agsees Aim1s Qs Ajpens Ag_y)
X (Ageees Ai g9 Py Ajsees A1) (mod o).

First consider (Ao, A;_ 1> Ais Ajs1s Ais dipare ) € [A](E17). By (1) it
follows in particular that

Agsms Ai 19 @Ay Oy Apy1oes A1)
XAy A 1D A by Ay e Ag_y) (mod 7). 3)

Next consider (Agys iy 1> @ Az a0 A) € [A1(511), again by (1) it follows:

Rgseons Ap 15 @ Aps B Apy g ys Ag 1)
2 (Agres Aj 1o Dy A @y Ay e A_y)  (mod 7)), ()
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and thus by transitivity it follows from (3) and (4) that
Agsees Ai_1s Dy Aiy By Ay yseees Ap 1)
X (Ag s A1 15 s /1‘,-,a,l,.+1,..., A1) (mod 7). (5)
This shows that for g= (Agss Aj_15 by A Ay yseen Ay) € [A](51F
Agsers A 15 din By Ayyysms Ap_y)
R (Agaes Aim1s Ass By A 1o Ag_y) (mod 7;.,)
holds and again by (1) .., = ¢ which implies that a =~ b (mod 7, ,).
PROPOSITION 2. Assume that c=x~A,(mod=n;) for some cE€EAU
{Aosees Aj_y}. Then m; < 7;.
Proof. From the assumption it follows that
(Agseres At 15 €y Apseees Ay 1)
R (Agsoes A 15 Ass Apgrens Ap 1) (mod o). (6)
Let a, b€ AU {4¢,..., A;} with a = b (mod 7, ), i.e.,
(Agsrees Aps @y Ay 1sves Ag_y)
R (Agses Ais By Ay 1 geees A1) (mod ). @)

Consider first (Ag,os ;1541 @ A 150 A) € [4]1(K12). By (6) and (1) it
follows that

Agros Ap 1 €5 @y Ao Ay
R (Rgpes A 1o iy @ Ay ;) (mod 1), (8)

where as before € [4](%};) is some fixed parameter word.
Next consider (A9, A;_1, A1 414 15 Ajses 4) € [A](517), by (7) and (1) it
follows that
Agss A5 Ay @ Ay Ay s A )
R (Agrees di 15 A By Ay Ay ey Ay 1) (mod 7). ©)]

Finally consider (Ao, ;15445 D, Ajy1sees A) € [A](X12), again by (6)
and (1) it follows that

Aors Ai_ 1> Ags By Aoy A1)
X (Rores Ap15 € by Ay by 1) (mod 7)), (10)
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Thus by transitivity it follows from (8-10) that

(Agoes A 15 € 8y Appes A1)
R (Agseers Ai— 15 C Dy Ajores Ag_1) (mod 7). (11)

This shows that for g = (Agys A;_ 1, € Apsees Ag) € [A](412) holds

(AO""’ /1,-_ 1° a, lis"'a /‘{k~l)
~ (/10,..., Ai_]sbalis"" j'k—l) (mOd nf-g)’

and since by (1} z, = o it follows that ax b (mod n,) as desired. 1

CoroLLARY. The sequence n= (m,,..., ;) is k-canonical.

Next consider for i < k the operators T; which act on parameter words
RE[A]("}") in such a way that T;h(l) =4, if I=w(h, i) and T;h(l) = h(])
in all other cases. In general 7,4 need not be an element of [A]("}"),
because possibly the parameters of T4 are improperly ordered. However, in
certain cases T,k € [4](™;") and, moreover, then also its equivalence class

modulo 7 does not change.

PropOSITION 3. Let h€ [A|(™;"') and let i < k. Then T;T,_,--- Tyh €
A" and  additionally TT,_, - Tohx T, , - Toh{modn). In

particular, for { = 0 this means T h = # (mod 7).

Proof. Proceed by induction on i  First observe that
Ti_y - Toh(wy(h,j))=4; for all j<i, so that in fact T;T, ,---T,h€
[4]1(™}"). We may assume that T,_, -+ Toh(w,(h, i)) # 4;, otherwise there is
nothing to show. By definition T;_, -+« ToA(w (k. 1)) = 4; (mod 7;).

