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A canonical (i.e., unrestricted) version of the partition theorem for k-parameter 
sets of Graham and Rothschild (Trans. Amer. Math. Sot. 159 (1971), 257-291) is 
proven. Some applications, e.g., canonical versions. of the Rado-Folkman-Sanders 
theorem and of the partition theorem for finite Boolean algebras are given. Also the 
ErdBs-Rado canonization theorem (J. London Math. Sot. 25 (1950), 249-255) 
turns out to be an immediate corollary. 

A. INTRODUCTION 

“Classical” partition (Ramsey) theory investigates the behavior of 
structures with respect to colorings of substructures with only a small 
number of colors. The main question is whether it is possible to obtain 
monochromatic (i.e., constantly colored) substructures. For a survey on 
Ramsey theory see, e.g., [5]. R ecent research considers more general 
colorings, viz., colorings with an arbitrary number of colors. Of course, 
generally one cannot expect to find monochromatic substructures. But 
possibly one always can be restricted to certain types of colorings, for 
example, structures on which the coloring is either constant or one-to-one. 
An example of such a theorem is the so-called “canonical version” of 
van der Waerden’s theorem on arithmetic progressions, which is due to Erdos 
and Graham. 

THEOREM. Fo.r-ezrery positive integer k there exists a positive integer n 
such that for every coloring A : {O,..., n - 1 ] -+ o of the first n nonnegative 
integers with arbitrary many colors (i.e., with an infinite number of colors) 
there extsts an arithmetic progression a, a + d,..., a + (k - 1) - d of k terms 
such that A r {a,..., a + (k - 1) . d} is either a constant coloring or a one-to- 
one coloring. 

However, things do not always behave so nicely; sometimes it is certainly 
not true that one can always be restricted to a constant or a one-to-one 
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coloring. A prototypical result in this direction is the so-called “Erdbs-Rado 
canonization theorem.” This may be viewed as the generalization of 
Ramsey’s theorem to arbitrary colorings. 

THEOREM [ 31. Let k, m be positive integers. Then there exists a positive 
integer n such that for every coloring A : [n]” -+ w of the k-element subsets of 
n = {O,..., n - 1 } with infinitely many colors there exists an m-element subset 
X of n and a-possibly empty-subset X G {O,..., k - 1 } of k such that for 
any two k-element subsets {a,, ,..., ak-l} and {p, ,..., Pk-,} of X, where 

%i 

..a < ak-, and p, < ... < PkPI, it follows that A({aO ,..., ak-,}) = 
0 ,..., pk-,}) $ai=Pifor all iEZ. 

In other words, with respect to colorings of k-element subsets there exist 
2k different types of canonical colorings, viz., each .X g {O,..., k - 1 } gives 
rise to such a type and obviously none of these types may be omitted without 
violating the assertion of the theorem. 

In this paper we propose a definition of canonical colorings in arbitrary 
structures. Then we state and prove a canonical version of the partition 
theorem for k-parameter sets of Graham and Rothschild [4]. Since the 
partition theorem for k-parameter sets admits as immediate corollaries 
Ramsey’s theorem as well as the Rado-Folkman-Sanders theorem on finite 
sums (or unions), the canonical partition theorem for k-parameter sets yields 
as corollaries the Erdos-Rado canonization theorem and a canonical 
RadoFolkman-Sanders theorem. This also improves a result of Taylor 

[lOI= 
One remark concerning our notation: Because the “type of a coloring” 

does not depend on the colors that were actually used but rather on the 
equivalence relation given by the libres of the coloring we prefer to use the 
notion of “canonical sets of equivalence relations.” Consequently we shall 
talk about “equivalence relations” instead of “colorings with an arbitrary 
large number of colors.” However, the notion of colorings will be reserved 
for situations where partition results are applied. 

B. CANONICAL SETS OF EQUIVALENCE RELATIONS 

In this section we use the language of categories in order to define the 
notion of canonical sets of equivalence relations. Recall that a category C is 
given by a set of objects A, B, C ,..., and for each two objects A, B of C a set 
C,(g) of morphisms f: B -+ A is defined. Finally morphisms f E C( “, ) and 
g E C( “,) may be composed yielding f. g E C( “,) and this composition is 
associative. Since this is nearly all we need from category theory in 
connection with partition (Ramsey) theory sometimes such categories G are 
called “classes with binomial coefficients C( : ).” 
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In all applications c(“,) will be a set of rigidified rnonomorphisms, thus 
“3( $ ) represents the set of B-subobjects of A. 

Notation. For a set X we denote by n(X) the set of equivalence relations 
on X. In particular, JZ(c(“,)) denotes the set of equivalence relations on the 
set of C-subobjects of A. If 71 E n(X) and y, z E X, then y zz z (mod z) 
indicates that y and z are equivalent modulo 71. 

Notation. Let 7r E n(C(“,)) and fe UZ($). Then rcfE n(C(:)) denotes 
the equivalence relation which is induced fromf, viz., 

g M h (mod 71f> iff f. g z f. h (mod n). 

