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ERGODIC BEHAVIOR OF DIAGONAL
MEASURES AND A THEOREM OF
SZEMEREDI ON ARITHMETIC PROGRESSIONS

By

HARRY FURSTENBERG

Introduction

A well known result of van der Waerden ([2]) states that if the integers are
partitioned into finitely many subsets, one of these has the property that it
possesses arithmetic progressions of arbitrary finite length. Erdos and Turan
conjectured that any subset of the integers of positive asymptotic density would
possess arithinetic progressions of arbitrary length. Roth, using analytic methods
showed in [5] that this was the case for arithmetic progressions of length 3. After
a preliminary result for arithmetic progressions of length 4 ([6]), Szemerédi
finally proved Erdos’ conjecture in [7]. Szemerédi's method is combinatorial and
he makes use of van der Waerden’s theorem. We shall present a different proof
of this result by showing how it follows from an ergodic theoretic version of
Szemerédi’s theorem that we shall formulate. We then prove this ergodic
theoretic theorem in stages; first in case the system is weakly mixing, and then in
the general case but in the formulation that corresponds to the existence of
arithmetic progressions of length three. Finally after some preliminaries regard-
ing the structure of general ergodic systems we prove the theorem in the general
case.

The ergodic theoretic assertion in question is that if T is a measure preserving
transformation of a measure space (X, B, u) with pw(X)<=, and if A € B with
w(A)>0 and k is any integer =2, then there exists n with
p(ANTANT"AN---NT*""A)>0. For k =2, this is “Poincaré recurr-
ence”. and follows readily from the fact that T is measure preserving and
w(X)<=. Roughly speaking, the idea of the proof of this statement for
arbitrarv k i~ as follows. If the system (X, 8, p. T) is sufficiently mixing, for
example, strongly mixing of all orders, then the assertion is immediate. But it is
also not hard to prove the result in the weakly mixing case. For if (X, B, u, T) is
weakly mixing, A,, A, -, Ax €A, one has, as we will show in §2,
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To describe the proof for the general case it will be convenient to reformulate
the foregoing in terms of functions: If (X, A u.T) is weakly  mixing,
fofo - fi €0 L(X B ), then

N

i N f FOORT AT 7)) fo (T )du (x)

n

] | e

Now o say chat (X, @ u. T) is weakly mixing is to say that the system has no
~almost periodic™ factors. For any system (X, A u, I') one can introduce the
notion of “relative’” weak mixing with respect to a factor (XA uw’ T). and
one can find 4 smallest factor with respect to which the given system is relatively
weak mixing. This factor will be trivial if (XA, u, T) is “absolutely”™ weak
mixing. In general this factor has a special structure, being built up. roughly
speaking, by forming skew products with compact homogeneous spaces (€. g.
spheres), and we call these systems distal by analogy with a comparable notion
in topological dynamices (cf. [1]). The smallest factor relative to which one has
weak mixing will be the largest distal factor and 1t naturally contains the largest
“almost  periodic” factor. For given (X, #B.u, T) let us denote this factor
(Xp. B, o, Tn). One can then prove a generalization of (1) as follows. There 18
4 natural  projection (conditional expectation)  from LY(X. A pn) to
[ (Xo, Bos ). denote the image of f& L7(X A, ) by f. If then No ~ M, — =
and the sequences N M, are such that the limits in question exist, we will have

I & ‘
Ty ———— N . e TR Y
m T e J X)) f(T"x) f (1 x)du(x)
(2)
: 1 .
:f“"‘naAHAE‘HQ%L;J FCOFATpx) - f(T5 " )dpo ().

One is then left with proving
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for f(x) a non-negative non-identically zero function in L (X, B, u) for a distal
system (X, /. w, T). This is not exactly the procedure we shall adopt; we shall
show that it “uffices to prove (3) for the special case of a finite step distal system.
But the foregoing discussion does indicate the basic outline of our argument: the
ergodic version of Szemerédi’s theorem follows if (3) is proved for an arbitrary
ergodic system. The structure of ergodic systems is analyzed and one shows that
it suffices to prove (3) for special systems in which case one has a special
argument. The latter can be illustrated by taking the simplest example of a distal
system. Namely let X = G a compact group, let Tx = gox where g€ G is a
fixed clement, and the operation is group multiplication, and let u be Haar

measure. Then

im e 3| FeofeaOf(gin - fgat T xdu (0

= [ [ s et xodu )dg

Gy G

where dg is Haar measure on the closed subgroup G, generated by go. It is an
easy exercise to show that this is positive when f =0, f not identically 0. (See
§3.)

In concluding this section the author would like to express his indebtedness to
Benjamin Weiss for many profitable discussions related to this investigation.

§1. A general correspondence principle

In this seciion we shall demonstrate a general principle that enables one to
associate to -ertain number theoretical situations a measure preserving system.
The idea behind this principle is the analogy between the notions of asymptotic
density of sers of integers and that of measure in a probability space. Notice that
asymptotic density is preserved by the shift transformation, Sx = x + 1, so that
the shift transformation is analogous to a measure preserving transformation. In
this sense there is at least an analogy between Szemerédi’s theorem on
arithmetic progressions and the ergodic-theoretic theorem asserting that for
some n. AT ANT"AN---NT*"A is non-empty if u(A)>0.

Suppose # is a family of bounded functions on the integers Z, and suppose F
contains a countable uniformly dense subset of functions. If {M, N} is any
sequence of pairs of integers with N, > M, and f € # the sequence may be

refined to a subsequence {M,, N.} so that

(1) lim oap o )
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exists. By a Jiagonal procedure one can find a subsequence for which (1) exists
simultaneously for a countable family of f & % and therefore one can arrange
that (1) exists for all f &€ % Now suppose that ¥ is shift invariant; t.e.. $% C #
where Sf(n) - f(n +1). Assume furthermore that N, — M, — = then if

N,

. . 1
) fmuel e e ?
() L(f)=lim NOM LA fin)

exists for all f &€ 7, it defines a shift invariant functional L: L(f)= L(Sf). We
call a functional L obtained in this way a Banach mean on # and we say it
arises from the averaging scheme of (2). If for a function f all averaging schemes
converge and give the same limit. we denote this limit by

N

Jim Gy & S0

We now have the following result.

Theorem 1.1. Let 7 be a shift invariant family of bounded complex valued
functions on ihe integers Z. and let L be a Banach mean on .. Then there exists a
compact metric space X. a regular probability measure p on borel sets of X. a

homeomorphism T X — X which preserves the measure and a map a: 2 — X
v

with the following property. For an appropriately chosen family » of continuous
functions on X. there will exist for each f € F precisely one function fE ¥ with

f(n)= f(a(n). the shift S on Z will correspond to T on X in the sense that
Sf=foT. and the mean L will be given by

(3) L(f)= ’ Flodu (x).