Consider g € [4](%]) which is defined by

g(h=4,; if 1=wq(h i),
=T, - Toh() if T, Toh()EAU g, A}y T# @ (1),
=2, if T,_, - Toh()=4; forsome j>1i,

in other words, a new parameter A, is introduced at the w,(k, {)th position of
T;_, +-- Tyh and the remaining parameters are appropriately renumbered.
Obviously

=T, |« T,h,

& Rgser Ay Ty oo Toh (B 1)) Aoy A1)

and
g Ross hi_ s Ais Apyes A ) =TT oo T b
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But since

(’10 seees j'i—l’ Ti 1t Toh(wn(h’ l))? j'is"'s ik~ 1)

X (Agses A ps Ass Apseens Ap_ 1) (mod ¢)
and 7, =g it follows that
T,T; sy Toh=T,_ ;- Tyh (mod 7). §

PropoSITION 4. zn™"t! 7
Proof. Let g, h€E€[A])(™{') with g~ h(modn™*'). By definition
w, (g, {) = w,(h, i) for every i < k. By Proposition 3 we may also assume that

g(w,(g, 1)) = h(w,(h, ) = 4,

for every i < k.

Then proceed by induction on [{{ < m + 1| g({)# A(])}| in order to show
that gr~ h(modn). Pick [<m+1 with g(l)# (), say w, (g, )<<
w,(g, i+ 1), where for convenience w, (g, k) =m + 1.

Consider the parameter word f€ [4](7}]) which is defined by

fO=2y, 0 I=1,
=gl if gNEAU iy},  [#1,
=4 if g(l)=4; forsome j>i,

i.e., the /th position of g is replaced by a new parameter and the remaining
parameters are appropriately renumbered. Because g(/) = A({) (mod ;) it
follows by (1) that

g=S" Roros Ai 15 8(Ds Aisenrs Ay 1)
RS Cgres diis By Ay Ay i) = 8 (mod 7).

By induction it follows that g’ =~ & (mod #) and thus by transitivity also
gxh(modn). 1

PROPOSITION 5. Let == (n,,...,7,) be a k-canonical sequence and let
SE€ [4](,) be an arbitrary parameter word. Then it follows that =™ = (n"),.

Progf. Let us first show that n” < (n"). Let g, A€ [4](}) be with
g=x h (mod=n™). Let [ < n, say

0 (/&1 <I<w,(f gi+1), (12)
We claim that /- g() = f- h(]) (mod =, ).

582a/35/3-6
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Case 1. Suppose f(l‘)AE A. Then f-g()=f(DN=f- k() and thus, in
particular, /- g(l) = f- A([) (mod 7; ).

Case 2. Suppose f(I) =4,, say

0o(&J) <ISw,{g]+ 1)
Then min f~'(4,, (,.;) < minf~'(4,) by condition (1) of Definition C.1. By
(12) it follows that
minf ' (A) < T w, (f- g i+ D <minf (A i)

Hence j<i and, in particular, 7,,,<7,,. Thus the equivalence
g(l) = k() (mod =;, ,) implies

f-e=gD=rO)=f k)  (modm,,).
This shows n” < (n");.
Next we show that (m"),<n". Let g h€[A](}) be with gxh
(mod(n");), ie., /- g=f- h(mod n"). Let I < m, say
w,(g i) <I<w,(gi+1) (13)
We claim that g(/) = A{{) (mod =, ).
Case 1. Suppose w, (f- g, i+ 1) >minsf~'(4,). In particular then
g)=/-gminf~'(A)) =/ h(mins (1))
= h(l) (mod 7, ;).
Case 2. Suppose w,(f- g, i+ 1) <minf~'(4,), say
W (f+ g i+j) <minf ') <w (S gi+j+ 1)

where j>1. By DefinitionC.1 and (13) it follows that
f-eye AU {A,..., A;} for each [ < min f~'(4,). Thus there exist elements
Aypes G €EAU {Agpy A} such  that 4, = a, (mod 7y )y Ay ;= @)
(mod7; ;) and by condition (2) of Definition C.4 this implies that
Migjo1 STy <o Ky y. Since g(1), A(D) € AU Ao 4541} by (13), the
equivalence
g() =/ gminf~'(A)) = h(minf~"(4)
=h()  (mod;,.)

implies that

g() = h(l)(mod ;.. ,). i
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COROLLARY. n" 1.
Proof. Proposition 4 and Proposition 3.