DEFINITION. A set ~8’ G fl(C(“,)) is a canonical set oj’ equivalence 
relations (or shorthand: J@’ is canonical) iff ~2 is a set of minimal 
cardinality such that there exists an object A in @ satisfying: 

for every equivalence relation 71 E n(c(“,)) there exists an 
embedding fE c(“,) such that rrE &. (can> 

Remark. A priori it is not clear whether all minimal sets d E n(c( :)) 
which satisfy (can) have the same cardinality or not. We do not know an 
example of a category G with minimal sets of different cardinalities. Possibly 
there exists some (weak) conditions satisfied in all relevant categories which 
imply that all minimal sets & ~n(c(s)) have the same cardimality. 

It turns out that in general canonical sets of equivalence relations are not 
uniquely determined. In particular, the canonical version of Schur’s theorem 
(i.e., Theorem D.4) yields an example for this. More examples may be found, 
e.g., in the category Fin Tree(m) of finite trees in which each element has at 
most m immediate successors (see [ 11). Thus in general it does not make 
sense to say that a specific equivalence relation z E n(UZ(:)) is a canonical 
equivalence relation. However, there always exist certain equivalence 
relations 71 E n(c(“,)) w lc necessarily belong to each canonical set J&. h’ h 
For example, the constant equivalence relation (where any two C-subobjects 
are equivalent) is of that type and if 1 e(f)1 > 1, also the one-to-one 
equivalence relation (where each C-subobject is only equivalent to itself) 
belongs to every canonical set d. 

DEFINITION. An equivalence relation 7t E n(c(“,)) is a necessary 
equivalence relation iff for every object A there exists an equivalence relation 
7~* E Z7(c(“,)) such that no = 71 for everyfE C(i). 

Remark. Each canonical set of equivalence relations &’ E n(UZ(:)) 
contains every necessary equivalence relation z E n(c(c)). But in general a 
canonical set may also contain equivalence relations which are not 
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necessary. However, for certain categories it is true that the set of all 
necessary equivalence relations is canonical, e.g., the Erdos-Rado 
canonization theorem provides an example for this. 

Notation. Let d E n(C( :)) b e a canonical set of equivalence relations. 
Adapting the well-known Ramsey-arrow we shall write A -PF;~ (B)’ in order 
to indicate that for every equivalence relation 7c E n(@(“,)) there exists an 
f(Z C(“, ) such that 7~~ E &‘. We shall suppress SXY and C if no confusion can 
arise. 

C. CANONICAL SETS FOR THE HALES-JEWETT CLASS [A] 

The partition theorem of Hales and Jewett [6] as well as its generalization, 
the partition theorem for k-parameter sets of Graham and Rothschild [4], 
plays a central role in partition theory for finite structures. In this section we 
study canonical versions of these theorems. 

Basically the Hales-Jewett theorem considers partitions of vertices of the 
n-dimensional cube A”, where A is a finite set. The result is that for 
sufficiently large n there always exists some monochromatic k-dimensional 
subcube. The notion of a k-dimensional subcube is defined purely 
combinatorically, that is, without any algebraic means. 

DEFINITION C. 1. Let A be a finite set and let k < n be nonnegative 
integers. Then [A](z) is the set of mappings f: y1+ A U {,I, ,..., A,_ I }-where 
without restriction A n (A,, 2, ,...,) = D-which satisfy 

(1) for every j < k there exists some i < n with f(i) = /li, 

(2) minf-‘(Ai) < minf-‘(31j) for all i cj ( k. 

Usually the elements fE [A](t) are called “k-parameter words of length 
n.” EachfE [A](i) p re resents a unique k-dimensional subcube in A”, viz., 
the set {f. [& ,..., A,-,) ] A,, ,..., lk-, E A}, where the parameters 1, ,..., A,-, 
which occur in f are replaced by elements of A. 

Originally these kinds of embeddings have been considered in the Hales-- 
Jewett theorem. Later on Graham and Rothschild [4] proved a more general 
partition theorem for partitions of k-dimensional subcubes (i.e., k-parameter 
words of length n). 

In order to state this theorem explicitly we have to define the notion of a 
k-dimensional subcube of an m-dimensional subcube in an n-dimensional 
cube. Recall that for linear spaces these notions may be defined by 
multiplying the corresponding matrices. For parameter words the following 
composition is introduced: 
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DEFINITION C.2. LetfE [A](i) and gE [A](T). Thenf.gE [A](E) is 
defined by 

f * g(i) =.m if f(i) E A, 

= g(j) if f(i) = Aj. 

Motivation. The product f. g defines the notion of “a ,k-dimensional 
subcube of an m-dimensional subcube of an n-dimensional cube.” 

The partition theorem for Hales-Jewett cubes says: 

THEOREM C.3 [6,4]. Let A be a finite set and let 6, k, m be nonnegative 
integers. Then there exists a positive integer n satisfying: 

for every coloring A: [A](i) + 6 of the k-dimensional subcubes 
in A” with 6 colors there exists an m-dimensional subcube 
fe [A](i) with all its k-dimensional subcubes in one color, i.e., 
the coloring df: [A](T) -+ 6 with AXg) = d(f . g) is a constant 
coloring. (HJ) 

Notation. For convenience we shall abbreviate (HJ) by n -So (m)k,. 

