
A N  E R G O D I C  S Z E M E R E D I  T H E O R E M  F O R  C O M M U T I N G  

T R A N S F O R M A T I O N S  

B y  

H .  F U R S T E N B E R G  A N D  Y. K A T Z N E L S O N  

The classical Poincar6 recurrence theorem asserts that under the action of a 

measure preserving transformation T of a finite measure space (X, ~,  p.), every set 

A of positive measure recurs in the sense that for some n > 0,/z ( T - ' A  n A )  > 0. In 

[1] this was extended to multiple recurrence: the transformations T, T2, . . . ,  T k 

have a common power satisfying /x (A n T - h A  n . . .  n T - k " A ) >  0 for a set A of 

positive measure. We also showed that this result implies Szemer6di's theorem 

stating that any set of integers of positive upper density contains arbitrarily long 

arithmetic progressions. In [2] a topological analogue of this is proved: if T is a 

homeomorphism of a compact metric space X, for any e > 0  and k = 1 , 2 , 3 , . . - ,  

there is a point x E X and a common power of T, T 2, �9 �9 �9 T k such that d(x,  Tnx)  < 

e, d(x ,  T2"x) < e, .  � 9  d(x ,  Tk~x) < e. This (weaker) result, in turn, implies van der 

Waerden's  theorem on arithmetic progressions for partitions of the integers. Now 

in this case a virtually identical argument shows that the topological result is true 

for any k commuting transformations. This would lead one to expect that the 

measure theoretic result is also true for arbitrary commuting transformations. (It is 

easy to give a counterexample with noncommuting transformations.) We prove this 

in what follows. 

T h e o r e m  A. Let  ( X , ~ , / z )  be a measure space with /z(X)<oo,  let 

T~, T2, �9 �9 �9 Tk be commut ing  measure preserving transformations o f  X and let A E B 

with tz (A  ) > O. Then 

lim inf 1 N ~  -N 1 Iz( T ~ ' A  A T j ~ A  N . . . A  T ~ A  )>O.  

A corollary is the multidimensional extension of Szemer6di's theorem: 

T h e o r e m  B. Let  S C Z" be a subset with positive upper density and let F C Z" be 

any finite configuration. Then there exists an integer d and a vector n E Z" such that 

n + d F C S .  
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Here the upper density is taken with respect to any sequence of cubes 

[a~', b(, 1)] • _(2, [a(,) (n o, [u , , b~  ) ] x . . . x  . , b ~  )] with b. - a .  ~oo. 

The proof of Theorem B on the basis of Theorem A is carried out as in the 

one-dimensional case ([1], [4]). 

The ideas developed in this paper owe a good deal to conversations with D. 

Ornstein and J.-P. Thouvenot,  to whom the authors would like to express their 

gratitude. 

1. Relat ive  ergodici ty  and weak  mixing 

Throughout  the discussion we shall consider measure spaces on which a fixed 

group F which is countable and commutative acts by measure preserving transfor- 

mations. We say (Y, @, v) is a F-invariant [actor of (X, ~,IX) if we have a map 

~- :X--* Y with ~ - l ~  C ~,  7fix = u and for each T ~  F, T~'(x) = 7rT(x). A factor 

of (X, ~,IX) is determined by a F-invariant closed subalgebra of L=(X, ~,IX). 
(X,~,IX) is an extension of (Y,~ ,  u). We assume, as we may, that (X, ~,IX) is a 

"regular measure space" ([1], w Then we can associate to the factor (Y, ~, u) a 

family of measures {ixy l Y E Y} on (X, ~ )  such that for each f ~  L I(X, ~, IX), 
f E L I(X, :~, Ixy) for a.e. y U Y, and f fdixy is measurable and integrable in (Y, ~, u) 

with 

f {f f 
We write IX = f Ixydu(y) and speak of this decomposition as the disintegration of/z 

with respect to the factor (Y, @, v). The Ixy are well defined up to sets of measure 0 

in Y. The fact that T E F is measure preserving on (X, ~,IX) translates into 

TIXy = Ixo where, for any measure 0, TO is defined by TO (A) = 0 (T-I(A)), or by 

f f(x)dTO(x) = f f(Tx)dO(x). 

We say that (X, ~ , / x )  is a relatively ergodic extension of (Y, ~,  v) for an element 

T E  F if every T-invariant function on X is (a.e.) a function on Y. Given two 

extensions (X, ~,  IX) and (X', ~ ' ,  IX') of (Y, ~, v) we may form the fibre product 

(X, ~,  ~Z ) where 
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2 = x x , , x  = {(x, x ' )  ~ x x x ' :  ~-(x) = ~-'(x % 

is the restriction of 83 x 83' and 12 is defined by the disintegration 

12:, = ~: ,  x Iz '~ 

where /z =f l z y dv ( y )  and # ' =  f lx 'ydv(y) are the disintegrations of /z and /z' 

respectively. We then say that (X, 83, ~ )  is a relatively weak mixing extension of 

(Y, 9 ,  v) for T ~ F if (X • yX, 4 , / 2 )  is a relatively ergodic extension of (Y, 9 ,  v) 

for T. 

Lemma 1.1.  Let F : X--->M be a measurable map from a measure space 
(X, 83, Iz ) to a separable metric space M and assume that the function d (F(x ), F(x')) 
is a.e. constant on X • X. Then F(x ) is a.e. constant. 