Proof. One way of proving this is to form the uniformly closed algebra
generated by # and ro take its Gelfand representation as C'(.X). We follow an
alternate, more direct route. Let {f,} be a dense sequence of functions in .# let
A\, be a compact set containing the range fi in C. and let A = ITA,. Form ) = A“
and let wy € Q0 be the point wy(n) = (fi(n), fo(n). - fu(n).---). Let T denote
the shift transformation in Q, (Tw)(n)= w(n + 1), and let X be the closure in €
of {T7w,}. Now let fi(w) be the k-th component of wO)EA =1IA,. fo is
continuous on € and so it is continuous on X. Define a(n) = IMw, € X then 1t
is clear that fo(n)=fi(a(n)). For f& F define f by the condition that
fo,. = f > f.. - f Note that since a(Z) is dense in X, f is uniquely determined
by f. The con:dition Sf = fo T is immediate. Now define a functional on C(X) by

refining the sequence {M, N} which gives

- x
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I\

L, 1
L (f = lim '-““[ - 1@,- o) f(n)

for f € 4 so that the expressions

N,

- 1
LS (T
L(g)=lim N =M, &, g(T w,)

converge for each g € C(X). It is clear that L is a positive functional on C(X)
with L(1)= 1. L(g>T)=L(g) and L(f)=L(f). If now L(g)=[gdu then p is
[-invariant and satisfies the remaining requirement of the theorem.

We illustr:te the use of Theorem 1.1 by proving a result about sets of integers
with positive upper density which is in the same spirit as Szemerédi’s theorem.
This result kas also been obtained by Sarkdzy. We say a set of integers A has
positive upper density if for some sequence {M, N}, N, — M, — =, the ratio of
elements of A in the interval (M, N,] to the length of the interval converges to a

positive limit.

Theorem 1.2. Let A be a set of integers of positive upper density. Then there
exists a,<<a in A with a,—a, = b’ for some integer b.

Proof. !et y. denote the characteristic function of A, and let F be the
algebra gencrated by the functions S"xa. The theorem asserts that for some
n =~ (S"v.)xa is not=0. Define a Banach mean L on # by refining the

averaging scheme which gives

lim ——— N, - [W, Py xa(n)>0.

Form the corresponding space (X, n) and the function algebra %, and note that
Y. is a non-negative function which is not almost everywhere 0. Since f=foa
we will have that f—f is an algebra homomorphism and so xa *S"xa =
va - (Xa o T In particular xa - S"xa#0 if [ ¥a - (Xa°>T")du >0. Our theorem
therefore wiil follow from the following ergodic-theoretic proposition.

Proposition 1.3. Let (X, u, I') be a measure preserving system and let

FELYX, B ) with fz0 and f#0. Then the set of n >0 with [f-Tfdu >(
contains a perfect square.
Here T"f .lenotes foT"

Proof. The spectral theorem gives
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-

(+) ff I'fdu = e"dp ()

S

for some positive measure p. By the mean cergodic theorem,
=3 T — E(fi ).
N 5

where & is the o-algebra of T-invariant sets in 23, and the convergence is in

L(X, A ). Averaging (4) over 1= n =N we obtain
p(0) = E(fE(fi &) = E(E(fl))>0.

Let ¢ <~ p({*)) and divide the measure p into three parts: p = p, + p, + pa. po will
be the point measure at 0 with mass p({0}). p, consists of the restriction of p to
a finite set of remaining points all of which are rational multiples of 7 and
sufficiently many so that the remaining discrete part of p (if any) attaches mass
<= ¢ to all rational multiples of 7. Let m €Z be chosen so that p, is
concentrated on points of the form 2jm/m. Assume now that Jf - T fdu =0 for
1 > 0. Then choosing n =m q" in (4) and averaging for 1 =g =N we find

{} = hm ’l

Neex N ’f ™ 'fd,u = Z f lim ‘l_ T e""ai:g(lp,(('))

e S N

N[ frd

¢

Ll
N

S pdlimy)+ J lim (lj— E e dp ().

-

But by Wevi's theorem on the cquidistribution of g o for «f7 irrational, the
latter integr.i will contribute at most the measure of p. on rational multiples of
7 and by hupothesis, this 1s less than ¢ in absolute value. Since p({0}) -0 this
gives a contradiction.

We leave ro the reader to apply Theorem 1.1 to proving that if A is a set of
positive upper density in the integers. then the ditference set A -.A 18 refatively
dense (ie.. loes not leave arbitrarily large gaps). We will see later that this
corresponds 7o a refinement of Szemerédi’s theorem which s of interest even for
arithmetic progressions of length 2. We remark that this property of sets of
positive upp-r density has a completely elementary proof (first pointed out to
me by R. E.iis).

We shall rfer to the followng theorem as the “ergodic Szemeredt theorem™
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Theorem 1.4. Let (X, A, ., T) be a measure-preserving system and B € 8
with  w(B)=0.  For uny integer k1 there exists n#0  with
w(BNT'BAT BN 0 T ""B)=>0.

This theorem will be proved in the sequel. Let us show now that Szemerédi's
theorem on arithmetic progressions is a consequence of it. In fact Theorem 1.4 is
an easy consequence of the theorem on arithmetic progressions, but we are
more interested in the reverse direction. So suppose that A CZ is a set of
integers with positive upper density. As in the proof of Theorem 1.2 let F be
the algebra of functions generated by S"ys on Z. and let I be a Banach mean
which satisties L (xx)>0. To say that B contains an arithmetic progression of
length k is to say that for some n. x5S xs S gy # O I f = v, then since
fi=f f= x. for some A CX where X is the compactification of Z associated

to # by Theorem 1.1. Since

L(xsS"xs -~ S“ ""ys) = J’ XaxTra o xreomadu

il

u(ANTAN---N THEmA,

we see that Theorem 1.4 implies Szemerédi’s result.
What happens if we translate van der Waerden's theorem into ergodic theory?
The result is the following theorem in topological dynamics which is equivalent

to van der Waerden's theorem.

Theorem 1.5. Let X be a compact Hausdorff space. T a homeomorphism of
X which cenerates a minimal flow. Then if A is an open set in X and k is any
integer 1 there exists an n with AN T7A 0 AN N T £D.
Naturally Theorem 1.5 follows from Theorem 1.4. It would be interesting to

obtain an independent proof of Theorem 1.5

§2. Ddiagonal measures and weak mixing

et »

In this section we shall prove Theorem 1 4 in the case that (X, #B.u, T) s a
weakly mixing system. We use the characterization of weak mixing which states
that a system is weakly mixing if and only if its product with any ergodic system
is ergodic [t is well known that if (X, B, Ty is weakly mixing then tor any
power T* the system (X, B.u. TY) is ergodic and weakly mixing. It follows that
the system (X X X0 ABop =, T« I'*) is crgodic. Similarly the system
(. Beo e, i) is ergodic, where Q= X < X x - x X, B =B KB XX AB
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[T VAT -x u, each of the products being taken k times. and o =
T < [« < [

Now et () B, u. r) be any crgodic measure preserving system and assume
that v is a mecasure defined on A and .V is a 7-invariant alecbra of bounded
A -measurable complex-valued functions, closed under conjugation.

