AN ERGODIC SZEMEREDI THEOREM FOR COMMUTING
TRANSFORMATIONS

By
H. FURSTENBERG AND Y. KATZNELSON

The classical Poincaré recurrence theorem asserts that under the action of a
measure preserving transformation T of a finite measure space (X, %, 1 ), every set
A of positive measure recurs in the sense that for some n >0, u (T""A N A)>0.In
[1] this was extended to multiple recurrence: the transformations T, T2, ---, Tk
have a common power satisfying u(ANT"A N ---NT*A)>0 for a set A of
positive measure. We also showed that this result implies Szemerédi’s theorem
stating that any set of integers of positive upper density contains arbitrarily long
arithmetic progressions. In [2] a topological analogue of this is proved: if T is a
homeomorphism of a compact metric space X, for any ¢ >0 and k =1,2,3,---,
there is a point x € X and a common power of T, T?,- - -, T* such that d(x, T"x) <
g, d(x, T"x)<e,---,d(x, T""x) < e. This (weaker) result, in turn, implies van der
Waerden’s theorem on arithmetic progressions for partitions of the integers. Now
in this case a virtually identical argument shows that the topological result is true
for any k commuting transformations. This would lead one to expect that the
measure theoretic result is also true for arbitrary commuting transformations. (It is
easy to give a counterexample with noncommuting transformations.) We prove this
in what follows.

Theorem A. Let (X,B,u) be a measure space with u(X)<oo, let
Ty, Ta, - -+, T, be commuting measure preserving transformations of X and let A € B
with w(A)>0. Then

N
lim inf % > u(TI"ANT;"AN---NT"A)>0.
- 1

A corollary is the multidimensional extension of Szemerédi’s theorem:

Theorem B. LetS CZ be a subset with positive upper density and let F CZ" be
any finite configuration. Then there exists an integer d and a vector n € Z' such that
n+dFCS.
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Here the upper density is taken with respect to any sequence of cubes
[, )X [a2, bP]X -+ x [a?,b7]  with b= .

The proof of Theorem B on the basis of Theorem A is carried out as in the
one-dimensional case ([1], [4]).

The ideas developed in this paper owe a good deal to conversations with D.
Ornstein and J.-P. Thouvenot, to whom the authors would like to express their
gratitude.

1. Relative ergodicity and weak mixing

Throughout the discussion we shall consider measure spaces on which a fixed
group I which is countable and commutative acts by measure preserving transfor-
mations. We say (Y, &, v) is a I'-invariant factor of (X, %, n) if we have a map
7: XY with 77’9 C B, mu = v and for each TET, Tw(x)= #T(x). A factor
of (X, %, ) is determined by a I'-invariant closed subalgebra of L*(X, %, r).
(X, B, 1) is an extension of (Y, 2, v). We assume, as we may, that (X, B, u)is a
“regular measure space” ([1], §4). Then we can associate to the factor (Y, %, v) a
family of measures {u, |y € Y} on (X, ®) such that for each f€ L'(X, B, ),
fELY(X,B,u,)fora.e.y €Y, and f fdu, is measurable and integrable in (Y, 9, v)
with

[{] s, 0] av) = [ 01 o).

We write 4 = [ u,dv(y) and speak of this decomposition as the disintegration of u
with respect to the factor (Y, &, v). The u, are well defined up to sets of measure 0
in Y. The fact that TE€T is measure preserving on (X, %, u) translates into
Tu, = pr, where, for any measure 6, T8 is defined by T6(A)= (T '(A)), or by

f £(x)dTO(x) = f £(Tx)do (x).

We say that (X, B, u) is a relatively ergodic extension of (Y, %, v) for an element
T €T if every T-invariant function on X is (a.e.) a function on Y. Given two
extensions (X, #B,u) and (X', B',u’) of (Y, %, v) we may form the fibre product
(X, B, ji) where
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X=XXxyX={x,x"EXXX":7(x)=7'(x")},
A is the restriction of B X B’ and (i is defined by the disintegration
By = py X pty

where p = [ p,dv(y) and p'= fu,dv(y) are the disintegrations of p and u’
respectively. We then say that (X, B, u) is a relatively weak mixing extension of
(Y,92,v) for TET if (X X vX, B, &) is a relatively ergodic extension of (Y, 2, v)
for T.

Lemma 1.1. Let F: X —> M be a measurable map from a measure space
(X, B, 1) to a separable metric space M and assume that the function d (F(x), F(x'))
is a.e. constant on X X X. Then F(x) is a.e. constant.