Proposition 1.2. I f  (X, 83,/z) is a relatively weak mixing extension of 
( Y, 9, v) for T ~ F and (X', 83 ', tz ') is a relatively ergodic extension of ( Y, 9, v) for 
T, then (X  • yX', ~3, i 2 ) is a relatively ergodic extension of (Y, 9, v) for 7". 

P r o o f .  Let ~" :X--> Y, r r ' :X ' - -~  Y be the associated maps and assume that 

H(x ,x ' )  is a T-invariant function on X • ~.X'. Form the function E(x~,x2) on 

X • yX given by 

E(x, ,  x2) = f IH(x,,  x') - H(x2, x')[ dg'~x,)(x') 

where ~ ' =  f tz 'ydv(y).  One sees that E is T-invariant and so is a function of 

7r(xl)= It(x2). We apply Lemma 1.1 to the map x--->H(x,.) on (X, 83,/~y) and 

conclude that it depends only on 7r(x). Hence H(x, x') is a function of x '  and by 

relative ergodicity of the extension ~": X'---> Y, we see that /-/ depends only on 

7r(x) = 7r'(x'). This proves the proposition. 

If (X, 83,/z) is an extension of (Y, 9,  v) we denote by E ( f l  Y) the conditional 

expectation which maps LP(X, 83, tz) to LP(Y, 9, v) and is defined by 

E ( f l Y ) ( y  ) ---ffdlzy a.e. We shall frequently use the identity 

Y 

= f f(xl)f(x2)d~(x, ,x2).  
X•  
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L e m m a  1.3.* Let (X, ~ ,  IX) be a relatively weak mixing extension of (Y, 9 ,  Ix) 

for T and let ~, ~ E L z(X, ~,  Ix ). Then 

' f [E(~T"~, I Y) -  E(, IY)T"E(~olY)]2dv(y)=O. limo 

P r o o f .  We can assume E ( ~ , I Y  )= 0. So we wish to eva lua te  

f f ~b(x,)~b(x2)~o(T"x,)~(T"x2)d#(x,,x2) 1 ~_~ E(~T"r I Y)Zdv(y) = '~ n = l  (1.2) ~ - = ,  

by (1.1). Now a weakly  convergen t  subsequence  of (1/N)E,~=, ~p (T"xl)~ (T"x2) will 

converge  to a T- invar ian t  function on X • yX, which, by hypothesis ,  is a function of 

7r(xl) = 7r(x2). The  limit of (1.2) is then expressed  in t e rms  of E(~b I y)2 = 0, and 

this being the case for  any convergen t  subsequence  we obta in  the lemma.  

We genera l ize  the foregoing in the next  theorem.  

T h e o r e m  1.4 .  Let ( X, Y3, IX ) be a relative weak mixing extension of ( Y, 9,  v) 
for every T J  1, T C F. Then if f~, . .  ., f~ E L ~(X, ~,  tz ) and T~," �9  T~ are distinct 
elements of  F, 

(i .3) lim E E T]fj I - TTE(f,I Y)  d v ( y )  = O. 
N ~  = 1  j = l  

P r o o f .  Write  gj = T;'fj. If we express  E(Ilgjl  Y ) - l l E ( g j l  Y )  as 

E E(g,g2" "g,-,(g,-E(g, I Y)E(g,+,I Y ) "  .E(g, I Y)I Y) 

we see that  we can reduce  (1.3) to the case where  some E ~  I Y) = 0. So we assume 

E(f~ I Y) -- 0. Using (1.1) the p rob l em is to prove  

,Nfr  (1.4) lira ~ ,~-1 TTf~ (x,)TTfj (x2)dfi (x,, x2) = 0 
N ~  = j = l  

XXyX 

given that  E ( f t l Y ) =  0. Since by Propos i t ion  1.2, X • yX is a relat ively weak  

mixing extension of Y wheneve r  X is, (1.4) will follow if we p rove  that  

* Here and elsewhere the operator T is defined for T E F by Tf(x) = f(Tx). Note that TE(f I Y) = 
E(Tfl Y). 
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(1.5) 'iml lfI ~-~ ~ r;'f,d~, (x)= 0 
M=I j = l  

x 

whenever  E(f ,  I Y) = 0. 

When  l = 1 the result is clear since T is measure  preserving so we proceed  by 

induction and assume the theorem is valid for  I - 1. Set S, = T, T7 ~, i = 1,..., l - 1. 
The Si are all distinct and also different f rom 1, and we assume that (1.3) holds with 

l replaced by l - 1  and the T, by the &. 

Let /,k-1 denote  the diagonal  measure  on X H (see [1] for details on "s tandard  

measures"  in p roduc t  spaces) and let ,-1 rr/z k-1 be the diagonal  measure  on Y~-' b'A ~ 

Set 

~1 tt 1-I ~-~ Jim I '~ ~ *  --K ( S i x  �9 "- x S,_I) ~ a  , 

,_, 1 -'6 
= [im q S1--1) / " a  , "* ~ N 7  ( S , . . .  " '-' 

where the limits in quest ion refer to convergence  with respect to integrat ion against 

functions of  the form gl @ " "  ~) g~ ~(x~,- �9 -, xt-1) = gdx~)"" gH(xt-1), and Nk is a 

subsequence  for which these limits exist. We  find 

f 1 g , |  | g,-,d~** '-I= ~ K  

=[~ 
=[~ 

f s~g,(x).., st,g, ,(x)d.(x) 

k, f E(S;g, . . .  S~-lg,-,l Y)d.v(y)  

k, f STE(g,I Y ) ' ' '  S?-,E(g,-II Y)du(y) 

by (1.3), and finally, 

(1.6) f g,|174 f E(g,l Y ) | 1 7 4  ,1 r )  d ' / - ' -  

We say that a measure  on X ~-1 is a conditional product measure if it is related to 

its project ion on y H  as in (1.6). (See [1] for details.) Equivalent ly ,  a measure  on 