Recall that we did not really use (2), ie., the fact that for each
g€ [A)(™}") it follows that m,=7. However, (2) is needed in order to
establish the reverse of the above corollary:

PROPOSITION 6. T 0™

Proof. Assume that there exist g, n € [A](%) with g~ A (mod <) but
g # h (mod »™). By Proposition 3 we may assume that g(w (g, 7)) =4, and
hw (g, i))=4; for 0<Lig<k In particular then there exist
i€ {—1,0,.,k—1)} and / < m such that

wa(hy 1) <IS w(h i+ 1),  g)Zh(I) (modm,), (14)
and say
R EAU {dgsns A}

Then consider the parameter words

m+1
fl=(/10,...,A,_l,/l,,l,,...,lm_l)E[A]( " ),
and

+1 .
fy= Gty 80 s )€ ) (" TT) i g4,

resp.

. m+1 ,
Jo=CGore A1y Amin g1 Apseees Am—1) € [4] ( m ) if g(l)=4;

Since by (2) 7, = 7 = n;, and by the assumption g ~ A (mod 7) it follows that
(1(0),..., Al = 1), h(1), B(1};..., h(m — 1))

~ (£(0),..., gl — 1), g(}), gD g(m — 1)) (mod 1),
and

(g(O),..., g(l - 1)9 g(l)’ g(l)a"-’ g(m - 1))
= (h(0),..., k(I — 1), g(D), h(D)s..., A(mM — 1)) (mod 7).
By transitivity follows
(A(0)serry AU — 1), B(D), B(D),y (= 1))
= (R(0),..., B({ — 1), g(]), h(]),.... A(m — 1)) (mod ).  (15)
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Recall that by (14) the parameters A,,...,4; occur under A(0),..., h{{— 1),

where possibly 7 = —1. Thus consider the parameter word f€ [4](%41]) with

fh=rnb it KOHEAU Agsnd)y [#1,
=4, if I=1
= if 7#! and A()=4; forsome j>i.

Then by (15)

S Qs Ay B, Ay (s Ay
S Agoes Aiy 8(D)s A seens A ) (mod 7).

Since by (1) n,= o it follows that

(Agsees Aps D)y Ay {yoes A1) _
& (Agses A1 8Dy Ajy 15vs A y) (mod o),

showing that g(/) ~ A(l) (mod 7;, ,), which contradicts (14).

COROLLARY. We have n™ =71, which completes the proof of the
lemma. |

It remains to be shown that {n"™|m k-canonmical} is a set of minimal
cardinality satisfying (can). By Proposition 5 each =™ is necessary, thus the
minimality condition is trivially satisfied. Thus Theorem C.7 is proved. |

D. REMARKS AND COROLLARIES

Let us first show how the canonical version of the partition theorem for k-
parameter sets implies the Erdés—Rado canonization theorem, viz.,

Proof of Erdés—Rado Canonization Theorem
Consider the alphabet A = {0}. For positive integers k and m let n be such
that n -1 (m)X. Such an n exists according to Theorem C.7. We claim that

can
n has the desired properties. Let 7 € II([n]*) be any equivalence relation.

Consider the equivalence relation o € II([A](%)) which is defined by
f= g (mod o) iff

{minf = (Ao, minf T (A )}
~ {min g~ '(Ay),..., min g '(A,_,)} (mod m).

Then let f€ [4](}) be such that o, is necessary, say 0,= (7;,..., )",
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where  (7y,...,7,) is a  k-canonical sequence. Define X=
{minf~'(A)|i=0,..,m—1} and & = {i<k|0% 4, (mod 7))}, We claim
that any two k-element subsets {a,,..., a,_,} and {bg,..., b,_;} of X, where the
a;/s and b/s are arranged in increasing order, are equivalent modulo 7 iff
a;=b; for all i€ 7"

Let {ag,...a,_;} and {bg,..,b,_,} be two k-clement subsets of X—both
arranged in increasing order. Consider g € [4](}), which is defined as

gi)=0 if i<l where f(a,)=4,,
=4 if I<i<!* where f(a)=4;, fla;.,)=4p,

and for technical convenience f(a,) shall be m.

Let A € [4](%%) be defined analogously for the set {bg,..., b,_,}. Then by
construction it follows that min(f- g)~! (1,)=a; and min(f- £)~' (1) = b,
for i<k. Hence {agy.,q;_1}=x{bysnbi_ ) (modm) iff g=h
(mod(7y,..., m,)™).

Observe that the definition of ¢ implies that 0~ 4; (mod 7;) for every
I <j < k. Hence the only information that one may get out of (7,,..., 7,) is
the set %" In particular then g= % (mod(ny,.., ,)") iff min g~ '(A,)=
min A~ '(4,) for all ie 7. |

The next corollary is a canonical version of the finite union theorem
(resp., the finite sum theorem). Sometimes this theorem is known as the
“Rado-Folkman—Sanders theorem.” The finite sum theorem is a special case
of Rado’s |8} much more general theorem on partition regular systems of
equations.