Proposition 1.2. If (X, B,u) is a relatively weak mixing extension of
(Y,9,v) for TET and (X', B', u') is a relatively ergodic extension of (Y, %, v) for
T, then (X X vX', B, 1) is a relatively ergodic extension of (Y, @, v) for T.

Proof. let #:X—Y, n': X'~ Y be the associated maps and assume that
H(x,x') is a T-invariant function on X X vX'. Form the function E(x,, x;) on
X X yX given by

Eex) = | [Hx0x) = Hxs 3 diden )

where u'= [u;dv(y). One sees that E is T-invariant and so is a function of
w(x,) = m(x,). We apply Lemma 1.1 to the map x - H(x,-) on (X, %, u,y) and
conclude that it depends only on 7 (x). Hence H(x,x’) is a function of x' and by
relative ergodicity of the extension w': X'— Y, we see that H depends only on
m(x)= m'(x’). This proves the proposition.

If (X, @, ) is an extension of (Y, %, v) we denote by E(f] Y) the conditional
expectation which maps L7(X,B,u) to L?(Y,%,v) and is defined by
E(f| Y)(y)=f fdu, a.e. We shall frequently use the identity

(L.1) [ B¢l yray = [[ | fafGardu, (x)du, (v (r)

- f () F(x2) i (x, x2).

XxyX
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Lemma 1.3." Let (X, B, 1) be a relatively weak mixing extension of (Y, D, )
for T and let ¢,y € L*(X, B, ). Then

N n "
im % > [(BQT | V)= E@ | V)TE | Y)Fdv(y)=0.
Proof. We can assume E(n/;, Y)=0. So we wish to evaluate

(12) £ 3 [ Bure| Yiavm) =% 3 [ vewe(T e (T5:)di (5, x)

by (1.1). Now a weakly convergent subsequence of (1/N)Z_, ¢ (T"x:)¢ (T"x2) will
converge to a T-invariant function on X X X, which, by hypothesis, is a function of
7(x1) = m(x2). The limit of (1.2) is then expressed in terms of E(¢ | Y)*=0, and
this being the case for any convergent subsequence we obtain the lemma.

We generalize the foregoing in the next theorem.

Theorem 1.4. Let (X, B, u) be a relative weak mixing extension of (Y, D, v)

for every T#1, TET. Thenif fi,--+, i € L(X, B, n) and T, -+, T, are distinct
elements of T,

(1.3)

li
N—x

m %ZJ [Em Tf | Y>—H TIE(f, | Y)]zdv(y)=0.
Proof. Write g, = T}f,. If we express E (Ilg; l Y)-TE(g | Y) as
S E(gg: g8~ E(g | Y)E(gin] Y) - E(gi | V)| Y)

we see that we can reduce (1.3) to the case where some E (f; l Y)=0. So we assume
E(fi l Y)= 0. Using (1.1) the problem is to prove

(1.9 im 2 [ T T2 GO T (i (50 ) =0

n=1 j

given that E(f, l Y)=0. Since by Proposition 1.2, X X vX is a relatively weak
mixing extension of Y whenever X is, (1.4) will follow if we prove that

* Here and elsewhere the operator T is defined for T €T by Tf(x)= f(Tx). Note that TE(f’ Y)=
E(Tf | Y).
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N 1
(15) im a3 [ T Tridu (0 =0
n= j=
X

whenever E(f; , Y)=0.

When [ =1 the result is clear since T is measure preserving so we proceed by
induction and assume the theorem is valid for [ — 1. Set S, = I.T;", i=1,---,1 - 1.
The S; are all distinct and also different from 1, and we assume that (1.3) holds with
! replaced by ! — 1 and the T; by the S;.

Let uy ' denote the diagonal measure on X'~ (see [1] for details on “‘standard
measures’ in product spaces) and let vy ' = wu 4 ' be the diagonal measure on Y'™.
Set

— . I ”n -
pit = lim e D (S X Sl

,,* = LIP i Z (Sn e S,_l)"vf(‘,

where the limits in question refer to convergence with respect to integration against
functions of the form g; Q- - Q g (x4, -+, Xi-) = gufx) - - - gi=:(x:-1), and Ni is a
subsequence for which these limits exist. We find

g 1
fg1®"'®gf—ld#:= IZEIszf Sigi(x)---Stig(x)du(x)
T ANk 1

i

. 1
ll_rp-i [ E(Sigi - S8 1, Y)dv(y)

NLZJ. SlE(gIIY) ,E(g; 1,Y)dv(y)
by (1.3), and finally,

19  [8®@gdui’= [ E@|VI® @ | YIdvi

We say that a measure on X'~ is a conditional product measure if it is related to
its projection on Y'™! as in (1.6). (See [1] for details.) Equivalently, a measure on
X'"'is a conditional product measure if it takes the same value at g, ® - -+ & gi-1 as
it does at E(g:] Y)® - ®Q E(gi.| Y).