For a short proof of this result see, e.g., [2]. Next a canonical version of 
this theorem will be presented. We need a bit more preparation. 

Notation. Let o E U(X) and r E n(Y) be equivalence relations. We shall 
write a<r iff azb (modo) for a, bEXnY implies azb (mods). 
Observe that < is a quasiordering. However, o < r and r < IS imply that 
u 1 Xf7 Y = z 1 Xf7 Y. We shall use this quasiordering only when XL Y or 
YSX. 

DEFINITION C.4. A sequence z = (7~ O,..., 7~~) of equivalence relations 
ni E 17(A U {A.,, ,..., ni}), i = 0 ,..., k - 1, and nk E Il(A U {A, ,..., A,- I}) is k- 
canonical iff 

(1) 7co<n1<~~~ <Q, 

(2) if &Z c (mod rci) for some c E A U @, ,..., Ai-r}, i < k, then 
71i+ I < ni* 

Remark. It turns out that k-canonical sequences determine certain 
necessary equivalence relations in n( [A](r)), comparable to the fact that in 
the Erdos-Rado canonization theorem subsets X E {O,..., k - 1) determine 
necessary equivalence relations in n([m]“). It remains to explain how km 
canonical sequences determine equivalence relations in n( [A]( T)). 

DEFINITION C.5. Let II = (7~~ ,.,., 7~~) be k-canonical and let f~! [A](T). 
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The numbers w,(f, i), i = 0 ,..., k - 1, are defined by o,df, i) = 
min { I > w,Jf, i - 1)/f(Z) z Ai (mod n,)}, where for technical convenience 
w,Jf, -1) = -1 and o,Jf, k) = m. 

I.e., o,Jf, 0) denotes the first occurrence of an element which is equivalent 
to A,, modulo rr,,. Then cun(f, 1) denotes the first occurrence after o,(f, 0) of 
an element which is equivalent to A, modulo rcr , etc. Suppose that infentries 
which are equivalent to Ai modulo 7ci shall be replaced by Ai. Then the 
numbers w=(f, 0), on(f, l),..., give earliest possible entries for doing this. 

EXAMPLE. Let A = (0, 1,2}, k 13, and let the 3canonical sequence (no, 
x1, TC~, n3) be given by 

Finally, let 

f=~0,1,2,~,,0,~,~,n,,0,1,2,~,11,.0,1~E Pl( ‘3’). 

Then w,(f, 0) = 3, w,(f, 1) = 5, w,(f, 2) = 6. 

DEFINITION C.6. Let n = (x0,..., rcJ be k-canonical. The partition 
d’TII([A](;)) d t- d is e me as follows: f z g (mod TP’) iff 

Examples 

(1) Let k = 0. Each rr f K&4) is O-canonical. Then r? E D([A]( T)) is 
defined by applying 7~ componentwise, i.e., (a, ,..., a,,-,) =: (b, ,..., b,,-,) 
(mod rrm) iff ai =: b, (mod rc) for i < m. 

(2) Let k = 1. A pair n = (x0, zi), where 7~; E 17(A U {A,,}) and 

%E fl(A ” @,I>, is l-canonical iff 7cr, < zi and if a z i, (mod x0) for some 
aEA, then 7co = 71,. Again nm is defined by applying (no, rrr) 
componentwise, i.e., if z0 = rr, , then f z g (mod nm) iff f(Z) z g(Z) (mod x0) 
for every Z < m and if x0 f x1, then f z g (mod TP) iff min f -‘(A,) = 
min g-l@,) andf(Z) =: g(Z) (mod zo) for everyj < m andf(Z) z g(Z) (mod rr,) 
for every min f-’ (Lo) < Z < m. 
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(3) Again let k = 1, but now A = (0). There exist three necessary 
equivalence relations: Let f, g E [A](y), 

.f=g iff .f=g, 

iff minf-‘(Q = min gP1(3LO), 

without any restriction. 

The canonical version of the partition theorem for k-parameter words 
(viz., Theorem C.3) may be stated as follows: 

THEOREM C.7. Let A be a finite alphabet. Then (n’“jn k-canonical) is 
the set of necessary equivalence relations. Moreover, { nm 1 n k-canonical} is a 
canonical set of equivalence relations. 

Proof of Theorem C.7. Fix the finite set A. We first show that (nm 1 n k- 
canonical} satisfies (can), viz., 

LEMMA. Let k < m be nonnegative integers. Then there exists n such that 
for every equivalence relation 7~ E n([A]( i)) there exists an f E [A](L) such 
that 

Ed E {nm 1 n k-canonical}. 

Proof of Lemma. Let n’ be such that 

A 

Such a number n’ exists according to the partition theorem for Hales-Jewett 
cubes. Then let n be such that 

It remains to show that n has the desired properties. Let 71 E II([A]( i)) be 
any equivalence relation, Consider first the coloring 

d’: [A]jky I)+n ([A](‘:’ )) with d’(g)=n,. 