X ~-' is a condit ional  p roduc t  measure  if it takes the same value at gl ~)" "" ~) gl-1 as 

it does at E(gl I Y ) ( ~ ' " Q E ( & _ ,  t Y). 
Consider  any measure  of the form dO = g , @ " ' @  OHdl.t'-I and form 

1 N Jr 

0 , =  lira ~-k E ( S , x - " •  &_,)" 
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passing to a subsequence  if necessary. We shall show that  0 ,  is a condit ional  

product  measure .  Namely  

f 1 (1.7) g, Q""  @ g,-,dO, = ~im= 

= lira 1 

~l_,S'~_lgt_ldtZ ~-' 
1 

f E ( , , s r , g , , t  r)a  , ,  1 

But by L e m m a  1.3 we can replace E(6S"g I Y) by E(6 I Y)S"E(g [ Y) "on  the 

average" ,  F rom this we readily see that 

f gl@'" "@g,-mdO, = f E(gl[ Y ) @ . .  "@E(gl-,I Y)dO, 

so that 0 ,  is a condit ional  product  measure .  Since l inear combinat ions  of 

01 @" �9 "@ 4,t-1 are dense in L ~(/.t ,~-1) the same result is t rue for  any 0 absolutely 

cont inuous with respect  to /z,t-1. In part icular  if 0 is absolutely cont inuous with 

respect to /z,t-I and S i x " "  x SH- invar ian t  it must be a condit ional  product  

measure.  

Now let f'EL~(X,~,tz) with E ( f '  I Y ) =  1 and define the measure  fi~-~ by 

setting 

f gl@...Qg,_ldl2~-'= (gl(x)g2(x)'''g,-,(x)f'(x)d#(x). 

-- I-1 t--I a is absolutely cont inuous with respect  to # a  and if we form the limit 

1 N~ 
(1.8) fi ,~-~ = lim ~ ~ ($1 x . , .  x Sl-1)"fi ~-1 

Y 

we will obtain a measure  that is S, • �9 �9 �9 • Sl_l-invariant and absolutely cont inuous 

with respect  t o / z  ,t-l. Hence  fi ,~-1 is a condi t ional  product  measure .  It is therefore  

de te rmined  by its image in y H .  But  the image of f i , t - '  on y1-1 is u~ -1 since 
I 1--1 Eft' Y ) =  1. It follows that / ~ , t - l = / ~ ,  . 

Finally take fl ~ L| ~ , / z )  with E(fI[Y)= 0 and set f ' =  ft + 1. Compar ing  
(1.8) with the definit ion of /z , t -1  we obtain 

o r  

1 Nk 

l i m ~  ( S , •  0 t a  - t-, 0 
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Replace x by TTx and recall that SiTt = 7",: 

1 N~f (1.9) lim ~-k ~ T?fl(x) . . .  T~-,fH(x)TTft (x)dtz (x) = O. 

But this gives (1.5) inasmuch as (1.9) is valid for some subseqflence o1~ any sequence. 

This completes the proof. 

2. ,Compact extensions 

In this section we shall describe what we will speak of as the compactness of an 

extension (X, O, /z)  of a F-invariant factor (Y, 9,  u) for the action of some T E F. It 

will be convenient to extend this to the action of a subgroup of F, so suppose that A 

is a finitely generated subgroup of F. Fix an epimorphism Z'----~ A by writing 

n ~ T '"), n E Z' .  Let [[n[l= max I n, I where n = ( n l , ' - - , n r ) .  The ergodic theorem 

for Z ' -act ions  states that if f E L~(X, ~ , / z )  then 

1 f(T(,)x ) (2.1) lim| (2N + 1)' i,,,tt~_<N 

exists for almost all x E X and defines a A-invariant function. We shall use the 

much more elementary fact that the limit in (2.1) exists weakly in L~(X, ~, tz) for f 

in this space. 

Let /x = flzydu be the disintegration of tz with respect to the factor (Y, @, u) of 

(X, ~ , / z )  and let 7r : X ~ Y be the map defining the factor. We shall denote the 

Hilbert-space L2(X,~, t z )  by ~ and L2(X, ~,/zy) by ~y. We have 

Ilfl[~ = f Ilfll~ydu(y) �9 

Also note that each T E  F defines an isometry f--* Tf of ~ry onto ~y so that 

II rfll , = Ilfll, . 

Let H E L 2 ( X x  vX,~,I~) and f E L z ( X , ~ , t z ) .  
(relative to (Y, 9 ,  u)) of H and f 

We define the convolution 

H * f(x)  = f H(x, x')f(x')dlz, (x') 
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where y = ~'(x). We have 

and, in particular, if [[Hl[~v| is bounded,  the operator  r H *  q~ is a bounded 

operator  on S). We shall say that ~0 E L~(X, ~ ,  IX) is fibrewise bounded if 11 r [[~, is 

bounded and similarly for H E L2(X • vX, ~],/2). 