Consider any measure of the form df = ¢ Q-+ @ ¥_:dp [”' and form

N,
. 1 4
*:]lm]_V:Z(SIX”.XSI—l)n
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passing to a subsequence if necessary. We shall show that 6, is a conditional
product measure. Namely

N,
21 ) 1g: ST 181- 1d/.L*

Z|~

(17) [ 6@ @810, =

NLZJ’E(#,I 1g1| Y) - E(Yn-1Sia8i- 1, Y)dV

But by Lemma 1.3 we can replace E(¥S"g I Y) by E(¥ I Y)S"E(g I Y) “on the
average’’, From this we readily see that

[ 6@ @gnds.= | E@| V& ©E(| Vs,

so that 6, is a conditional product measure. Since linear combinations of
U Q- & Y-y are dense in L’(/.L . ') the same result is true for any @ absolutely
continuous with respect to p,~'. In particular if 8 is absolutely continuous with
respect to u, ' and §;X---X S_-invariant it must be a conditional product
measure.

Now let f'€ L™(X, B, ) with E(f” Y)=1 and define the measure @, ' by
setting

[ 8@ ®@emdat= [ g.0)8:x) - g f ()t (o).

- 1-1 1

fa ' is absolutely continuous with respect to w5 ' and if we form the limit

(1.8) A =lim = S (Six - x Sy
Nk 1

we will obtain a measure that is S1 X «--X §_,-invariant and absolutely continuous
with respect to u .. Hence g ,™" is a conditional product measure. It is therefore
determined by its image in Y'"'. But the image of &, on Y''is vi' since
E(f'| Y)=1. It follows that & . "'=p ™

Finally take f, € L™(X, 3, n) with E(f; ’ Y)=0 and set f'= f, + 1. Comparing
(1.8) with the definition of u ,~' we obtain

Nk
lim o 30 (S0X X S (a2 - k) =0
k 1

or

lim —Al,— z f STA(X) - STy fi(x) - fi(x)du (x) = 0
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Replace x by Tix and recall that S$;T, = T;:

(1.9) lim Nik 2 f Tifu(x) - Tisfia(x) Trfi(x)du (x) = 0.

But this gives (1.5) inasmuch as (1.9) is valid for some subsequence of any sequence.
This completes the proof.

2. (Compact extensions

In this section we shall describe what we will speak of as the compactness of an
extension (X, 8B, u) of a ['-invariant factor (Y, 9, v) for the action of some T €. It
will be convenient to extend this to the action of a subgroup of I', so suppose that A
is a finitely generated subgroup of I'. Fix an epimorphism Z"— A by writing
n—T™, ne Z" Let |n| = max|n;| where n = (n,,- - -, n,). The ergodic theorem
for Z’-actions states that if f€ L'(X, %, u) then

@.1) lim (2T1+H 3 T

N—eo =N
exists for almost all x € X and defines a A-invariant function. We shall use the
much more elementary fact that the limit in (2.1) exists weakly in L*(X, B, u ) for f
in this space.
Let u = [ u,dv be the disintegration of p with respect to the factor (Y, &, v) of

(X, B, 1) and let 7 : X = Y be the map defining the factor. We shall denote the
Hilbert-space L*(X, B, 1) by $ and L*(X, B, u,) by ©,. We have

I = [ 1£1R, dv )

Also note that each T €T defines an isometry f — Tf of $r, onto 9, so that

I Tfle, = I llon:

Let HELY (X X vX,®,1) and f€ L*(X,%B,u). We define the convolution
(relative to (Y, 9, v)) of H and f

Hxf(x)= [ HOxx) )iy (6)
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where y = w(x). We have

IH*¢llo, =l Hlls, 0,1 ¢ [,

and, in particular, if | H [|s, g0, is bounded, the operator ¢ — H * ¢ is a bounded
operator on §. We shall say that ¢ € L*(X, B, i) is fibrewise bounded if || ¢ [|o, is
bounded and similarly for H € L}(X x X, &, ).