Then there exists an f’ E [A]( ,“, ) such that d'(f' . g) =d’(f’ . h) for all g, 
hE [A](,:,), in other words, PQ,.~=+.,, for allg, hE [A](k:il). 

Next consider the coloring 

A: [A](c)+n ([A](E)) with d(g)=+.s. 
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Then there exists anf” E [A](,“;,) such that d(f” . g) =d(f” . h) for all g, 
h E [A](“,“), i.e., rrf,.fC.8= rrf,.f,,.h for all g, h E [A](“,t’). 

For convenience let us forget about f’ and f” and assume that 
~cEE([A](~~‘)) satisfies 

m+l 
71g = u forall gE [A] k+ 1 , 

( 1 

7Tg = z for all g E [A ] 
m+l 

i 1 m ’ 

(1) 

(2) 

where o E n([A]( “i’)) and r E II((A](T)). 
Define the sequence n= (x0,..., nk) as follows: 

a= b (mod ni) iff 

(1 O,“‘, Aj- 12 a> Ai,***, A,- 1) 

=(/I 0 >***> Ai- 1, b> Ai>**., dk- 1) (mod 0). 

Recall that actually r+ E II(A U {A,,,..., Ai}) as no Aj can occur at the ith 
position of any parameter word for j > i. 

The lemma is proved by a series of propositions showing that n is k- 
canonical and that nm = r. For convenience let fE [YI](T,+~) be a fixed 
parameter word and rcf E IZ( [A ] ( k i * )) the induced equivalence relation. 

PROPOSITION 1. n, < xi+, for every i < k. 

Proof. Let a z b (mod zi), i.e., 

First consider (do ,..., AL-r, ki, ;li+l, ;li, Aif ,..., A,) E [A]( :,‘t). By (1) it 
follows in particular that 
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and thus by transitivity it follows from (3) and (4) that 

(1 o,**‘> ai- 13 by ai, by ai+ 1 )*a-> a,- 1) 

z (a, )...) ai- 13 b> ai, a, ai+ 1 )-**f ak- 1) (mod nf>- (5) . 

This shows that for g = (A,, ,..., Ai-, , b, di, 3Li+, ,..., A,) E [A]( :I;) 

(A O,“‘, ai-,, 4, a, &+l,-*, a,-,> 

=: (3Lo,..., ai- 1) JiT b, ai+ 1 y***> a,- 1) (mod 7Lr. c> 

holds and again by (1) x,.~ = (T which implies that a =: b (mod xi+ r). 

PROPOSITION 2. Assume that c=:& (mod rq) for sonze c E A U 
{A, ,..., Al-,}. Then ni+l < 7ri. 

Proof. From the assumption it follows that 

(2 O,*.*, ai-l, c, Izi,***, Iz&l) 

z (/lo,..., ~i-,,&,~j,...,~&J (mod 0). (6) 

Let a, b E A U {A, ,..., Ai} with a z b (mod xi+,), i.e., 

(A f)Ya*, ai, a2 ai+, Y***T I,- 1) 

z (Lo>***) ai, b> ai+ 1 y***y a,- 1) (mod IS), (7) 

Consider first (A,, ,..., 3LiPl,;li, a,Aj+r ,..., A,) E [A]( ii:). By (6) and (1) it 
follows that 

(A 0 Y...T al- 1 T c? u7 ai,.*., ak- 1) 
x (&,..., ai-l,aj,u,aj,...,a,-,) (mod 7cf), (8) 

where as beforefe [A](;::) is some fixed parameter word. 
Next consider (A, ,..., ~i-l,~i,~i+l,~i,...r~k)E [A](:::), by (7) and (1) it 

follows that 

Finally consider (A0 ,..., LiPI, ilj, b, ;ti+ r ,..., A,) E [A]( $T:), again by (6) 
and (1) it follows that 

(mod q). (10) 
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Thus by transitivity it follows from (S-10) that 

(A O>“‘> /zi- 1) c, a, Ai,Be*9 3Lk-l) 
z (Lo,..., /Zi-l,~,b,3ii,...,~k-i) (mod 7cf). 411) 

This shows that for g = (A,, ,..., Ai- i , c, /2, ,..., A,) E [A]( :i: ) holds 

(A I),“‘> )Lj-l 3 aY AjY**, Izk-l) 

Lz (/lo,..., L,, b, At,..., 4-d (mod nf. & 

and since by (i} z,..~ = u it follows that a z b (mod xi) as desired. 1 

COROLLARY. The sequence R = (TC~,..., n,J is k-canonical. 

Next consider for i < k the operators Ti which act on parameter words 
hE [A](“:‘) in such a way that Tih(l)=li if Z=w,(h,i) and T,h(l)=h(l) 
in all other cases. In general Tih need not be an element of [A](“,+ I), 
because possibly the parameters of Tih are improperly ordered. However, in 
certain cases T,h E [A](“:‘) and, moreover, then also its equivalence class 
modulo 7c does not change. 

PROPOSITION 3. Let hE [A](“:’ ) and let i<k. Then TiTip, ... T,hE 
/Aj(m:‘) and additionally TiTi-, I.* T,hz Tim, .‘. T,h(modz). In 
particular, for i= 0 this means T,, h z h (mod 7r). 