THeOREM D.l1. Finite sum theorem. Let d, m be positive integers. Then
there exists a positive integer n such that for every coloring A: {1,..,n} -9
there exist m positive integers Xy,..,X,_; € {1,...,n} with all finite sums
S x;|i €1}, where I = {0,...,m — 1} is nonempty, in the same color.

Finite union theorem. Ler J, m be positive integers. Then there exists a
positive integer n such that for every coloring 4: 7(n\{Q}— 0 of the
nonempty subsets of {0,..,n—1} there exist m mutually disjoint and
nonempty sets X,,..,X,,_, € Z(n)\|@} with all finite unions ) {X,|i € I},
where 1< {0,..., m — 1} is nonempty, in the same color.

The finite union theorem is an immediate corollary from the finite sum
theorem and Ramsey’s theorem. On the other hand the finite sum theorem
may be immediately deduced from the finite union theorem using binary
expansion, ie., by associating to each positive integer k < 2" a nonempty
subset of {0,..., n— 1}.

Moreover, the finite union theorem turned out to be a special case of the
partition theorem for k-parameter sets (4], viz. observe that for 4 = {0} the
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nonempty subsets of {0,..,n— 1} are in a one-to-one correspondence with
[A](}) by X < f as follows: f(i) =4, iff i€ X and f(})=0 iff i€ X. Then
any positive integer n with n-! (m)} satisfies the requirements of the
theorem.

Applying the canonical version of the partition theorem for k-parameter
sets yields a canonical version of the finite union theorem, viz.

THEOREM D.2. Let m be a positive integer. Then there exists a positive
integer n with the following property. for every equivalence relation
n € (7 (n\{D}) on the set of nonempty subsets of {0,..,n — 1} there exist
m mutually disjoint and nonempty sets Xy, X,,_1 € Z(n\{@} such that
exactly one of the following three cases is valid for each two nonempty sets
LJ&E Zm\{@}:

(i) U{Xlien=U{X;|i€J} (mod n) without any restriction on I
or J.
(i) UXxiliel=U{X,;/i€J} (mod 7} iff min I = min J.
(i) UiXjjiell=U{X,|ieJ} (modx) iff I=J.

One immediately observes that the equivalence relations given by (i), (ii),
and (iii) are necessary equivalence relations. Thus the equivalence relations
given by (i), (ii), and (iii) form a canonical set of equivalence relations.

This improves a result of Taylor [10] who showed that one can always
restrict to five different kinds of equivalence relations. However, in the
infinite case (i.e., a canonical version of Hindman’s theorem [7]) there exist
5 necessary equivalence relations and these turned out to form a canonical
set of equivalence relations, viz.

THEOREM D.3 [10]. For every equivalence relation m € II(.7,(w)\{S}
on the finite and nonempty subsets of the nonnegative integers there exist
infinitely many mutually disjoint and nonempty sets Xy, X, ..., € Ty, (w) such
that exactly one of the following five cases is valid for each two nonempty
sets I, J € T (w)\{@}:

(@) UXlieh =X, eJ} (modr) without any restriction on I
or J.

¥ Uixliell=U{X;|ieJ} (mod ) iff min I = min J.

y) UXlien={U{X]i€J} (modn) iff max [ =maxJ.

©®) UiXlieli=UX;|ieJ} (modn) iff min I=min J and max
I =max J.

() UiXliel~UX,ied}iff I=J.

That is, it turns out that equivalence relations (y) and (J) may be
eliminated in the finite case.
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Using binary expansions of positive integers an analogous canonical
version may be established for the finite sum theorem. It could be worthwhile
to note that this provides an example where canonical sets of equivalence
relations are not uniquely determined. In particular, the set of necessary
equivalence relations is not a canonical set, i.e., it does not satisfy condition
(can). For example, let us look in detail at the special case m =2 of the
finite union theorem. This is an old result, sometimes known as “Schur’s
theorem.”

THEOREM D.4 [9]. For every positive integer O there exists a positive
integer n such that for every coloring 4:{l,.,n}—> 4 there exist three
numbers x, y, z € {1,..,n} with x + y =z and A(x) = A(y) = A(z).