Consider now the following properties of our extension (X, ~ ,  IX) of (Y, ~, u) 

with respect to the subgroup A C F: 

C~. The functions {H * q~} span a dense subset of L2(X, ~ ,  IX) as H ranges over  

fibrewise bounded A-invariant functions on X x vX and q~ E L2(X, ~ , / z ) .  

C2. There exists a dense subset ~ C L2(X, ~,  ~ ) w i t h  the following property.  If 

f ~  ~ and ,5 > 0 ,  there exists a finite set of functions g l , ' " , g ~  

L2(X, ~ ,  IX) such that for each T ~ A, minl~,~ [1Tf-  g~ I1,, < ~ for a.e. 

y ~ Y .  

C3. For each f ~  L~(X ,~ ,~ )  the following holds. If e, ~ > 0  are given, there 

exists a finite set of functions g~, . . . ,  g~ ~ L2(X, ~ ,  IX) such that for each 

T G A, mini~<~ It T f -  g~ tt~, < g but for a set of y of measure  < e. 

C4. For each f ~ L~(X, ~,  Ix) form the limit function 

1 
�9 f(T(,)x)f(Tt,)x,  )  q(x, x')) = (2N + 1)' 

in Lz(X x ~.X, ~ , /2) ,  then /sf does not vanish a.e. unless f vanishes a.e. 

T h e o r e m  2.1.  The four properties C,-C4 of an extension (X, 9~,IX) of 
( Y, @, u) with respect to a finitely generated subgroup A C F are equivalent. 

P r o o f .  C1 ~ C2. Let us say that f ~ L2(X, ~ ,  IX) is AP (almost periodic) if for 

each 6 > 0, there exist gl,'" ", gk ~ L2(X, ~ ,  IX) with minl=~j~k [[ Tf - gs ][~y < 6 for 

each T ~ A and a.e. y G Y. Clearly any linear combination of AP functions is AP. 

To prove that Ca ~ Cz it will suffice to show that by an arbitrarily small 

modification of a function of the form H * ~0, H being A-invariant and fibrewise 

bounded, we obtain an AP function. Since q~ --~ H * ~0 is bounded we can restrict to 

a dense subset of q~ ; in particular, we may assume that ~0 is fibrewise bounded,  say 

II ft,, M. 
Let "q > 0 be given; we shall find an AP  function f ~ L2(X, ~ ,  IX) with f = H * q~ 

but for a set of x ~ X with measure < ~ on which f vanishes. In L2(X x rX, ~ ,  ti),  

the functions of the form E ~Oi(x)~O](x'), ~bi, ~b'i~ L| ~,IX) are dense and so we 

can choose a sequence of such functions converging to H in L 2. Passing to a 

subsequence we can assume that H ,  is a sequence of such functions with 
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[ I H - H .  II~| for almost all y ~ Y. We can then find a subset E ,  C Y with 

v ( E , )  < r/ such that IIH - H .  [l,,| ---~ 0 uniformly for y ~ E, .  Let  F ,  be the largest 

A-invariant  set in E~ :F, = ("IT~a TE~. We shall show that the function 

(2.2) 
= [ H  * ~ (x), 

f ( x  ) 

t O, 

~'(x) ~ F~ 

~-(x) ~ F~ 

is AP.  

Let us say that a set of functions g~, �9 �9 �9 gk is ~-spanning for f on the set B C Y if 

for each y E B, and T E A, mini II Tf- g, I1~ < ~. The  function 0 is 6-spanning for f 

in F~ so it will suffice to find a 6-spanning set in Y \ F , .  Note  that if g , . . . , g ~  is 

6-spanning in B then by the isometry of ~Ty with ~)y, Tg~," �9 ", Tgk is ~-spanning in 

TB if T U A. Using this we can construct  a g-spanning set in U r~^ TB. Namely,  

enumera te  the e lements  of A : T~, 7"2, T3, �9 �9 �9 and for each x ~ / 3  = (..J r~A TB let Tx 

be the first T~ with T~ (x) ~ B. We then set g, (x) = g, (T~x) and so find that g~, �9 � 9  ~ 

is 8-spanning in /3. 

In view of this we see that in order  to prove that f ( x )  given by (2.2) is A P  it 

suffices to find a 8-spanning set for f in Y\E~ .  

Using the fact that H is A-invariant  we can simplify the study of {Tf  : T ~ A} C ~ 

as follows. We have 

f 
T ( H  * ~o ) (x)  = H * ~o (Tx)  = J H(Tx ,  x ')~o (x')dgT, (X') 

f H ( T x .  Tx ' )~(Tx ' )d t zy (x ' )=  H *  Tq~(x). 

Since ~ ~ Tq~ is an isometry of ~ry  ~ g)y we conclude that {Tq~- T ~ A} C ball of 

radius M in each ~)r- Hence  gl, �9 �9 ", gk will be 8-spanning in Y \ E ,  for H * ~ with a 

fixed q~ satisfying I1~ Ily--< M for all y, if for  all ~, satisfying [1~ Ib--< M we have 

min~_~,~k[lH * ~0 - gj Ib < 8. To  find this set of gi, choose  n with [[H - n ,  I[,y|169 < 

8 /2M for all y ~ E, ,  and find {gj} with minl-~j~kl[H. * ~0 - g~ Iby < 8/2 for all the q~ in 

question. Now  if H .  = E O~(x)r H,  * ~ ranges over  funct ions of the form 

E a,~O~ (x) with [a, 1<= M II  0',ll y and since the qJ~ are bounded ,  it is easy to p roduce  a 

finite subset of these functions which can serve as gj. 