Proof: Proceed by induction on i. First observe that 

TipI ‘.. Toh(w,(h,j)) = Aj f or all j < i, so that in fact Ti Tip 1 .. . T,, h E 
[A](m:l). We may assume that TieI .a. T,, h(o,(h, i)) # Ai, otherwise there is 
nothing to show. By definition Tip 1 . . . T, h(w,(h, i)) z Ai (mod xi). 

Consider g E [A ]( T,‘: ) which is defined by 

dz) = Izi if I= w,(h, i), 

= Ti-l ... T,,h(l) if Ti-l . . . T,h(l)EAU{A, ,..., /lip,}, l#w,(h,i), 

=;lj+i if Tipi ... T,h(f) = kj for some j > i, 

in other words, a new parameter Ai is introduced at the on(h, i)th position of 
T i-1 “’ T,h and the remaining parameters are appropriately renumbered. 

Obviously 

and 

g * (&,...,Izi-l, Tj-1 a** Toh(@,(h, i)),&,..., A,-,) 

= Tjpl . . . T,h, 

g . (&Jr..., ili-,,;li,Ai ,..., A,-,)=T,T,_, ..- T,h. 
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But since 

(A o,***,Ai-l, Ti-1 *** Toh(~n(hy i)), Ai,**., A,-,) 

z (&,..., ~i-~~Li~/2ir**~~A~-*) (mod a) 

and xE = c it follows that 

Ti Ti- 1 >.**y T,h ,” TieI .‘. T,h (mod 71). I 

PROPOSITION 4. YP” < 7~. 

Proof: Let g, h E [A](m:l) with g z h (mod @“). By definition 
o,( g, i) = w,(h, i) for every i ( k. By Proposition 3 we may also assume that 

g(u,( g> i)) = h(u,(h, i)) = Ai, 

for every i < k. 
Then proceed by induction on / {1< m + 11 g(l) # h(l)}1 in order to show 

that gc h (mod x). Pick 1~ m + 1 with g(Z) #h(Z), say w,(g, i) < I < 
wn( g, i + l), where for convenience wn( g, k) = m + 1. 

Consider the parameter word f E [A](:+‘:) which is defined by 

f(i)=ni+l if i= 1, 

= dl? if g(i)EA U (A, ,..., Ai-l}, i-z 1, 

=Izj+l if g(l) = Aj for some j > i, 

i.e., the lth position of g is replaced by a new parameter and the remaining 
parameters are appropriately renumbered. Because g(Z) z h(Z) (mod 7~~ + ,) it 
follows by (1) that 

g =f’ (nil Y’*> li- 12 g(l), Izi,.**7 A,- 1) 

z:f * (2, y+**> Ai- 1) h(l), Ai,***, A,- 1) = g’ (mod n). 

By induction it follows that g’ E h (mod n) and thus by transitivity also 
gzzh(modz). I 

PROPOSITION 5. Let n = (x0,..., nk) be a k-canonical sequence and let 
f E [A J(l) be an arbitrary parameter word. Then it follows that nm = (n”)f. 

ProoJ Let us first show that nm < (z”)~. Let g, h E [A](T) be with 
g sz h (mod 11”). Let Î < n, say 

wn(f- g, i) < f,< wn(f. g, i + 1>> 

We claim that f. g(i) z f. h(f) (mod xi+ ,). 

(12) 

582a/35/3-6 
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Case 1. Suppose f(f) E A. Then f. g(f) =f(i) =f. h(f) and thus, in 
particular, f. g(f) z f. h(f) (mod xi+ ,). 

Case 2. Suppose f(i) = 1,, say 

~,W) < I,< q&G + 1). 

Then min f-‘(d w,(g,jJ) < minf -‘(Al) by condition (1) of Definition C. 1. By 
(12) it follows that 

min./-‘(&) < i< 0J.f. g, i + 1) < minfP1(3LWn(g,i+,J~ 

Hence j < i and, in particular, rcj+, ,< xi+i. Thus the equivalence 
g(Z) z h(Z) (mod zj+ ,) implies 

f . g(i) = g(Z) z h(Z) = f . h(i) (mod ri + 1 1. 

This shows nm < (YP)~. 

Next we show that (n’)f< z”. Let g, h E [A](y) be with g z h 
(mod(n”)& i.e., f. g zz f. h (mod n”). Let I < m, say 

w,(g, 9 < I< w,tg, i + 1). (13) 

We claim that g(Z) z h(Z) (mod zi+ ,). 

Case 1. Suppose o,(f. g, i + 1) > minf -‘(A,). In particular then 

g(2) = f. g(minf - ’ (A,)) z f. h(min f ~ '(A,)) 

= h(Z) (mod xi+ 1). 