For convenience we shall assume that x  y < z. Figure 1 shows the lattice
of equivalence relations on {x, y, z}.
The canonical version of Schur’s theorem says:

THEOREM D.5. Consider the sets {mg, my, Ty}s {7y Tas Tabs {Mgs Tgs 7y}
Then each of these sets of equivalence relations forms a canonical set of
equivalence for Schur’s theorem.

Analogously canonical versions of the finite sum theorem may be
established for m > 2.

The next application is a canonical version of the partition theorem for
finite Boolean algebras [4]. Let us denote by .7°(n) the Boolean algebra of
subsets of an n-element set. Let BA(}) be the set of Z°(k)-subalgebras (i.e.,
7 (k)-sublattices) of 7(n).

THEOREM D.6 [4]. For nonnegative integers 8, m, k there exists a
positive integer n such that for every coloring

n
A: B —
A(k> 5

of the .#°(k)-subalgebras of #°(n) with J colors there exists a 2(m)-

=< {x,y,2} >
w1:<{x},{y,z}> ﬂ2:<{xﬁy}s{2}> ﬂ3:<{X,Z},{)’}>
Ty =< X}, {y},{z}>

FIGURE 1
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subalgebra f€ BA(;,) with all its .#(k)-subalgebras in one color, ie.,
4;: BA(R)— 6 with A{g)=A(f- g) is constant.

One easily observes that this theorem is just a reformulation of the
partition theorem for k-parameter words for the two-element alphabet
A=1{0,1}. Consider .#(n); its elements may be viewed as being O, 1-
sequences of length n(i.e., characteristic functions). Thus the .2(0)-
sublattices are in a one-to-one correspondence onto [4](% ). Analogously the
F(k)-sublattices of .7°(n) are in a one-to-one correspondence onto [4](%). A
F(k)-sublattice of .7(n) is given by a set X, < {0,.., n— 1} and k mutually
disjoint nonempty sets X,..,X, <{0..,n—1} with X,NX,=g,
i=1l,,k X, is the O-element of the 2°(k)-sublattice and
Xy U X,y Xy U X, are the atoms. The sets X;,..., X, may be encoded using
a single f€ [4](}), viz.,

f=1 iff i€X,,
=1, iff i€X,.,,

=0 else.

For example, with respect to colorings of .#°(0)-sublattices, i.e., colorings of
points, there exist only two canonical equivalence relations, viz., the constant
equivalence relation, where each two elements are equivalent, and the one-to-
one equivalence relation (identity), where each element is only equivalent to
itself.

However, with respect to colorings of .7°(1)-sublattices, i.e., colorings of
two-element chains, there already exist 10 canonical equivalence relations.
Let {4, 4 U B}, respectively {C,CUD}, where ANB=CND=g and B
and D are both nonempty, be two arbitrary 2-element chains, then we have
the following possibilities for canonical equivalence relations: {4,4 U B} is
equivalent to {C, CU D} iff

(1) A=C and B=D (the one-to-one equivalence relation which
corresponds to the 1-canonical sequence ({{0}, {1}, {A,}}, {{0}, {1}, {4,

(2) {I€A|l<minB}={l€ C|l < min D} and B=D (this
corresponds to the 1-canonical sequence ({{0}, {1}, {Ao}}, {{0, 1}, {A,} D))

(3) minB=minD, {I€A|l<minB}={/€C|/<minD}, and
AU B =CUD (corresponding to ({{0}, {1}, {A,}}, {10}, {1, A4}})),

(4) A=C and min B=min D (corresponding to ({{0}, {1}, {Ae}}s
{1} 10, A411)),

(5) minB=minD  and {I€A|l<min B} = {{€ C|l < min D}
(corresponding to ({{0}, {1}, {4o}} {{0, 1, A5} 1)),

(6) B =D (corresponding to ({{0, 1}, {Z,}}, ({0, 1}, {Z,}})).
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(7) min B =min D (corresponding to ({{0, 1}, {4,}}, {{0, 1, 45} }))
(8) AU B=CUD (corresponding to ({{0}, {1, 4¢}} {{0}s {1, 45} 1)),
(9) A= C (corresponding to ({{0, Ay}, {1}}, ({0, 2}, {1}1),

(10) no restriction, the constant equivalence relation (which

corresponds to {({{0, 1, A4}}, {{0, 1, A4} })).

In general the numbers of canonical equivalence relations with respect to

colorings of .%°(k)-subalgebras grow rapidly, i.e., much faster than the Bell
numbers B, , of numbers of partitions of a (k + 2)-element set.

10.
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