C2 ~ C3. If f ~ L2(X, ~ ,  tz) is given and f '  is A P  with I [ f -  f'[I < 8x/ , then for 

each T E A, [I Tf- zf'll < 8 x/~. If g , , . . . ,  gk is a 8-spanning set for  f '  on Y, then 

m i n l l T f - g j l [ ~ ,  < 2 8  but  for those y on which l iT[-Tf'[I, ,--> 8. But  this set has 

measure  < ~ % / 6 2 =  e. 

C3 ~ C4. First let us reformula te  C3. Let  us call g~, �9 � 9  gk an e, g-spanning set 

for  f if the condi t ion of C3 holds; i.e., if mini[ T f -  gj Ib, < 8 for  y outside of a set 

E ( T )  with v ( E ( T ) ) < e .  For  each j = 1 , . . . , k ,  let 
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~ ( T )  = {y: IlTf-g;l[~, < 8 }  

and let l l  C A be a finite subset  large enough so that for each ], 

T E A  

then m i n r , ~ n I I T f -  T'fl[~ , < 2 8  unless  y �9 E ( T )  or 

Y � 9  U { U F / ( T ) \  U ~ ( T ) } .  
j T E A  T E N  

We see  that the funct ions {T'f: T ' U  f~} form a 2~, 28-spanning set.  

Now assume  that /Sf = 0. Evaluating ff(x)f(x')Pf(x, x')dfi(x, x') we find that 

1 ff F2 Umo + 1)" = 0 (2.3) 

in L2(y, 9, v). 
M o r e o v e r / S f  = 0 implies PTf = 0 for each T E A and w e  obtain from (2.3) that 

1 2 

in L2(y, 9,  v). In particular for any e > 0 there exists  T �9 A with 

(2.4) I f  ~ i ~ . , I  < ~  

for all T' �9 f~ and for ali y outs ide  of a set of measure  < e. If w e  assume now l~ was 

chosen so that {T ' f  : T' �9 l~} is an e, 8 - spanning  set,  then outs ide  of  a set of measure  

(25) f IT f -  T'fl2dtz, < 82 

for s o m e  T' depending on y. But (2.4) and (2,5) give 

f ITfl2dlz, < 8 2 + 2 e  

outs ide  of  a set  of  y of measure  2e.  S ince  e, 8 were  arbitrary, w e  conc lude  that 

f -O.  
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C4 f f  C1. Suppose the functions of the form H * ~0 were not dense as H ranges 

over fibrewise bounded A-invariant functions on X x yX, and ~0 over  L2(X, ~ ,  IX). 

Let f E L2(X, ~, Ix) be orthogonal to all of these. Consider the function 

1 
H(x, x')  = lim (2N + 1)' ,,ll~-'~N T(")f(x ) T<")f(x '). 

This is A-invariant and belongs to L2(X x yX, ~ ,  12). In particular tIHll.~y| ~ for 

a.e. y E Y. This norm is also A-invariant and we can find a A-invariant set B C Y 

with v(B) as close to 1 as we please on which IIH~l~,| is bounded. Let 

lib = H �9 1,,-,<a) and fa = f "  l~,-'(s); then, 

1 
HE (x, x ' )  = lim| (2N + 1)' i,~] u"~  r'")[a (x) T'")fa (x '). 

This function is fibrewise bounded and f 3_ HE * fa implies that fa 3_ lib *la. But 

then 

(2.6) f na (x, x')fa (x')fa (x)d/2 (x, x') = O, 

or, fB(x)fa(x') is or thogonal  to HE in L2(X x yX, ~,/2). The same is then true of 

each Tfa (x) Tfa (x') and therefore also for any average of these functions. But then 

Ha 3_HE so that H s  ------- 0. Ca implies that fa -= 0. Letting B approximate  Y we 

conclude that f -=  0 and this proves C1. 

D e f i n i t i o n  3 .1 .  If ( Y , ~ , v )  is a F-invariant factor of (X ,~ , IX)  and A is a 

finitely generated subgroup of F for which one of the conditions C1-C4 holds, then 

we say that (X ,~ , IX)  is a compact extension of (Y ,~ ,  ~,) for the action of A. 

Property Ca of compact  extension ensures a plentiful supply of A-invariant 

functions on X x yX. If the extension is non-trivial these cannot all be functions on 

Y, since choosing f with E ( f  I Y ) =  0 implies E(Pf l  Y ) =  0 and if Pf  were a 

function on Y, this implies P,f = 0. We see then that a compact  extension is never 

relatively weak mixing for any T E A. The converse is true in the following sense. 