Case 2. Suppose w,(f. g, i + 1) < minf -‘(13J, say 

con(f. g, i +j) < minf-'(A,)< mn(f. g,i+j+ 1>1 

where j> 1. By Definition C. 1 and (13) it follows that 

f * g(l) E A u (&,..., Ai} for each i< min f -‘(A,). Thus there exist elements 
a, ,..., aj E A U {A, ,..., &} such that A,+, z a, (mod xi+ ,),..., Ai+j z aj 
(mod r~~+~) and by condition (2) of Definition C.4 this implies that 
TC~+~+~ < ri+j< --- < x,+~. Since g(Z), h(Z) E AU {&,...,&+i) by (13), the 
equivalence 

implies that 

g(Z) =f. g(minf -‘(A,)) zf a h(minf -‘(Al)) 

= h(Z) (mod ni+j+l) 
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COROLLARY. nm<t. 

Proof. Proposition 4 and Proposition 5. 

Recall that we did not really use (2), i.e., the fact that for each 
g E [A](m,+l) it follows that rcg = r. However, (2) is neede’d in order to 
establish the reverse of the above corollary: 

PROPOSITION 6. z< YP. 

ProoJ: Assume that there exist g, h E [A](y) with g x h (mod r) but 
g & h (mod am). By Proposition 3 we may assume that g(o,( g, i)) = ki and 
h(o,( g, i)) = Izi for 0 < i< k. In particular then there exist 
i E (-1, O,..., k - 1)) and I < m such that 

w,(h, i) < I < w,(h, i + l), d0 Z+ h (4 (mod ni+ 1 1, (14) 

and say 

h(Z) E A u {/lo,..., di}. 

Then consider the parameter words 

f1=(& Y..., L*,&,& >..., L,>E [A] y l 
( i 

, 

and 

j-2 = &I,..., i,- 1, g(Z), &,..., Am- 1) E p I 
m+l 

( i m 
if g(Z) E A, 

resp. 

f, = (ILo,..., 2 A A Ampl)E [A](mz ‘) if g(Z)=Aj. I-l 2 min g-l(.Xj) 7 lr*--Y 

Since by (2) nYtf, = r = ?rfz and by the assumption g z h (mod t) it follows that 

and 

(h(0) ,..., h(Z - I), h(Z), h(Z) ,..., h(m - 1)) 

= (do),..., g(E - 11, g(z), g(O~..., dm - 1)) 

(g(O),..., g(z - 11, g(O, g(O~...~ g(m - 1)) 

z (h(0) ,..., h(Z - l), g(Z), h(Z) ,..., h(m - 1)) 

By transitivity follows 

(h(0) ,..., h(Z - l), h(Z), h(Z) ,..., h(m - 1)) 

z (h(0) ,..., h(Z - l), g(Z), h(Z) ,..., h(m - 1)) 

(mod ~1, 

(mod z). 

(mod 7~). (15) 
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Recall that by (14) the parameters do,..., Ai occur under h(O),..., h(l- l), 
where possibly i = -1. Thus consider the parameter wordfE [A](:::) with 

f(i) = h(i) if h(f) EA U {A, ,..., A,}, i# I, 

=Ai+l if i= I, 

=Izj+l if i# I and h(o =Aj for some j > i. 

Then by (15) 

f. @O>..., ai, h(Q, ai+ I>***> a& 1) 

=f* (a~,...,ai~g(z),aj+l,...,a~-l) (mod rr). 

Since by (1) r+= c it follows that 

(A IJ ?...T ai> h(z)Y ai+ 1 5...> ak- 1) 

z (&,..., ai, g(l), aj+ l,**‘, a& 1) (mod a>, 

showing that g(l) z h(l) (mod ni+ r), which contradicts (14). l 

COROLLARY. We have n”’ = Z, which completes the proof of the 
lemma. I 

It remains to be shown that {nm 111 k-canonical) is a set of minimal 
cardinality satisfying (can). By Proposition 5 each nrn is necessary, thus the 
minimality condition is trivially satisfied. Thus Theorem C.7 is proved. 1 

D. REMARKS AND COROLLARIES 

Let us first show how the canonical version of the partition theorem for k- 
parameter sets implies the Erdiis-Rado canonization theorem, viz., 

Proof of Erd&Rado Canonization Theorem 

Consider the alphabet A = (0). For positive integers k and m let n be such 
that n+ki (m)“. S UC h an y1 exists according to Theorem C.7. We claim that 
IZ has the desired properties. Let rr E n( [n]“) be any equivalence relation. 
Consider the equivalence relation c E n([A]( i)) which is defined by 
f z g (mod o) iff 

{minf -‘(do),..., minf -‘(Ak-i)} 

=: {ming~‘(A,),..., min g-l@-,)} (mod 7r). 

Then let f E [A](i) be such that a/ is necessary, say of= (x0,..., rc,Jm, 
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where (no,..., nk) is a k-canonical sequence. Define x= 

{minf-‘(Ai) 1 i= O,..., m-l} and X={i<k]O~~i(modrci)}. We claim 
that any two k-element subsets {a,,..., ak-r} and {b,,,..., b,-,} of X, where the 
ats and his are arranged in increasing order, are equivalent modulo z iff 
ai = b,. for all i E 3’. 