Consider now the following properties of our extension (X, %, u) of (Y, 9, v)

with respect to the subgroup ACT:

C.. The functions {H * ¢} span a dense subset of L*(X, B, u) as H ranges over
fibrewise bounded A-invariant functions on X x vX and ¢ € L*(X, B, u).

C.. There exists a dense subset @ C L*(X, B, ) with the following property. If
fED and & >0, there exists a finite set of functions g, -+, g €
L*(X, B, ) such that for each TE A, minis;=c | Tf — g flo, <8 for ae.
yeEY.

C,. For each f€ L¥X, B, ) the following holds. If £, 8§ >0 are given, there
exists a finite set of functions g, -+, g« € L*(X, %, 1) such that for each
TEA, minz= || Tf — g o, <8 but for a set of y of measure <e.

C.. For each fe€ L*(X, B, p) form the limit function

5 1
P(f(ex) = lim gy 2, f(TO0F(T™x)

n||=N
in LY(X X X, .5/;‘,;1), then f’f does not vanish a.e. unless f vanishes a.e.

Theorem 2.1. The four properties C—C. of an extension (X,®B,u) of
(Y, D, v) with respect to a finitely generated subgroup A CT are equivalent.

Proof. C, > C.. Let us say that f € L*(X, B, u) is AP (almost periodic) if for
each & >0, there exist g, "+, g € L*(X, B, u) with min,g;= [| Tf — g [lo, < & for
each TE€ A and a.e. y € Y. Clearly any linear combination of AP functions is AP.
To prove that C, > C, it will suffice to show that by an arbitrarily small
modification of a function of the form H * ¢, H being A-invariant and fibrewise
bounded, we obtain an AP function. Since ¢ — H * ¢ is bounded we can restrict to
a dense subset of ¢ ; in particular, we may assume that ¢ is fibrewise bounded, say
lelo, =M.

Let 7 >0 be given; we shall find an AP function f &€ L*(X, B, u) with f = H* ¢
but for a set of x € X with measure < 7 on which f vanishes. In L*(X x X, %, 7)),
the functions of the form X ¢ (x)¢i(x’), ¥, ¢i€ L°(X, B, ) are dense and so we
can choose a sequence of such functions converging to H in L>. Passing to a
subsequence we can assume that H, is a sequence of such functions with
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|H — H, |3, &0,— 0 for almost all y € Y. We can then find a subset E, C Y with
v(E,)<m such that |H — H, [ls, o0,— 0 uniformly for y € E,. Let F, be the largest
A-invariant set in E, : F, = (e, TE,. We shall show that the function

Hxop(x), 7w(x)EF,
(22) flx) =
0, m(x)EF,
is AP.
Let us say that a set of functions gy, -+ -, g is 8-spanning for f on the set B C Y if

for each y € B,and T € A, min,; || Tf - g; ||s, < 8. The function 0 is §-spanning for f
in F, so it will suffice to find a §-spanning set in Y\ F,. Note that if g,,---, g« is
&-spanning in B then by the isometry of O, with ©,, Tg,,- -+, Tg. is 8-spanning in
TB if T € A. Using this we can construct a 8-spanning set in U rcs TB. Namely,
enumerate the elements of A: T, T, T, - - - and for each x € B=U..TB let T,
be the first T; with T, (x) € B. We then set g, (x) = g (T.x) and so find that §,, - - -, g
is 8-spanning in B.

In view of this we see that in order to prove that f(x) given by (2.2) is AP it
suffices to find a &-spanning set for f in Y \E,,.

Using the fact that H is A-invariant we can simplify the study of {Tf : T€ A} C §,
as follows. We have

T(H *9)(x) = H o (Tx) = | H(Tx,x)o (3")dur,(x)

=fH(Tx.Tx’)<p(Tx’)dpy(x’)=H*T¢(x).

Since ¢ — Ty is an isometry of 1, = O, we conclude that {Te: T € A} C ball of
radius M in each §,. Hence g,, - - -, g« will be §-spanningin Y\ E,, for H *¢ with a
fixed ¢ satisfying [¢ ||, =M for all y, if for all ¢ satisfying ||¢ |, =M we have
min,s;si | H * ¢ ~ g, <8. To find this set of g choose n with |H — H, [, @0, <
8/2M for ally € E,, and find {g;} with min, ;s || H. * ¢ — g |lo, < 8/2 for all the ¢ in
question. Now if H, = = ¢s (x)¢¥i(x"), H, * ¢ ranges over functions of the form
2 aapi(x) with [a: | = M| ¢i[ls, and since the ¢ are bounded, it is easy to produce a
finite subset of these functions which can serve as g,

C.> C,. Iff€L*X,®,u)is given and f' is AP with ||f — f'| < 8V, then for
each TEA, | Tf - Tf'| < 6Ve. If gy, -+, g is a 8-spanning set for f’ on Y, then
min|| Tf - g; |ls, <28 but for those y on which | Tf — Tf'[ls, = 5. But this set has
measure < 8%¢/8%=¢.