Proposition 2.2 .  If  (Y, ~, v) is a F-invariant factor of (X, ~,  Ix) and for an 
element T E U, the extension is not relatively weak mixing, then there exists a 
F-invariant factor (X', ~ ', Ix ') of (X, ~, tx ) which is a non-trivial compact extension 
of (Y, ~,  u) for the action of the group generated by T. 
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P r o o f .  Let H(x, x') be a bounded T-invariant  function on X • ~,X which is not 

a function on Y. Replacing H(x, x') by H(x' ,  x) if necessary we can assume that for 

some ~, E L| ~, tz), H * ~ is not a function on Y. In the proof of Theorem 2.1 

we showed that for each function H * ~ with H and ~ fibrewise bounded, we could 

modify H * ~  on an arbitrarily small set to obtain an AP function. Hence, if 

(X, 93,/z) is not a relatively weak mixing extension of (Y,@, v) for T E  F, there 

exist AP functions on (X, ~ , / z )  which are not functions on (Y, 9,  u). Now it is clear 

that for any A C F, sums and products of bounded AP functions are AP functions. 

Moreover,  functions in L~(Y, ~, v) are AP. In addition, if f is AP for A, and S E F, 

then Sf is again AP inasmuch as mini[ Tf - gj I[.~ = mini[ T S f -  Sg~ I[~-~,. Thus if ~ '  

is the o--algebra with respect to which all AP  functions are measurable,  then ~ '  is 

F-invariant and (X, ~ ' ,  p.) is a factor of (X, ~3,/z) which is a compact  extension of 

(Y, 9, v) with respect to A. This proves the proposition. 

Next we show that for a given F-invariant factor (Y, 9 ,  v) of (X, 9~, ~) ,  the set of 

T such that (X, ~ , / z )  is a compact extension of (Y, 9,  u) for the group {T"} forms a 

subgroup of F. More precisely: 

Proposition 2.3 .  If (X ,~ , lx )  is a compact extension of (Y, 9, u) for the 
actions of the subgroups A~, A2 c F, then it is compact for the action A~Az. 

Proof. We use the characterization C3 of compactness.  Let f E L2(X, ~, I~) 
and e, 6 > 0 be given. Choose gl, �9 �9 ", gk in LZ(X, ~J, tz) such that for each T E A~, 

minllTf-gj[[~, < 6 / 2  but for y E E ( T ) C  Y, with v (E(T) )<e /2 .  For each gj, 

choose h i1 , ' " ,  hjqj E L2(X, ~3, tz) so that for each S E A2, m i n l ~ q ,  llSg~- h~ I[,, < 

6/2k but for y E F j ( S ) ,  where v(Fj (S) )<e/2k  then for T E A ~ ,  S C A 2 ,  

and y f~S- IE(T) ,  min[lTf-gjH,,<a/2. Having chosen j = j ( y ) t o  attain 

this minimum, we have [ISTf-Sg~ll.,<a/2. If, in addition, y g F ~ ( S ) ,  

then minp }[Sgj - hj~, If*, =< 6/2. Thus outside of S- IE(T)  U I,.J,Fj (S), 
min,,v IISTf- II*  < a. Since v(S-~E(T) U 1.3iFj (S)) < e, this proves the proposi- 
tion. 

Combining Propositions 2.2 and 2.3 we obtain the following "s t ructure"  
theorem. 

T h e o r e m  2 .4 .  Assume F is finitely generated and let (Y, 9,  v) be a F- 
invariant factor of (X, ~, tz ). There exists a F-invariant proper extension (X', ~ ', Iz ') 
of (Y, 9, v) and a direct product decomposition F = Fw x Fc where F w and F c are two 
subgroups for which 

(i) (X', ~ ', Ix ') is a relatively weak mixing extension of ( Y, 9, v) forever), T E Fw, 

T #  I. 

(ii) (X' ,  ~ ',/~ ') is a compact extension of (Y, 9, v) for the action of Fo 
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dProof. Let F, be a maximal subgroup of F ( =  Z m) for which there exists a 

non-trivial F-invariant compact  extension of (Y, ~, v) in (X, ~ ,  IX), and denote by 

(X ' ,  ~ ', IX ') the corresponding extension. 

If T E F\Fr then (X ' ,  ~ ', tx ') is a relatively weak mixing extension of (Y, ~, v). 

Otherwise, there would exist a F-invariant factor (X",  ~" ,  Ix ") of (X ' ,  ~ ', Ix ') which 

is compact for T (Proposition 2.2); and since (X" ,  ~" ,  Ix") is also compact  for F,, it 

would be compact  for the group generated by F, together with T in contradiction 

with the maximality of Fr This also implies that if T ~ F, then T" ~ F~ for all n _-> 1. 

F/F~ is therefore torsion free and F~ is a complemented  subgroup of F. Take for F~ 

any complement  of F,. 

R e m a r k .  When one restricts F to an invariant factor the representation need 

not be faithful, that is, some non-trivial e lements  of F may act like the identity on 

the factor. In our decomposit ion above those elements which act trivially on 

(X' ,  ~ ' ,  IX') will clearly go to Fr 

We end this section with a modification of condition C2 which wilt be the 

characterization of compact  extensions which we will need in the next section. 

P r o p o s i t i o n  2 .5 .  Suppose (X, ~ ,  IX) is a compact extension of  ( Y, 9 ,  v) for the 

action of  a subgroup A C F. Then for each f E L 2(X, JJ, IX) and e, 6 > 0, there exists a 

set B C Y with v ( B  ) > 1 - e and a set of  functions gl, g2, " �9 ", gk E L2(X, ~,  IX) such 

that if f~ = f .  1~ 1(~), then for all T E A and a.e. y E Y, mint~j~k II TfB - gj II*, < g. 