Let {a, ,..., ukP1} and {b, ,..., bkeI} be two k-element subsets of X-both 
arranged in increasing order. Consider g E [A](T), which is defined as 

g(i) = 0 if Ml, where f(a,) = A,, 

= /lj if I< i < P, where f(uj) = Ar, f(aj+ r) = A,, , 

and for technical conveniencef(a& shall be m. 
Let h E [A](T) be defined analogously for the set {bO,..., b,_ r }. Then by 

construction it follows that min(f. g)-’ (di) = ai and min(f~ h)-’ (Ai) = bi 
for i < k. Hence {a, ,..., akPI} z {b,,; . . . . bkPl} (mod n) iff gz:h 

(mod(n,,,..., rcJm). 
Observe that the definition of (T implies that 0 M ;li (mods) for every 

i <j < k. Hence the only information that one may get out of (rO,..., rck) is 
the set .,Y. In particular then gz h (mod(xO,..., 7tk)“) iff min g-‘&) = 
min h-‘(;lJ for all i E X. 1 

The next corollary is a canonical version of the finite union theorem 
(resp., the finite sum theorem). Sometimes this theorem is known as the 
“Rado-Folkman-Sanders theorem.” The’tinite sum theorem is a special case 
of Rado’s [8] much more general theorem on partition regular systems of 
equations. 

THEOREM D.1. Finite sum theorem. Let 6, m be positive integers. Then 
there exists a positive integer n such that for every coloring A : (I,..., n) + 6 
there exist m positive integers x0 ,..., x,-, E {l,..., n} with all finite sums 
)J (xi 1 i E I}, where I s {O,..., m - 1 } is nonempty, in the same color. 

Finite union theorem. Let 6, m be positive integers. Then there exists a 
positive integer n such that for every coloring A : 9(n)\{0} * 6 of the 
nonempty subsets of {O,..., n - I} there exist m mutually disjoint and 
nonempty sets X, ,..., X,-, E 9(n)\{0} with all finite unions U {X,ji E I}, 
where IE {O,..., m - 11 is nonempty, in the same color. 

The finite union theorem is an immediate corollary from the finite sum 
theorem and Ramsey’s theorem. On the other hand the finite sum theorem 
may be immediately deduced from the finite union theorem using binary 
expansion, i.e., by associating to each positive integer k < 2.” a nonempty 
subset of {O,..., IZ - 1). 

Moreover, the finite union theorem turned out to be a special case of the 
partition theorem for k-parameter sets [4], viz. observe that for A = {0) the 
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nonempty subsets of {O,..., n - I} are in a one-to-one correspondence with 
[A]( :) by X-f as follows:f(i) = ,I,, iff i E X and f(i) = 0 iff i 6Z X. Then 
any positive integer n with n -+[A] (m): satisfies the requirements of the 
theorem. 

Applying the canonical version of the partition theorem for k-parameter 
sets yields a canonical version of the finite union theorem, viz. 

THEOREM 0.2. Let m be a positive integer. Then there exists a positive 
integer n with the following property: for every equivalence relation 
9-L E nvYn>\{@l> on the set of nonempty subsets of {O,..., n - 1) there exist 
m mutually disjoint and nonempty sets Xo,...,X,-, E Y(n)\(0) such that 
exactly one of the following three cases is valid for each two nonempty sets 
I,JET(m)\{0}: 

(i) U {X,1 i E I} x U {Xiii E J) (mod n) without any restriction on I 
or J. 

(ii) U{Xi~i~I}=:U{Xi/i~J}(modrr)iffmin~=minJ. 

(iii) U (Xi 1 i E I} z U {Xi 1 i E J) (mod n) iff I = J. 

One immediately observes that the equivalence relations given by (i), (ii), 
and (iii) are necessary equivalence relations. Thus the equivalence relations 
given by (i), (ii), and (iii) form a canonical set of equivalence relations. 

This improves a result of Taylor [lo] who showed that one can always 
restrict to five different kinds of equivalence relations. However, in the 
infinite case (i.e., a canonical version of Hindman’s theorem [7]) there exist 
5 necessary equivalence relations and these turned out to form a canonical 
set of equivalence relations, viz. 

THEOREM D.3 [lo]. For every equivalence relation rt E II(9,i,(co)\{0} 
on the jinite and nonempty subsets of the nonnegative integers there exist 
infinitely many mutually disjoint and nonempty sets X,, X, ,..., E Yfin(co) such 
that exactly one of the following five cases is valid for each two nonempty 
sets I, J E 9&(0)\{0} : 
or J (a) U {Xi1 i E I} zz U {Xi E J} (mod z) without any restriction on I 

(p) U{Xi]iEI}~U{Xi]iEJ}(mod~)iffminI=minJ. 

(y) IJ{Xj]iEI}~U{Xi/iEJ}(mod~)iffmaxI=maxJ. 

(6) U{XiliEI}~U{XiliEJ}(modn) iff min I=min J and max 
I=max J. 

(E) U{Xiii~I}zU{Xi/i~J} ijjfI=J. 