Suppose that for cvery fe ./ we have

[ N; . ) .
(1) NTT:\Z . ;‘?_ﬂ.‘ J f(T x)du(x)—~>J fd/J,

where [M. N} is a fixed sequence. We then say that v is generic for p with
respect to the sequence M, Ni} and the algebra 2. Clearly p is generic for itself.
If .7 is countably generated then the ergodic theorem implies that assuming
(O, B.u.7) s ergodic. for almost every o € (1, the point meusure 3., s generic
for @ with respect to the sequence {0, N} and the algebra ..

Another =xample arises in connection with the system (., B, u-, 7.) de-
scribed above. Let 7. denote the algebra of functions on 2. = X x X consisting
of finite lincar combination 2 f(x,)g (x:). We denote such a function as X f, & g.

Define a measure 1. on ({1..48:) by

{f(x,,xz)dv;:J fle, x)dp ().

Lemma 2.1. Assume (X, B, u, I') is ergodic and (s, Boy o, 72) 1 defined

as before. The diagonal measure v, is then generic for p- = p < p with respect 1o

the algebra +. and any sequence {M, N;}. N, — M, — =

Proof. By the ergodic theorern (N, = M) (TF+ T°f + -+ '™ ™f) con-

verges to the constant [ fdu in LY(X B .p), for feL(X, %A u). By the

invartance «f the measure pu,

1 S .
=) N, - M, \‘r;fl ! f J de

{

in L(X. A, ). Now assume f. g & L (X, A, u) By (2),

~

| ~

[P S X f . Ly} - I ‘ ' { 21 JL
N, - NL \7,_1: g(r}f( [ * )(/l(‘) R /IM . 51“

and hence

~N

.V‘"Ij\v[, \,EZ, ] (I F (T Oydu () ’ fdu J gdu,

& BBB & e o -

2]
W
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or

N

i S '
]_\l_ﬂ:le, \12»‘1 J TT(g ) f)dl-’z _—’f 5 ®fd#:

This proves the lemma.
The main result of this section will state that a similar phenomenon takes

place for the diagonal measure in (4, k >2 provided (X, &, u, T) is weakly
mixing. To piove this we nced the following generalization of the mean ergodic

theorem.

Theorem 2.2. Ler (. B.u,7) be an ergodic system and v generic for p
with respect 1o some algebra A and sequence {M, N,}. Then for f&€ 4

1 il

3 > e |

in L°(Q), B, v).

Of course tor v = u this is the classical mean ergodic theorem. The novelty in

the above is in case the measure v is singular with respect to u.

Proof. We may assume [ fdu =0. Let ¢ >0 and choose a number Q so

J

Now & is a r-invariant conjugation invariant algebra, so g =
|Q '(sf ++-- + 7°f)|" is in & and we may apply to g the definition of genericity
of v which gives for sufficiently large [,

large that

of + 7 f+ -+ 19|
Q

du < e.

N,
l 1 Tn+1f+.'.+_ Tn+0f 2
4 —_— < e.
@ N*w;” 0 dv<e
Now
1 .,\;’ T"'*‘f+... fT"H)f 2 1 ] 'T’”lf#‘ +Tn”if 2
e *> > ?
No- M, i, Q = , N, — M, =, 3]

and if f is bounded
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~N nelp L n+y N
] f+ T f l_ <

uniformly as N — M -» = Hence

imp [ | g 3 ]

and this proves the theorem.
We can now prove that with (Q. Bu, g, ) defined as the product of the
factors (X, .8, u, '1"). i=12 -k and with v, the diagonal measure on {1

detined by ! f(x,, - - x)dv. = [ f(x.x.- -, x)du(x) we have

Theorem 2.3. If (X, B, u, T) is weakly mixing, then v, is generic for u
with respect to any averaging scheme and with respect (o the algebra s of
functions having the form 2. fi(x)f4(x2) - fi(xo).

Proof. By induction on k. [t is already proved for k =2, so assume it valid
for some k. Since (S, Bi, wi, 1) 1s ergodic we may apply Theorem 2.2 which

vields

-

N 2 U@ T @ T [ fdu

in L7(Qy, v ). But this means that

N,

1 \ J—— 0 ;kn : s
N o PO T x) =1 ff,olu
i M+ i=1 .

in L°(X, B. ). Multiply by fy(x) and integrate to obtain

LS " i ) .
P f FOOfF(T) - f (TFx ) dp (x) »[I fdp

or

VI - I -
¢ S rmoner e fert oo = [ | fde
s ¥ i M-t i-0

and finally
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N,

l - o
N M J T:»lﬁ)®""®fdeh+1m_)J f"Q@""&f’\d#k'l
1\ 1\41 A . X

this proves the theorem. :
A consequence of the foregoing is that wedak mixing implies “weak mixing of

all orders™.

Corollary 2.4. If (X, B, u, T) is weakly mixing then for any k sets

f'xlvx‘az,"',f\k we have

: 1 = rn —=Iin
N!lhr}lx N-M MZ:I lu(A,NT AN -0 T* ’Ak)—y(A,),u,(Ag)-r~p(Ak)]=O.

Proof. In this we use the elementary fact that if a is an average of a

bounded sequence {a,} and a’ is the corresponding average of {a} then the
corresponding average of {|a. — |’} is zero. This also implies that the average of
{la, — a|} is zero. Now by the foregoing theorem
1 N
i D k(AN TIAN N T A = k(A (A i (A,

as N — M — ». Since this is true for any weakly mixing transformation, it is also
valid for (X x X, B X B, pu x u, T X T) and for sets A, X A, A X A, A X
A, Since

WX L (A X AYN(TXT) (A X AN (T X T (A X Ak))

= u(A,NT'A,N---NT ALY
we obtain

]
A'V - /\/I 7 -1

vz

WA, N T AN N T AR > p (AR (A (AL

L

Combining this with our preliminary remark we obtain the corollary.
Naturally, this implies the ergodic Szemerédi theorem in the case of a weakly

mixing systcm.
Remark. If one has convergence

(5) 71/— > u(ANT'BN TC)— w(A)u(B)u(C)

t
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for all triples A, B.C.€ @B then (X, B, u, T) must pe weakly mixing. For (5)

implies
I S . - ‘ ’ :
(6) N }_, J fix)g(1 "x)h('l"‘"x)d,u(x)—»J fdu J gdu f hdu.

Now suppose we have a non-trivial solution to d(Tx)=e"Pp(x). Let f=d.
g=4¢ ", h =¢; then f(x)g(T "x)h(T "x) =1 whereas [ fdp =0 so that (6) is

impossible.

§3. Roth’s theorem

In this section we prove Theorem 1.4 for (X, . u. T) ergodic and k = 3. Since
the reduction of the general ergodic Szemerédi theorem to the ergodic case is
quite easy. this corresponds to proving Roth’s result that a set of positive upper
density contains arithmetic progressions of length 3.