C; = C.. First let us reformulate Cs. Let us call g, - -+, g« an &, §-spanning set
for f if the condition of C; holds; i.e., if min|| Tf — g;|ls, < 8 for y outside of a set
E(T) with v(E(T))<e. For each j=1, -k, let
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F(T)={y: | Tf - g e, <8}

and let O C A be a finite subset large enough so that for each j

(U EM)>v( U EM)-erk;

TEQ TEA

then minrea| Ff — T'f|lo, <28 unless y € E(T) or

U E(TN U E(D)}

ye u {
i TEA TEQ
We see that the functions {T'f: T' € Q} form a 2¢,28-spanning set.
Now assume that Pf = 0. Evaluating [ f(x)f(x")Pf(x, x")dg (x, x') we find that

. 1 =0
23 m GRTIY v )

| FETx)du, )

in LAY, 9,v).
Moreover Pf = 0 implies PTf = 0 for each T € A and we obtain from (2.3) that

ey 2 S| T[]0

in L*(Y, 9, v). In particular for any & >0 there exists T € A with

< e€

24) ’ j T Tfdu,

forall T’ € Q and for all y outside of a set of measure < ¢. If we assume now (2 was
chosen so that {T'f : T' € §}} is an ¢, 6-spanning set, then outside of a set of measure
<g,

25) [ 17 - T'fPdw, <&
for some T’ depending on y. But (2.4) and (2.5) give
f | Tf? du, < 8%+ 2¢

outside of a set of y of measure 2¢. Since g, 8 were arbitrary, we conclude that
f=0.



ERGODIC SZEMEREDI THEOREM 285

C, > C,. Suppose the functions of the form H * ¢ were not dense as H ranges
over fibrewise bounded A-invariant functions on X X vX, and ¢ over L*(X, %, n).
Let f€ L*(X, %, u) be orthogonal to all of these. Consider the function

H(x,x") = lim ——— (2N+1) Zé T®f(x) T™f(x').

This is A-invariant and belongs to L*(X X vX, %, & ). In particular |H [|s, g¢, <  for
a.e. y € Y. This norm is also A-invariant and we can find a A-invariant set BC Y
with v(B) as close to 1 as we please on which ||H{s &e, is bounded. Let
Hy =H -1, and fs = f-1,-1s); then,

Ha(xx) = lm Gty (2N+1) o, T (O T ()

This function is fibrewise bounded and f L Hp * fz implies that fs L Hp * f5. But
then

(2.6) f Ha (%, x") fa (x") fs (x)diz (x, x") = 0,

or, fs (x)fa (x') is orthogonal to Hs in L3(X X vX, %, i ). The same is then true of
each Tfs (x) Tfs (x’) and therefore also for any average of these functions. But then
Hs 1 Hgp so that Hy =0. C, implies that fs =0. Letting B approximate Y we
conclude that f =0 and this proves C,.

Definition 3.1. If (Y, 92, v) is a I'-invariant factor of (X, %,u) and A is a
finitely generated subgroup of I" for which one of the conditions C,-C, holds, then
we say that (X, B, n) is a compact extension of (Y, 9, v) for the action of A.

Property C, of compact extension ensures a plentiful supply of A-invariant
functions on X X yX. If the extension is non-trivial these cannot all be functions on
Y, since choosing f with E(f| Y)=0 implies E(Pf|Y)=0 and if Pf were a
function on Y, this implies Pf = 0. We see then that a compact extension is never
relatively weak mixing for any T € A. The converse is true in the following sense.