That is, it turns out that equivalence relations (y) and (6) may be 
eliminated in the finite case. 
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Using binary expansions of positive integers an analogous canonical 
version may be established for the finite sum theorem. It could be worthwhile 
to note that this provides an example where canonical sets of equivalence 
relations are not uniquely determined. In particular, the set of necessary 
equivalence relations is not a canonical set, i.e., it does not satisfy condition 
(can). For example, let us look in detail at the special case m = 2 of the 
finite union theorem. This is an old result, sometimes known as “Schur’s 
theorem.” 

THEOREM D.4 [9]. For every positive integer 6 there exists a positive 
integer n such that for every coloring A: {l,..., n} -+ 6 there exist three 
numbers x, y, zE {l,...,n} with x+y=z andA(x)=A(y)=A(z). 

For convenience we shall assume that x < y < z. Figure 1 shows the lattice 
of equivalence relations on {x, y, z}. 

The canonical version of Schur’s theorem says: 

THEOREM D.5. Consider the sets {x,,, 71, , n4}, {x0, rc2, n,}, {z,, , x3, 7~,}. 
Then each of these sets of equivalence relations forms a canonical set of 
equivalence for Schur’s theorem. 

Analogously canonical versions of the finite sum theorem may be 
established for m > 2. 

The next application is a canonical version of the partition theorem for 
finite Boolean algebras [4]. Let us denote by Y(n) the Boolean algebra of 
subsets of an n-element set. Let BA( z) be the set of Y(k)-subalgebras (i.e., 
T(k)-sublattices) of 9(n). 

THEOREM D.6 [4]. For nonnegative integers 6, m, k there exists a 
positive integer n such that for every coloring 

\kl 

of the 9((k)-subalgebras of Y(n) with 6 colors there exists a Y(m)- 

FIGURE 1 
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subalgebra fE BA(L) with all its 9(k)-subalgebras in one color, i.e., 
A,: BA( T) -+ 6 with AX g) = A(f. g) is constant. 

One easily observes that this theorem is just a reformulation of the 
partition theorem for k-parameter words for the two-element alphabet 
A = {0, I}. Consider 9(n); its elements may be viewed as being 0, l- 
sequences of length n&e., characteristic functions). Thus the 9(O)- 
sublattices are in a one-to-one correspondence onto [A] ( ; ). Analogously the 
9(k)-sublattices of 9(n) are in a one-to-one correspondence onto [A l(i). A 
Y(k)-sublattice of .9’(n) is given by a set X,, E {O,..., n - 1) and k mutually 
disjoint nonempty sets X, ,..., X, 5 {0 ,..., n - I} with Xi n X0 = 0, 
i = I,..., k. X0 is the O-element of the 9(k)-sublattice and 
x0 u x, )...) X0 U X, are the atoms. The sets X0,..., X, may be encoded using 
a singlefE [A](i), viz., 

f(i)= 1 iff i E X0: 

= /lj iff i E Xi+, , 

=o else. 

For example, with respect to colorings of 9’(O)-sublattices, i.e., colorings of 
points, there exist only two canonical equivalence relations, viz., the constant 
equivalence relation, where each two elements are equivalent, and the one-to- 
one equivalence relation (identity), where each element is only equivalent to 
itself. 

However, with respect to colorings of P(l)-sublattices, i.e., colorings of 
two-element chains, there already exist 10 canonical equivalence relations. 
Let {A, A U B}, respectively {C, C U D}, where ArTB=CflD=a and B 
and D are both nonempty, be two arbitrary 2-element chains, then we have 
the following possibilities for canonical equivalence relations: {A, A U B} is 
equivalent to {C, C U D) iff 

(1) A = C and B = D (the one-to-one equivalence relation which 
corresponds to the l-canonical sequence ({(0}, {l}, {,I.,,}}, {(O}, {I}, {A,}})), 

(2) (ZEA]Z<minB}={ZEC]Z<minD} and B=D (this 
corresponds to the l-canonical sequence ({{0}, {l}, {a,}}, ((0, l}, {A,}})), 

(3) min B = min D, {ZEA]Z<minB}={ZEClZ<minD}, and 

A UB = CUD (corresponding to ({{O}, (11, {&}I, {{OI, {L4,}1>>, 

(4) A = C and min B = min D (corresponding to ({{0}, {I}, {A,}}, 

I{ 119 (03 All \ I>>> 

(5) minB=minD and {ZEA]Z<minB}={ZEC]Z<minD} 

(corresponding to ({{O}, { 11, (4, } 1, {{O, LA, 1 I>>, 

(6) B = D (corresponding to (((0, 1 I, {&}I, {lo, 1 I, {&}I)), 
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(7) min B = min D (corresponding to ({ {0, l), {&}j, { {0, 1, A,}})), 

(8) AUB=CUD (corresponding to ({PI, {l,&,}}, ((01, {L&}})), 

(9) A = C (corresponding to ({{0,4,}, (111, {{O,&}, {l}})), 

(10) no restriction, the constant equivalence relation (which 
corresponds to ({{O, L&}}, {IO, L&}}>>. 

In general the numbers of canonical equivalence relations with respect to 
colorings of 9(k)-subalgebras grow rapidly, i.e., much faster than the Bell 
numbers B,, 2 of numbers of partitions of a (k t 2)-element set. 
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