By the remark at the end of the last section we see that the result of Theorem
23 s not valid for k = 3 if (X, B. w, T) is not weakly mixing. The reason for the
failure of the induction step in the proof of that theorem is that in this case
(X < X, B> B, xpu T <T) is not an ergodic system, and we cannot apply
Theorem 2.7, Our first object then is to generalize the above mean ergodic
theorem for non-ergodic systems. So let us assume (€}, B, u, 7) is an arbitrary
measure proserving system and that v is generic for u with respect to a
sequence {M, N;} and an algebra . Let A, denote the o-algebra of r-invariant

sets in 3. The classical mean ergodic theorem then says that

1 S e
'''' Vo T EUEA

in L. A, ) as N - M — % We wish to obtain a similar result for L7(€, 24, v)
and the firt difficulty encountered is that E(f'Z.) is not well-defined in

L(Q, 3. vy We meet this by making the following definition:

Definition 3.1. We say <f is adapted to 7 if the set of 7 invariant functions

in A is dense in L7 B, ).

Assume that v is generic for w with respect to some sequence {M,. N/} and an
algebra w4 that 1s adapted to . We shall show that L7(€, A, ) can be identitied
with a sub-pace of [7((..A r). Assume fe& /0 L7 A, w) Then f 1s
bounded and | f|"E .4 so that

B O IR W s e

e,

E 3



210 . FURSTENBERG

[ Do . ,
Hm s e I et ) cde —- | frda,
RNV farme)yide = frdu

J

Since f o reinvariant we find

Bience the identity map is an isometry of of ML (8 A, u) into L(. B, v).
Since of L0, B, w) is dense in L7(€, 48, ) this isometry extends uniquely to
give an injection f- Foof L(Q, 3, p) into a subspace L (2 A.u)" of
L. 4 ). We can now formulate a mean crgodic theorem for an arbitrary

system (O, B, p, 7)

Theorem 3.1, Assume v 1s generic for u with respect to a sequence {M,, N;}

and an ulgebra o4 adapred to r. Then for fe Ao,

| N
S \ iy ap— ALY
(1 $ Ny e, T EGAD

in L7 5w

Proof. let & =0 and choose ¢ & ./ O L7(Q A.pw) with g - E(f B < &
where the norm is taken in L. A w). We can also write [[g ~ E(f8.) . <" «,
where the noom is taken m L (1 Sct 17 f = g so that |E( TAB)I]<Te By the

classical <aean ergodic theorem

A Bt A A P
J i () 3 (L~ &

it 0 is suficiently frge. We now proceed exacdy as in the proof ot 'l heorem 2.2

Lo obtan

| I It o
lim SUpD LT T "'hf ! dt’ e
PIoN  ano= 0

R

Rewriting 17z and recalling that f i 7 Apvartant we find

i,

:

i
AN - l\’11 \‘1%{1 ( I

Hmsup

and therorore
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N

oL e mriaa e,
limsup i{ NOM & - E(f 1B ’, 00,

Since ¢ is arbitrary. this proves the theorem.

Lemma 3.2. Let (Q. B8 u 7)== . B u, )< (Q.B".n" 1"). The space
LY, B, 1) is spanned by functions of the form &(w)W(w”) where ¢ E
LY, B, 1) is an eigenfunction 7'¢ = Ad. and y € LY, B". u") is an eigen-
function " = A '

This result is well known and is morcover a special case of a theorem to be
proved in §6

Now let us assume (X0 B . 1) is separable <o that LA(X, B u) has a
countable basis and that it is ergodic, but not necessarily weakly mixing. Each
cigenvalue cun occur at most once and we can attach to each eigenvalue that
occurs a part cular choice of the corresponding eigenfunction, é.. in such a way
that é. .. = ¢ .. This can be done in a variety of ways. For example. 1f we
enumerate the eigenvalues AL AL AL and let ¢, be any eigenfunction with
cigenvalue A . we can find a descending sequence {A.} of sets in B with
w(A,) =0, such that the oscillation of é,. b, -+, ¢, in A, 1s less than 1/n. Here
“oseillition”™ eans the diameter of the smallest disc in € in which almost all
values of the function lie. This oscillation does not depend on which version of

the eigenfuncion is chosen and we may now choose a version with

[ ,
' — e by = ()
|IL[I1 TR J 1 &b du

\"k

for cach eigentfunction &, for some fixed subsequence 7. One secs that for this
choice. becau e of its uniqueness, we will have &y = b b

et [ dencre the diserete group of eigenvalues and let & = ' be its compact
character groap. Since by . = .. b, we sce that the map A — é, (x) defines a
character in | for almost every x. [his gives us a measurable map a: X — G
with (A ae(x) = &by (x). Let g€ (G be the identity map of ' in the unit circle.
We then have (A al(rx)) = ¢, (rx) = Ady(x) = gulA )b (x) = (A, g (x)). Hence
a(rx) = goa{r ). We thus obtain a homomorphism of (X, A.u. 1) to the svstem
(C3, Re. me. g where B consists of horel sets on (. 7, denotes rotation by g
andd e is a4 acasare left invariant by 7,. Since (X, Ay, 7) is crgodic so is the
system on the group. nis implies that g, gencrates a dense subgroup of G oand

henee that o is Haar measure on (.

-
-
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Definition 3.2. A mecasure preserving system (G, Bo, mg, 7,,) is called a
Kronecker svstem if G is a compact abelian group, ‘B its borel algebra, mg 18
Haar measure, and 7, denotes multiplication by an clement g, which generates a

dense subgroup of G.
We have proved

Proposition 3.3. If (X, AB.u,7) is any ergodic system, it possesses a
Kronecker factor (G, Bs. ma, 1,,) such that every eigenfunction on (X, B, u, 1) is

the lift of u character on G

It is easy to show that this factor is unique up to isomorphism. We call it the

maximal Kronecker factor.

Definition 3.3. For any system (X, 3, u, T), we denote by &(X,T) the
closed subspace of L*(X, 3, u, T) spanned by eigenfunctions of the operator
induced by T.

If (X, B.u, T) is ergodic then (X, T) can be identified with L*(G) where
(G, B, ma, 7)) is the maximal Kronecker factor. In L*(X, B, u, T) there is
defined a projection Qr onto the subspace &(X, T). ldentifying the latter with
[ *(G) we can define an operator f — Psf from L*(X. B, u) to L*(G) so that, if
« denotes the homomorphism a: X — G, O+f = Psfca.

Consider next the system (X, 3, u, T?). This need not be ergodic although
(X, B, u, T) is ergodic. However its eigenfunction will still be lifts of functions on
the Kronecker factor G of X. For if T’f =Af, f#0, and A{= A, then the
functions Tf £ A, f are eigenfunctions of T, hence the lifts of functions on G, and
so the samc is true for f.