P r o o f .  Let f ' E  LZ(X,  ~ , IX)  be an AP function with I1[-['11< 6X/e /2  and let 

g l , ' ' ' , g k - 1  be such that for T E A  and a.e. y E  Y, m i n l l T f ' - g i l l r  Let 

gk-=0 and let B = { y : l l f - f ' l l r  Then v ( B ) > i - e  and if y ~ T - I B ,  

[[ TfB - T/'[[,y = 117"[ - T/'[l,y < 8/2, and so minm~i__<k-11] TfB -- gj [[~y < & If y ~ T-1B, 

then TfB = 0 in Oy and so ]] TfB - gk ][,~ < 8. 

3.  P r o o f  o f  T h e o r e m  A 

We denote by F the group generated by the transformations T 1 ,  " " � 9  T k  and since 

we do not assume that F acts effectively we may assume F - Z m. We shall say that 

the action of a group F on a probabili ty measure space (X, ~ ,  IX) is S Z  if the 

statement of Theorem A is true whenever  T 1 , "  " " ,  Yk belong to F. Thus, Theorem 

A states that every Z m action is SZ.  

We prove ,Theorem A by "induction" on the F-invariant factors of (X, ~ ,  IX ). The 

action of F on the trivial factor is trivially S Z  and we show (a) that there exists a 

maximal factor for which the action of F is SZ,  and (b) that no proper  factor of 
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(X, ~ , / z )  can be maximal for the property that the action on it is $Z. These two 

steps combined imply that the maximal factor must be (X, ~ , /~ )  itself, and hence, 

that the action of F on it is SZ. 

L e m m a  3.1 .  Let (Y, ~, u) be a F-invariant factor of (X, ~ ,  tz). Let A E ~,  

Ao E @ and assume that for every y ~ Ao, tzy (A ) >= 1 -  ~7. Then if T~, . . . , T~ E F 

(3.1) i z ( n  ~ A  => (1-k~7)/z ~Ao . 
/=z j=o  

P r o o f .  The intersection of k sets of (probability) measures at least 1 - "q each, 

has measure at least 1 - kr/. Thus for every y E n~=l ~A0 we have/zy (/'1~=1 T,A) => 

1 -  kr/, and we obtain (3.1) by integrating on n TjAo. 

The collection of all factors of (X, ~ , / z )  is partially ordered by inclusion (of the 

corresponding closed subalgebras of L =(X, ~ , /z  )). If (Y~, ~,,, ~,~) is a totally ordered 

family of factors we define its supremum, (Y, @, 1,) = sup(Y~, ~ ,  u~), as the factor 

whose corresponding subalgebra is the closure of the union of the subalgebras 

corresponding to (Y~, ~ ,  u,). In other words, a set A E ~ belongs to ~ if for every 

e > 0, there exists a set A0 is some @~ such that /z ((A \A0)U ( A o \ A ) ) <  e. It is 

clear that if for every a, (Y~, ~. ,  v,,) is F-invariant, so is (Y, ~, ~,). 

L e m m a  3.2 .  Let (Y, ,  @.,p..) be a totally ordered family of F-invariant 

factors. Assume that for each a the action of F on ( Y,, ~ ,  IZ, ) is SZ. Then the action 

of F on (Y, ~, u) = sup(Y,, ~ . , / z . )  is SZ. 

Proof.  Let T 1 , ' " , T k E F  and let A E @ ,  v ( A ) > 0 .  Take r/ = ( 2 k ) - '  and 

A ~ E @-o such that 

(3.2) tz((A IA~) U ( A ~ \ A ) ) < ] r l v ( A ) .  

By (3.2),/z (A ;) ( = v(A ~)) > 3/z (A) > 0. Also the set of y E A ~ such that/x r (A)  < 

1-rt  has measure less than }/z(A), since otherwise I z (A; \A)>1~7tz  (A )  which 

would contradict (3.2). If we denote by Ao the subset of A ~ of points y for which 

#r (A) > 1 - r/, then A0 E @,o, # (Ao) > �89 (A) ,  and since the action of F on @-0 is 

S Z  we have 

l iminf 1 2 ( , _ _ A )  Iz TTAo = a > O. 

Applying Lemma 3.1 for T ] ' , . . . ,  T~, n = 1 , 2 , . ' .  we obtain 

,imin,'  (k ) a 
j = l  
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Since A E ~ and T ~ , . . . ,  T~ E F were arbitrary, (3.3) is the s tatement  that the 

action of F on @ is SZ. 

Proposit ion 3.3.  The family of F-invariant factors on which the action of F is 

S Z  has maximal  elements (under inclusion). 

Proof. Zorn 's  lemma and Lemma 3.2. 

We now turn to show that no proper  F-invariant factor of (X, ~ , / z )  can be 

maximal for the property of S Z  action. In all that follows (Y, 9 , /~ )  is a proper  

F-invariant factor and the action of F on it is SZ. 

L e m m a  3.4 .  Let Ej.t, j = 1, �9 �9 �9 J, l = 1, �9 �9 �9 L be measurable sets and assume 

that for some 8 > 0  and every j and l we have tx(Ej.~\Ej.,) << - & Then 

P r o o f .  Replacing in NEj,~ any term E~.~ by Ej.~ may increase the measure of 

the intersection by at most & 

Proposit ion 3.5.  Assume  that the action of F on (Y, 9,  u) is S Z  and that 

(X' ,  ~ ', Ix ') is a F-invariant extension of ( Y, 9,  u) in (X, ~ ,  # )  such that there exists 

a decomposition F = Fw x Fc as given by Theorem 2.4. Then the action of F in 

(X' ,  ~ ', t~ ') is SZ. 