Proposition 2.2. If (Y,9,v) is a T'-invariant factor of (X, B, u) and for an
element T ET, the extension is not relatively weak mixing, then there exists a
T-invariant factor (X', B', ") of (X, B, u) which is a non-trivial compact extension
of (Y, D, v) for the action of the group generated by T.
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Proof. Let H(x, x")be a bounded T-invariant function on X X yX which is not
a function on Y. Replacing H(x, x") by H(x’, x) if necessary we can assume that for
some ¢ € L™(X, B, 1), H*¢ is not a function on Y. In the proof of Theorem 2.1
we showed that for each function H * ¢ with H and ¢ fibrewise bounded, we could
modify H *¢ on an arbitrarily small set to obtain an AP function. Hence, if
(X, B, 1) is not a relatively weak mixing extension of (Y, 2, v) for T €T, there
exist AP functions on (X, 8, u ) which are not functions on (Y, &, v). Now it is clear
that for any A CT, sums and products of bounded AP functions are AP functions.
Moreover, functions in L*(Y, &, v) are AP. In addition, if fis AP for A,and S €T,
then Sf is again AP inasmuch as min|| Tf — g [lo, = min| TSf — Sg; [ s,-1,. Thus if B’
is the o-algebra with respect to which all AP functions are measurable, then B’ is
I'-invariant and (X, B, n) is a factor of (X, %, u) which is a compact extension of
(Y, 2, v) with respect to A. This proves the proposition.

Next we show that for a given [-invariant factor (Y, 9, v) of (X, B, u ), the set of
T such that (X, &, p ) is a compact extension of (Y, @, v) for the group {T"} forms a
subgroup of I'. More precisely:

Proposition 2.3. If (X, B,u) is a compact extension of (Y,9D,v) for the
actions of the subgroups A.,A;CT, then it is compact for the action AA..

Proof. We use the characterization C; of compactness. Let f € L¥(X, B, 1)
and ¢, 8 >0 be given. Choose gy, -, g in L*(X, %, u) such that for each T € A,,
min || Tf — g;[ls, < 8/2 but for y € E(T)C Y, with »(E(T))<e¢/2. For each g,
choose hy, - -, b, € L*(X, B, uu) so that for each S € Az, miniz,=, ]| Sg — i [lo, <
8/2k but for y € F;(S), where v(F;(S))<e/2k then for TEA, SEA,,
and y & ST'E(T), min|Tf- glles, <8/2. Having chosen j=j(y) to attain
this minimum, we have ||STf- Sgllo, <8/2. If, in addition, y¢& F,(S),
then  miny |/ Sg — ke, =8/2. Thus outside of STE(T)uU,E(S),
min, , | STf — hy, [ls, < 8. Since »(ST'E(T) U U, F;(S)) < &, this proves the proposi-
tion.

Combining Propositions 2.2 and 2.3 we obtain the following ‘“‘structure”
theorem.

Theorem 2.4. Assume T is finitely generated and let (Y,%,v) be a T-
invariant factor of (X, B, ). There exists a T-invariant proper extension (X', B', ")
of (Y, 9, v) and a direct product decomposition T =T,, X T'. where T, and T. are two
subgroups for which

(i) (X', B’, u') is a relatively weak mixing extension of (Y, D, v) for every T €T,
T#L

(i) (X', B’',u") is a compact extension of (Y, D, v) for the action of T..
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Proof. Let I'. be a maximal subgroup of I' (=2™) for which there exists a
non-trivial I'-invariant compact extension of (Y, @, v) in (X, %, 1), and denote by
(X', #', n') the corresponding extension.

If TET\I', then (X', B', 1') is a relatively weak mixing extension of (Y, 9, v).
Otherwise, there would exist a I'-invariant factor (X", 8", u") of (X', B', 1) which
is compact for T (Proposition 2.2); and since (X", 8", n") is also compact for T, it
would be compact for the group generated by I', together with T in contradiction
with the maximality of I'.. This also implies thatif TEZT', then T" & T, foralln = 1.
['/I'. is therefore torsion free and I'. is a complemented subgroup of I'. Take for I'.,
any complement of T'..

Remark. When one restricts I' to an invariant factor the representation need
not be faithful, that is, some non-trivial elements of I' may act like the identity on
the factor. In our decomposition above those elements which act trivially on
(X', RB',n’) will clearly go to I'..

We end this section with a modification of condition C, which will be the
characterization of compact extensions which we will need in the next section.

Proposition 2.5. Suppose (X, B, n) is a compact extension of (Y, D, v) for the
action of a subgroup A CT. Then foreach f € L*(X, B, n) and €, 8 > 0, there exists a
set B C Y with v(B)>1- ¢ and a set of functions g, 82, -, 8 € L*(X, B, u) such
thatiffs = f - 1.-vs), thenforall T € A and a.e. y € Y, mins;=« | Tfs — g llo, < 8.