We shall now consider the system (X X X, B X B, u xpu, TX T7) and the
algebra /. of functions on XXX which are finite linear combinations
Sf(x)gi(x) fug € L7(X B p) This algebra is r-invariant for 7 =T X T?. By
Lemma 3.2. <, contains a subset of r-invariant functions dense in L3(X X
X, (B X B),, u X u). By Theorem 2.2, the diagonal measure v; on the diagonal of
X x X is generic for u X u with respect to any averaging scheme and the
algebra «f,. We see that Theorem 3.1 applies, and we conclude that

. [ N
(2) Jim M}; AT )g(T"x)=E(fg|B.)

in L3(X, B, u). Here we have identified L*(X x X, v,) with L*(X, p). Multiply both
sides of (2) by h(x) for h € L™(X, %, u) and integrate:

() fm g ) [ R OOF(T™0)g (T2 )dp (x) = f h(x)E(f Qg | B.) du(x).
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Now by Lemma 3.2, the subspace of invariant functions for 7 in L(X ~
X, B x B, u <) is contained in the closure of the tensor product of the
subspace & (X, T) with itseif. As a result the projection E(f& g|B.) can be
cffected by first projecting f (2 g to this tensor product. Hence E(f 2 giB.)=
F(O:f 0 Org1B.). Consider the densc subset of LN LI(X <X Bop <)
spanned by functions S (x)U(x-) where ¢, & € €(X. T). For these. the restric-
rion to the diagonal corresponds to a function in &(X, T) as a function of one
variable. Hence E(f & g |B,) € &(X, T). It follows that in (3) the function h(x)
may be replacced by Q-h. Thus the limit in (3) 1s the same for h, f, g as for Qrh,
O.f. Org. Now these may be identified with functions P.h, Psf, Psg n the

Kronecker system (.

Lemma 3.4. For uny three functions f,g.h € L' (X. B, n) the limits
1 §a .
(1) N!IAEIL' N M &, J' h(x)f(T"x)g (T "x)du (x),
X
(3) lim Lo j Poh(g)Paf(giz Y Pag gy "z dme(z)
{ SN M \%f[ G LE sflko GBS G

G
exist and are cqual.
We are now in a position to prove Roth’s theorem. In view of our remarks in
seetion 1. it suffices to prove a measure theoretic analogue. In the subsequent

sections it will be seen that it suffices to consider the ergodic case. What we

prove is the following:

Theorem 3.5. [f (X. B, u, T) is an ergodic system and A € R with (A ) >
U, then

: 1 < 4 e ald 2 o400
(6) Jim o 2 (ANTANTTA)

exists and is positive.
This is evidently equivalent to the following.

Theorem 3.5, If (X.AB.p. 1) is an ergodic system and fE€ L (X, A, w)

with f >0 and f not vanishing a.e., then

hoide s K e sa

ey .

ity

ak
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) lim g 2 | FEORTOAT i (x)

N-M-—x A‘V— A~

<

exists and is positive.

However. by Lemma 3.4, the result follows at once for an arbitrary ergodic
system once it is established for Kronecker systems. For Kronecker system
(G, Bs, mg, 1) Theorem 3.5 will be a consequence of the following lemmas.

Lemma 3.6. If 4(z) is a continuous functioi. on G and (G, B, Mg, Ty,) 1S a

Kronecker system, then

N-l-ilslr»l»m NEM MZ] yl/(g(';):[ Y(z)dmes(z).

This is, of course, a direct consequence of the unique ergodicity of Kronecker

systems.

Lemma 3.7. If f.g.h € L7(G), then

w2 = [ h()f2)g("2 )dma (2)

is a continuous function of z'.

Proof. [his follows from the fact that the map z'— f(zz’) is continuous

from G to LY(G).
Now let us prove Theorem 3.5 in the case of Kronecker system. Form the

function
b = [ 1)z (22 dmr(2)

for f(z) a non-negative not a.e. zero L~ function on G. The expression to be

evaluated in (7) is

. 1 < R

Jim g q'2:] W(gn)
which by lemma 3.6 is [o¥(z)dma(2). Now i is nowhere negative, it Is
continuous by Lemma 3.7, and (e) > 0. Hence fa(z)dme(z)>>0. This proves

Theorem 3.5.
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84. Some measure-theoretic preliminaries: regular measure
spaces, disintegration of measures, and ergodic decompositions

There are a number of notions regarding measure spaces (X, 9. u) and
measure preserving systems (X, 48, w, T) which require an additional hypothesis
on the measure space for their establishment. This hypothesis amounts to
requiring that the space in question is essentially a compact metric space and the
measure a regular borel measure. To make this definition precise let us call two
spaces (X, A, u), (X', B’ u’) equivalent if there exist null sets NCX, N' CX’
and a 1 — 1 measurable, measure preserving map ¢: X\N— X' \N". (X, B, u) 18 a
compact metric measure space if X is a compact metric topological space, the
o-algebra of borel sets, and u a regular borel measure. We say (X, B, pn)is a
regular measure space if it is equivalent to a compact metric measure space. The
advantage in dealing with compact metric spaces is that measures are deter-
mined by positive linear functionals on the algebra of continuous functions
C(X). If X is compact metric this algebra is separable and the functional is
determined by its values on a countable set. We note that if (X, B.un) is a
regular measure space then 2 is generated as a o-algebra by a countable family
of sets and moreover that ¥ separates points of X.

We illustrate this by the process of disintegrating the measure p with respect
to a subalgebra. First suppose (X, 3, u) is a compact metric measure space and
¥ is a sub-u-algebra of . Let {f.} be a dense subset of C(X), and form the
conditional cxpectations E(f.|%). These are only defined almost everywhere,
but having chosen some version of each, one sces readily that the functionals
L.(f.)=E(. ©2)(x) are for almost all x uniformly continuous functions and
therefore extend to C(X). Moreover for almost all x, L. (f) will be lnear,
positive, L. (1) =1, so that L.(f) = { fdu. for some regular borel measure p.. For
continuous unctions one then has E(f|%)= [ fdu, almost everywhere, and

since E(E(fiZ2))= E(f) we will have
(1) ffdu = fj f(y)du, (y)du(x).

This will be rewritten as

(2) u = f padp (x).

It is not hard to see that (1) is actually valid for all bounded borel measurable

functions f. 'n particular if N is a null set in X, p(N)= 0, then . (N)=0 for

addn. W -

£ kB
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almost every x. This observation enables us to extend the foregoing to regular
measure spaces. Namely if (X, B, ) is a regular measure space, P C A, and
(X. A, i) is a compact version, 9 the corresponding subalgebra of %A, we have a
decomposition of g on X of the form (2). Since X and X are isomorphic
disregarding a null set in each, almost all the measures 4. define measures u.
on (X, B). The decomposition (2) is uniquely determined (up to sets of x of
measure 0) by the condition that u. is a @-measurable measure-valued function
of x, satisfying [ ¢du. = ¢(x) whenever ¢ is % -measurable; inasmuch as such a
decomposition determines conditional expectations with respect to 2.

If (X, B, u) is a regular measure space and of is a countably generated algebra
of bounded measurable functions on X, we can always find a compact version
(X, B, i) for which « corresponds to a subalgebra of continuous functions. To
see this we may assume that to begin with (X, &, p) is a compact metric measure
space. Now form the algebra generated by 4 and C(X). This algebra has a
representation as C(X) for a compact metric space X and the measure u
defines a functional on C(X) and thereby a measure g on X. There is a natural
map of X to X since C(X) occurs as a subalgebra of C(X). But we also have a
measurable cross-section X — X since the functions of & are measurable on X.
It is then easily seen that (X, B, 1) is eqivalent to (X, B, ).