P r o o f .  Let T~, . - -  

show that 

, T ~ E F  and let A E ~ ' w i t h  2 a = / z ( A ) > 0 .  We have to 

l iminf 1 ~ (  k ) N ~  N , f ]  TTA >0" 
/=1 

We write Tj = S~R~ with S~E Fw and R~E Fc and then replace the set {Tj} by the 

possibly larger set {SjRt} where {Sj}]=I is the set of all the transformations S; above 

renumbered so that possible repetitions are omitted, and similarly for {R~}~-=~. 

There is no loss of generality in assuming that Rl = identity. We have enlarged the 

set of transformations and we are now going to (possibly) reduce A. We first look at 

E(1A I Y) = # r ( A )  and take the intersection A~ of A with the set of fibers 

corresponding to points y such that / z y ( A ) >  a ( =  ~ ( A ) ) .  Now, taking 

(3.5) 6 = (4JL)- 'a ' ,  

and using Proposition 2.5 for the action of Fc, we remove from A,  a small set of 
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fibers (that is, its intersection with a small set in 9 )  and obtain our final set A0 such 

that Iz (A0) > 0,/zy (Ao) > a whenever #y (A0) > 0, and, denoting f = lao, there exist 

functions {gj}~=~ such that for every y E Y and R EFc  

min 11Rf - gj 11~, < 8. 
j = I , " - , K  

We now define the "coloring function" c(R, y) on Fc • Y by setting c(R, y) = the 

smallest integer r such that II R f  - g, llg, = min II R f  - g, H~y, and extend it to F x Y by 

c(SR, y) = c(R, Sy). The "coloring function" assumes values in { 1 , . . . ,  K}. Since 

F ~  Z "  the set G = {SjRt}, j = 1 , . . . , J ,  l = 1 , . . . , L ,  can be viewed as a configura- 

tion in Z " .  By the multidimensional version of van der Waerden ' s  theorem (see [3] 

for the proof  of Grfinwald or [2] for a simpler proof depending on the recurrence 

result in topological dynamics alluded to in our introduction) there exists a finite 

configuration G1 (e.g. a large enough box) in Z "  such that for any coloring of G1 by 

K colors one can find in G~ a monochromat ic  translated homothet ic  copy of G. The 

constants of homothety  are clearly bounded by some integer H (e.g., the diameter  

of G 0. We denote  by {T,~} a set in F which corresponds, as above, to the 

configuration G~. We have the following 

F a c t .  For every y E Y and n E Z there exists a T E F and an integer h, 

1 ~ h <= H such that 

(3.6) {S;"hR,"hTy}j,, C {T~,"y}~, 

(3.7) c(S;""R,"h, Ty )=cons t  for j =  l , . . . , J ,  l=  l , . . . , L .  

Denote  by B0 the base of A0 in Y, i.e., the set { y ; / z r ( A 0 ) > a }  and apply the 

assumption that the action of F in (Y, 9,  u) is SZ. There exists a positive number  b 

such that for all sufficiently large N, u(("l~ T]Bo) > b for at least bN values of n in 

[1, �9 �9 �9 N].  Denote  B,  = (']~ T~Bo. For y E B, there exist T and h such that, by 

(3.6), Ty E ("]j. tS~hR~hBo. We have pointed out before that 1 = h = H and it is 

equally clear that the number  of possible T ' s  is bounded by the number  of points in 

G,. Thus we have a covering of B,  by a finite number,  say H1, of subsets B,(T ,  h) 

containing the points of B,  for which (3.6) and (3.7) are valid (for the specific choice 

of T and h ). It is clear that if u (B,)  > b, then, for some (T, h ), u (B, (T, h )) > b/H1. 

If, for y E B,  (T, h ), we look at the sets SThR 7hAo on the fibre of Ty, we obtain by 

(3.7) and Lemma  3.5 that 

(3.8) 
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and by the choice of 8, (3.5), any time that 

Ixry St Ao > aa (3.9) 

we have 

(3.10) ~j nh ) 1 J Ixry St RThAo > ~a . 
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Since St E F,,  j = 1, �9 �9 �9 J we obtain by Theorem 1.4 that for all sufficiently large N, 

(3.9) is valid for all the pairs (y, n) such that y E B, and 1 =< n =< N, except for an 

arbitrarily small proport ion of these. 

Specifically, we obtain that for all sufficiently large N, there exists a subset 

Q C [ 1 , - . . , N ]  such that Q~'>�89 and such that for n E Q and an appropriate  

choice of (T , ,h , )  we have (3.9) valid for all y E B ' . C B , ( T , , h , )  such that 

b 
(3.11) v(B'.) > 2H-----~, " 

Integrating (3.10) on B', we obtain that for n E Q and h = h, 

nh nh ) 1 -- 1 3 (3.12) Ix ~ St R t Ao > ~Hz ba =a~. 

Thus, for all large N, there exist at least bN/2J integers n in [1, �9 �9  JN] for which 

tx (Oj, tSTR ;~A0) > a, which clearly concludes the proof. 

Theorem A follows immediately from Propositions 3.3 and 3.5. 
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