Proof. Let f'€ L*(X,®, ) be an AP function with ||f — f'| < §V¢/2 and let
g1, 8k-1 be such that for TE A and ae. y €Y, min| Tf' - g;[ls, < 8/2. Let
g =0 and let B={y:|f-f'|s, <8/2}. Then v(B)>1-¢ and if y € T'B,
ITfa = Tf'llo, = | Tf ~ Tf'llo, < 8/2, and s0 miniz;si—1 | Tfs — g lo, < 8. If y & T™'B,
then Tfs =0 in , and so || Tfs — g« [lo, < 8.

3. Proof of Theorem A

We denote by I' the group generated by the transformations T, - - -, T, and since
we do not assume that I' acts effectively we may assume I' = Z™. We shall say that
the action of a group I" on a probability measure space (X, B,u) is SZ if the
statement of Theorem A is true whenever T,,- - -, T, belong to I'. Thus, Theorem
A states that every Z™ action is SZ.

We prove Theorem A by “induction” on the I'-invariant factors of (X, %, u ). The
action of I' on the trivial factor is trivially SZ and we show (a) that there exists a
maximal factor for which the action of I' is $Z, and (b) that no proper factor of
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(X, B, u) can be maximal for the property that the action on it is SZ. These two
steps combined imply that the maximal factor must be (X, %, u ) itself, and hence,

that the action of I' on it is SZ.

Lemma 3.1. Let (Y, %, v) be a I'-invariant factor of (X, B, ). Let A € %,

AcE 9D and assume that for every y € Ao, p,(A)=1—n. Then if T\,---, T. €T
k k

1) w (N TA)z a-kmu (N TAl).
1= 1=

Proof. The intersection of k sets of (probability) measures at least 1 —  each,
has measure at least 1 — k». Thus forevery y € n,‘;] T,A, we have u, (ﬂ,Zl T,A)z
1- k7, and we obtain (3.1) by integrating on [ T,A,.

The collection of all factors of (X, %, p ) is partially ordered by inclusion (of the
corresponding closed subalgebras of L(X, B, u)). If (Yo, D, v.) is a totally ordered
family of factors we define its supremum, (Y, &, v) = sup(Y., @., v.), as the factor
whose corresponding subalgebra is the closure of the union of the subalgebras
corresponding to (Y., 9., v.). In other words, a set A € B belongs to 9 if for every
e >0, there exists a set A, is some &, such that u((AVA)U(A\A))<e Itis
clear that if for every a, (Y., %., v} is I'-invariant, so is (Y, 9, v).

Lemma 3.2. Let (Y. 9., u.) be a totally ordered family of T-invariant
factors. Assume that for each a the action of I' on (Y., Da, o) is SZ. Then the action
of T on (Y, 9, v)=sup(Ye Da, u.) is SZ.

Proof. Let T, -, T. €T and let A €D, v(A)>0. Take n = (2k)™" and
Aj € 9, such that

(3.2) n(AVADU(ANA) <inv(A).

By (3.2), u(A§) (=v(A)>3u(A)>0. Also the set of y € A} such that u,(A) <
1— % has measure less than ju (A), since otherwise u(As\A)>inu(A) which
would contradict (3.2). If we denote by A, the subset of A of points y for which
uy (A)>1-m, then Ay € Do, n(Ao)>3iu(A), and since the action of I on 9, is
SZ we have

N

o1 . " _
llgl_glfNZp,(j:l T,-Ag)——a>0.

Applying Lemma 3.1 for T7,---, Tk, n=1,2,--- we obtain

N

| o
(3.3) lim inf - > V< n T,-A) =

1

> 0.

N
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Since A €9 and T,,---, T« €T were arbitrary, (3.3) is the statement that the
action of I' on @ is SZ.

Proposition 3.3. The family of I'-invariant factors on which the action of I is
SZ has maximal elements (under inclusion).

Proof. Zorn’s lemma and Leinma 3.2.

We now turn to show that no proper I'-invariant factor of (X, ®, ) can be
maximal for the property of SZ action. In all that follows (Y, @, u) is a proper
I'-invariant factor and the action of T’ on it is SZ.

Lemma 3.4. LetE;,j=1,---,J,1=1,---,L be measurable sets and assume
that for some 8 >0 and every j and | we have u(E; \\E; )= 8. Then

(3.4) u ( N E,-v,) > ,L<m E,-,1>—JL6.

Proof. Replacing in M E,, any term E;, by E;, may increase the measure of
the intersection by at most é.

Proposition 3.5. Assume that the action of " on (Y, 9D, v) is SZ and that
(X', B', u") is a I-invariant extension of (Y, D, v) in (X, B, u) such that there exists
a decomposition I' =T, xXTI'. as given by Theorem 2.4. Then the action of I' in
(X', B',un') is SZ.