Now let (X, @, u) be a regular measure space, o a countably generated
algebra of bounded measurable functions, and (X, B, i) a compact version for
which & corresponds to a subalgebra of continuous functions. Let Y be the
identification space of X defined by this algebra. If By is the borel o-algebra on
Y and pv the measure on Y corresponding to g on X, then we find that we
have induced a measure preserving map ¢: (X, B, n)—> (Y, By, uy). We call
(Y, By, pv) a factor of (X, B, u). If we close ¢ with respect to conjugation and
monotone limits and call the resulting algebra A we find that of = ofy > ¢ where
Ay is the algebra of bounded borel measurable functions on Y. In particular, it
is not hard to show that if (X, &, u) is regular and 9@ is a countably generated
sub-g-algebra of B, then & = o '(By) for some regular factor (Y, By, py) of
(X, B, p).

Suppose now (Y, By, uv) is a regular factor of (X, B, ) ¢:X—Y, and
P = ¢ '(By). Since a %D -measurable function on X corresponds to a $ABy-
measurable function on Y we can define an operation from L(X, B, u) to
LY., By, uv) which we denote f— E(f|Y) such that E(f|Y)ed = E(f|2).
Also, if we decompose u 1nto a 9 -measurable family {u.} of measures, then,
inasmuch as u. depends only on ¢(x), we can view this decomposition as being

parametrized by Y:

3) m =f podpy (¥).

Y
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Notice that we have E(fl Y)(y)=[fdu, almost everywhere: In particular if
f=ged, g a function on Y, E(f|Y)=g, so that [g=ddu, = g(y) a.e. This
implies that for almost all y, the measure u, is concentrated in the fibre above y,
& '{y}. Thus u_.is decomposed into an integral of measures on X lying over the
various points of Y. This is a version of Fubini's theorem.

A measure preserving system (m.p.s.) will be called regular if it has the form
(X.B.u, T) where (X, B, ) is a regular measure space. A regular m.p.s. always
has a compact version (X. B, i, T) where T is a homeomorphism of the compact
space X.

Suppose (X, B, u. T) is a regular m.p.s. and let #Br be the subalgebra of
T-invariant sets. Let uw = f w.du (x) be the disintegration of u corresponding to
the algebra B, We claim that the u, are T-invariant measures and that the
systems (X, A, u.. T) are ergodic (or, simply, that the measures p, are ergodic).
The T-invariance follows from [ u.du(x)=pu = Tu = [ Tp.du (x) together with
the fact that [ ¢dTu, = [ ¢° Tdu. = [ ¢du. = ¢ for ¢ Br-measurable, and the
uniqueness of the decomposition into a Z-measurable family of measures. For
ergodicity we note that a T-invariant measure is ergodic if and only if

() z_vl- Z f(T"x)~+ffdv

in L*(v) whenever f is a bounded measurable function, for some sequence {N. }.
It is convenient now to transfer the question to the compact metric version, and
so let us assume that (X, B, u) is a compact metric system. (4) will be vahd for a
regular measure v if it is valid when f is continuous, and therefore (4) needs to
be verified only for a countable set of functions for a fixed sequence {N,}. Now

for any given f,
1 & IR
f {'N— > f(T"x)~ E(f!%)} du — 0,
8 k H
and therefore

ff {’Vik NZ f(T7y) = E(”%T)}zd#x(y)d#(ﬂao,,

so that for a subsequence {Ni} C{N.} we will have

f {l\lfk g; f(T"”‘ffdtux}zd#x(y)—»O
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for almost all x. By a diagonal procedure we can achieve (4) simultaneously for a
countable fumily of f with v =pu. and almost all x. This establishes the
ergodicity of almost all u. in the compact metric case and this carries over
readily to the regular case.

The foregoing ergodic decomposition is unique in the sense that the
distribution of the ergodic measures is uniquely determined. More precisely,

suppose

u = j Adv() = | ALdvi(w:)

o, N

are two decompositions of u into ergodic T-invariant measures on (X, @), and
parametrized by spaces Q, and Q,. Then for any finite set of bounded

measurable functions fi,- -, f. and any borel set SCR"™

v {wl \ (f f,d/\l,,,---,ff,.d/\lul)es}

=y, {(1)2 (f fidA s, - ',f f,,d)tf,’,?) e S}.

It is not hard to see that to establish uniqueness in the above sense it suffices
to consider rhe question in the compact version of the system, since a null set for u
remains a nall set for almost all measures in a disintegration of u. For a compact
metric system (X, %, u, T) we can formulate this as follows. Let M(X) denote
the compact space of regular probability borel measures on X, viewed as a
subset of C{X)* with the weak* topology. We claim there is a unique measure v
on M(X) concentrated on ergodic measures for T and for which u = [Adv(A).

()

To see this let us associate to a point x € X the measure

N
9. = lim % }_; T"S,

with 8, the Dirac measure at x. 9, is defined for almost all x. The map x — 6.
induces a map A — 6, from M(X) to M (M(X)) for any measure A on X with
respect to which 6, is almost everywhere defined. In particular 6, is defined for
ergodic A and so for almost all A with respect to v». We then have
9, = [ 6,dvir). But for ergodic A almost all 8 = A so that 6, = 8,. Hence
4. = [ddvid)= v
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(0 many cases i dealing with a specific question regarding a rm.p.s. one can
assume that tie system is regular. For exampie to prove Theovem 1.4, we may
qssaine that ihe svstem is regular since the statement concerns @ countavle
famnily of sers. Now assume that Theorem 1.4 has been established for all ergodic
svstems, and et (XA, . ') be a regular mp.s.. B € #8 with p(B) - 0. Tuke the
cregodic deconrposition p = [ w.dv(w). Then [ . (B)dviw) -0 so that p, (B) >0
for a set of w of positivc’: measure. For cach such w and for given k there exists
i) with w, BT BO---N T " B) > e (w). There is an n, and ¢, -0,
lwln{w)= n,. s’(w) > ¢y) >0, and from this it follows that

piBNTYBA - NT* "™B)=0

We conclude this section with a remark about factors of measure prescrving
svstems. Let (0w, T') be a regular mop.s. and let . be a countably gencrated
subalgebra of L7(X, A, w) which is T-invariant. We have seen that o4 comes
fromn « factor (X', 8’ w’) of (X, 4, w). The assumption that =¥ is T-mvariant will
imply that T nduces a transformation T on (X'. . 2" w') which 1s agiun rucasure
preserving. We call the mops. (X B, T a factor of (XA u 1) It
b N — X' is the map in question, we speak of 1t as a homomorphism of

measure preserving svstems. it will satisfy ¢ e T = 1"<®.

8§35, Standard measures on product spaces

[et (X, A.uw ) be regular pmbabxht\ spaces, o= 1.2, ke We form the
product space 1 = X X X.x % X, with the o-algebra A8 = = By KB X X By

by which we mcean the least (r»:iigcbru with respect to which the projections
) - X, are measurable. A measure pooon (€, B) will be called srandard if 1ts
nnage in cach X0 is g A function will be called standard if it s a unitorm it
of combinations 7 fECf(0) - f7Ca)

Ownr first reiark is that if each (,‘(,. AL ) is regular. and f g is a standard
measure, thes (O, Aou) s regular. For et (X, B, p)} be compact metre
models of {00, AL ) and et {N} be null scts n cach X, such that X, \N
corresponds to a subset of X, of full measure. Since i (N) =0 rhe measure w
assigns measure O to the complement of HEX AN ) in @ and so w may be carried
over to a unicue regular borel measure HX.. We shall in fact always attach to
~uch a producr of regular spaces the compact mefric space winch is the product
of the corresponding component spaces. Note that the continuous fancions imn
the product soace will then correspond to standard funcaens,

{n particular suppose we have a positive linear functional on the aigebra of
Standard funci-ons on (@ which saristies L (f(x 1) = [ fdp whenever fas o function

S ok, alone. = 1.2, k. Passing to compact models we see fhal there s

!
i
i
H
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defined a linear functional on all continuous functions on Xi and so there is
defined a (standard) measure in this space which again defines uniquely a
standard mecasure on ().

The following simple lemma is basic.

Lemma 5.1. Let f, fi€ L™(X,, B, ), i =1,2,---,k, and assume all |f |,
|fi| bounded by M. Then for any standard measure .,

[1for® ®k-n@re @ filds =M 3 11 flde

We use this to prove a compactness property of the set of standard measures
on (2, RB).

Lemma 5.2. Let {v.} be a sequence of standard measures on (Q, B). There
exists a subsequence {v.,} and a standard measure v such that [ fdv.,— [ fdv for

each standard function f.

Proof. Let F CL™(X,B,u), i=12,--k be countable sets dense in
L'(X, B, u). By a diagonal procedure we can find a subsequence {v, } with

L(f) = lim f fdv.,

existing whenever f=f Q[ & - -® f. and f € F. But by Lemma 5.1, this limit
will then exist also for every standard function, and by an earlier remark
L(f)=f fdv for a standard measure. This proves the lemma.

Assume now that (X, . u, T.) are regular m.p.s. and on () define a
transformation 7 = Ty X T. X -- - X Ti. Let v be any standard measure in (€2, ).

Each r"v will again be a standard measure and so will

N S <

Nn T aVlp M+

According to the lemma, some subsequence converges to a standard measure u.
If N, — M, —>o, u will be r-invariant. In the terminology of §2 we would say
that v is generic for u relative to a subsequence of {M,, N,} and relative to the
algebra of standard functions. Inasmuch as this algebra will be fixed in our
discussion of product spaces we will say simply that v is generic for u relative to
the sequence in question. In the present discussion we will mean by v is generic
for w that it is generic for some averaging sequence {M,, N,,} satisfying
N, - M, — =
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In general there exist numerous mvariant standard measures. For k = 2 the
product measure will be the unique invariant standard measure if and only if the
svstemns (X, By, Ty and (X-ABa e T are disioint.

Lemma 5.3. If cach svstem (X. AB.u. T) is ergodic, = Ty« T x> T,
and w is a 7-invariant standard measure. then the ergodic components of u are

also standard.

Proof. let m:Q- X, be the usual projection. so that 7 (p) = . Write
w = [ AdB(&) as the ergodic decomposition then pu, - [ (A )dO(€). But since
the u, are e¢rgodic any such decomposition into invariant measures is degener-
ate; namely 7 (A )= p. But this shows that (a.e.)A. is standard.

86. Generalized eigenfunctions

This section has much in common with Zimmer ([8]) who develops very
similar ideas. Let (X, B.w. T) be a regular mp.s. and (Y, @, v, T') a factor, with
@: X — Y the corresponding homomorphism. We will generally denote the
transformation for a system and a factor by the same symbol. there being little
danger of confusion. Throughout our discussion we will assume that (Y, 2. v, T)
is ergodic. We let w = [ u.dr{y) be the decomposition of w into measure on the
fibres over Y. and form the family of Hilbert spaces L (X, B, u,). The
uniqueness of this decomposition implies that ur = Tp,. Here as in the sequel
4n assertion made about v € Y is to be understood as vahd for almost every 'y
with respect to the measure 1. The foregoing equality says that [ ddur =
[ ¢ > Tdu,, ~» that denoting & - I by Td we see that ¢ — T 1s an isometry of
(X, B, 1= L(X A uy) By the ergodicity assumption on (Y. », T) it
follows that the spaces L7(X,B.u,) are isomorphic as Hilbert spaces, all having
the same dimension = =

We denote L7(X,8. u,) by 9,1 the Hilbert space L(X, AB.u) which we
denote simply L°(X) is then the direct integral of the ©,. For cach clement f(x)
in LX) one has a cross-section vy — %, defined almost everywhere simply by
regarding f as a function in L(X, B. ). Generally we will have to study the
relation between objects defined in terms of L*(X) and “‘cross-sections’” of
similar objects in $,. We shall sometimes refer to the collection of Hilbert

spaces {9, as a Hilbert burndle over Y.

Definition 6.1. A closed subspace M T L (X) is called a Y -module if for
cach f& M and any mecasurable function h(v) for which the product Af &L (X)

we have ht = M.

&£ ia

i
it
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If M is a Y-module we denote by M, C9, the image of M in ©,. M may be
regarded as a “bundle™ of linear subspaces over Y. We say M is of finite rank if

dim M, =r < » for ae. y.

Lemma 6.1, If dimM, =1 for ae y&Y, then there exists fE€ M with

[ du, =1 jor almost every y € Y.

Proof. Given ¢ € M. let S(¢)C Y be the set of y with [l du, >0. With
an appropriate h(y) we can form the function h¢ so that [|hd ["du, = xswi(y)-
[f {¢,} ranges over a dense set in M, clearly v(U S(¢.))= 1. Moreover, if
[ Fdu, = 3 aly) and Sgel'dp, = xady) then [+ XasadaTdp = Xacadly)-
Thus appropriate combinations in M will give integral 1 on a set arbitrarily close

to Y. and since M is closed we can achieve 1 almost everywhere.

Lemma 6.2. Let M be a closed Y -module with dimM, =r <= a.e. then
there exist ¢.. ¢ b, €M with [ ¢pdu, = 8, a.e. and these span M as a

Y -module.

A set of functions satisfying orthonormality conditions for each y is called a
vy -orthonorm.l set. To say that a set of functions spans M as a Y -module means
that every function in the Y-module can be expressed as a (convergent) linear

combination with coefficients functions on Y.

Proof. Choose ¢, using Lemma 6.1. Now let M ={pEM|f PP du, =0
aelt. M’ is again a Y-module and one sees that dimM/,=r—1. Now use
induction. Once &, ¢, -, ¢ have been found, they form a basis at each M,
and for an arbitrary ¢ € M we have

b=3 f Yddu, )b = X c(¥)b.

his proves ithe lemma.

In case the “local dimension” dim M, is infinite, for example, for M = L*(X),
one has to exercise more care in choosing a Y -orthonormal basis, since in
passing to indnity one may exhaust certain spaces M, before others. To avoid

this we use the following.