Proof. Let T,,---, T, €T and let A € B’ with 2a = u(A)>0. We have to
show that

We write T; = SR with S;€I',, and R;€ I'. and then replace the set {T;} by the
possibly larger set {S;R;} where {S;}/-, is the set of all the transformations S’ above
renumbered so that possible repetitions are omitted, and similarly for {R,}i.,.
There is no loss of generality in assuming that R, = identity. We have enlarged the
set of transformations and we are now going to (possibly) reduce A. We first look at
E(14 , Y)=u,(A) and take the intersection A; of A with the set of fibers
corresponding to points y such that u,(A)>a (=3ip(A)). Now, taking

(3.5) §=@JL) a’,

and using Proposition 2.5 for the action of I'., we remove from A, a small set of
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fibers (that is, its intersection with a small set in @) and obtain our final set A, such
that u (Ao} >0, u, (A) > a whenever u, (Ao) >0, and, denoting f = 1., there exist
functions {g;};<, such that for every y € Y and R €T

,min [|Rf - g s, <8.

We now define the “‘coloring function” ¢(R,y) on I'. X Y by setting ¢(R, y)= the
smallest integer r such that ||[Rf — g, ||, = min || Rf — g[ls,, and extend it toT X Y by
c¢(SR,y)= c(R, Sy). The “coloring function” assumes values in {1, - -, K}. Since
'=Z"theset G={SR},j=1,---,J,1=1,--- L, can be viewed as a configura-
tion in Z™. By the multidimensional version of van der Waerden’s theorem (see [3]
for the proof of Griinwald or [2] for a simpler proof depending on the recurrence
result in topological dynamics alluded to in our introduction) there exists a finite
configuration G, (e.g. a large enough box) in Z™ such that for any coloring of G, by
K colors one can find in G, a monochromatic translated homothetic copy of G. The
constants of homothety are clearly bounded by some integer H (e.g., the diameter
of G:). We denote by {T.} a set in I' which corresponds, as above, to the
configuration G,. We have the following

Fact. For every yE€Y and n € Z there exists a TE and an integer h,
1=h = H such that

(3.6) {ST"R ™ Ty} C{T"y}e,
3.7 c(S;™R ™ Ty)=const for j=1,---,J,1=1,--- L.

Denote by B, the base of A, in Y, i.e., the set {y;u,(A,) > a} and apply the
assumption that the action of I' in (Y, &, v) is SZ. There exists a positive number b
such that for all sufficiently large N, v»((), T2B,)> b for at least bN values of n in
[1,---,N]. Denote B, = 1, T.B,. For y € B, there exist T and h such that, by
(3.6), Ty € M, ,S™R™B,. We have pointed out before that 1= h = H and it is
equally clear that the number of possible T’s is bounded by the number of points in
G.. Thus we have a covering of B, by a finite number, say H,, of subsets B, (T, h)
containing the points of B, for which (3.6) and (3.7) are valid (for the specific choice
of T and h). It is clear that if v(B,) > b, then, for some (T, h), v(B.(T, h))> b/H,.

If, for y € B, (T, h), we look at the sets SJ*R["A, on the fibre of Ty, we obtain by
(3.7) and Lemma 3.5 that

(3.8) . ( N SR ;"'A(,> > wny ( N S}"‘Ao>— JLS
it i
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and by the choice of 8, (3.5), any time that

(3.9) pr (N 840) > 3’
j
we have
(3.10) po (N SPRIA) > 4o’
;

Since S; €T'.,j =1,---,J we obtain by Theorem 1.4 that for all sufficiently large N,
(3.9) is valid for all the pairs (y,n) such that y € B, and 1= n = N, except for an
arbitrarily small proportion of these.

Specifically, we obtain that for all sufficiently large N, there exists a subset
Q C[1,--+,N] such that Q*>3bN and such that for n € Q and an appropriate
choice of (T, h.) we have (3.9) valid for all y € B/.C B,(T.,, h.) such that

s b
(3.11) v(BY) > 55

Integrating (3.10) on B/, we obtain that for n € Q and h = h,
(3.12) I ( M S"R :"‘A0> >iH7'ba’ = a,.
il

Thus, for all large N, there exist at least bN/2J integers n in [1,- - -, JN] for which
w(M,STRTAs) > a, which clearly concludes the proof.
Theorem A follows immediately from Propositions 3.3 and 3.5.
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