Lemma 6.3. lLet M be a Y-module with dim M, = r, and let ., g2, -, W,
he r functions in M. We can find a Y -submodule N CM with dim N, =r and
Wi, = N
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Proof. By induction. If r = | we detine &, = h(y ), + ¢, where h is chosen
so that | hi'dw. -1 on S(Gp) (see Lemma 6.1), and ¢ is the function of
lemma 6.1 considering M over the complement of S(i). If N, is the “rank
one’ Y-moduic spanned by ¢, then . € N Now suppose the lemma proven
for r 1. and N’'C M is the submodule containing un. - Let A
«{(};E,W!fd)(gd'uv 0 for all ¢y N and ae. vh Let b b be a Y-

orthonormal basis of N'. For every & € M.

r—1 . r-1 -
g E cd, + (u{/ - E C,(f);> e N+ M ¢, J z//(g,du‘,.
| b ;

From this it ioflows that dim M| 1. Now let A" be a rank one Y-submodule
(dim M7 = 1) containing &, ~ S [ (Wepdpy ). then N = N'-+ M" satisfies the
conditions of the lemma.

Now let M be a closed Y-module with dim M, == a.c. Let {¢,} be a dense
subset of M. Following the proot of the foregoing lemma we sce that we can
define  inductively submodules N., N,CN,.., with dim N,, =n and with
G dias -t € No. Set M, ={d € N, | [ dibdp, =0 for all & €N, and a.e. y}.
“hen dim M, =1 and we can find &, € M. with [, “du, = 1. The ¢, are
v orthonormal and {¢p,. ., -+ . Pa} span N Flence the Y-module spanned by

{ho I = n <l % contains all ¢, and so coincides with M. We have thus proved

Lemma 6.4 Fuery closed Y_module M in L°(X) with dim M, = const. = >

has « Y-orthonormal basis. In particular L*(X) has a Y -orthonormal basis.

Fix a Y-orthonormal basis {e.; of L(X). Suppose y—u(y)ED, 1$ Q
cross-section of the Hilbert bundle {$.}. In terms of a basis {e.} of L°(X). we
can form the coeflicient functions on Y ¢, (y) = (u, e,), where (. ), 1s the scalar
product in . We shall say u is a measurable cross-secnon it all the ¢, (y) arc
measurable. w0 is square integrabie if SlevylPde(y) -2 If u is a square-
integrable medsurable cross-section then 2 ¢, (y)e, converges LY(X) to a
glopal function @ and w(v) s the image of @ in £,. Conversely, if &€ L(X)
and w(yv) is tac tmage of o in s3,, then y —u(y) is a measurable square-
integrable cross-section.

Now let y—+A(y) be an operator valued cross-section v — End(9,). We will
say that .4 1, measurable provided y-— A {yju(y) is mecasurable for cvery
measurable square-integrable cross-section u. If 1A (vl is unitormly bounded, 1t
suffices that .3 {v)e, is measurable for a Y -orthonormal busis {e.}.

Next suppose that V(y) is an r-dimenstonal subspace of ¥, defined e Y.
We say Vois o neasurable r-plane cross-section provided the operator valued

Ccross-section v -» Py owith P the orthogonal prajection on V.ois measurable.

S AR %1

et
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l.emma 6.5. If M is a closed Y-module with dimM, =r then y > M, is a

measurable r-plane cross-section. Conversely, if y — V(y) is a measurable r-plane

cross-section there is a closed Y-module M CL*(X) with M, = Viy).

Proof. If M is given, let {¢,, - -. b} be a Y -orthonormal basis of M. If
& < L°(X). its projection at each y onto M, is given by Pu =2(f b, )b,
which is measurable since [ ¢.@.du, is a measurable function of y. Conversely if
the measuriable r-plane cross-section V is given one can construct squarc
integrable mcasurable cross-sections y — u, (y) with u,(y)€ V(y) and such that
for almost every v. {u, (v)} spans V(y). Namely apply the measurable projection
operator Py, to cach of the functions in L°(X). Then let M be the closed
Y-module spanned by u, regarded as functions in L*(X). Then M, = V(y).

We return to the systems (X, @B, u. T) and (Y. 7. v, T) and recall that the latter

is assumed to be ergodic.

Definition 6.2. A function ¢ € LX) is a generalized eigenfunction with
respect to Y if the closed Y-module spanned by {&, T'é, T*h, -+, T"d, -} is of

finite rank.

Equivalently, ¢ 1is a gen. eigenfunction if it belongs to a T-invariant
v-module M of finite rank. Let M be such a Y-module. Recall that
U,: 9r, — 5, defined by U,¢ = T = ¢ o T is an isometry of D, into O, fM
is T-invariant, then U, (Mr,)CM, and so dim M, = dim My, By ergodicity this is
constant.

Let M be a T-invariant Y-module of finite rank. Since the local dimension is
constant we can use Lemma 6.2 to obtain a Y -orthonormal basis {h,, - h}.
et H(x) be the vector valued function with components h,(x). The functions

Th, € M and so we can write
Th(x)=2 A (¥)h(x)

or TH = A(v)H. H is then a vector valued eigenfunction with respect to Y, the
“eigenvalue’’ being a matrix valued function on Y. With U, as above, we have
UM, =M. and U, is an isometry of the r-dimensional spaces My, and M.,
Since {h,} is a Y-orthonormal basis, it follows that {Th,} is also a Y -orthonormal
basis. Hence the matrices A(y) must be unitary matrices. The conclusion is that
all generalized eigenfunctions over Y belong to Y-modules spanned by unitary
gen. eigenfunctions, that is, eigenfunctions for unitary matrix-valued eigenvalues.

If ¢, ¢ are bounded generalized eigenfunctions then oy is in L*(X) and it is
easily seen ‘hat it is again a generalized eigenfunction. In any case the sum of
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generalized eigenfunctions is a generalized eigenfunction. Thus the bounded

generalized eigenfunctions form an algebra containing L™(Y).

Definition 6.3. If (X, B, u. T) is a m.p.s., (Y, 2 v. T) a factor, we denote
by €(X/Y,T) the subspace of L’(X) spanned by generalized eigenfunctions
with respect to Y.

&(X/Y,T) is a Y-module; it contains in particular L*(Y.»), as well as the
subspace of T-invariant functions on L(w).

We have already seen that €(X/Y, T) is spanned by unitary eigenfunctions.
Suppose as before Th, =X, (y)h, with (A;) unitary, and form p(x)=
[Sih(x)[}"". We have p(Tx)=p(x) so that if, for example, (X, B, u, T) is
ergodic, p(x) will have to be constant and the h, are bounded eigenfunctions. In
that case €(X/Y, T) is the closure in L*(X) of the algebra of bounded gen.
cigenfunctions. But this is in fact always the case since the h, above are limits in
L*(X) of y~h. where x~ is the characteristic function of {x |p(x)< N}, and x~h
is a bounded cigenfunction with the same eigenvalue. This gives

Lemma 6.6. &(X/Y.T) is the closure in L°(X) of the algebra of bounded

generalized eigenfunctions.

We close this section with an easy lemma whose proof follows immediately

from the definitions.

Lemma 6.7. For every power T™ we have €(X/Y, T™)=¢(X/Y, T).

§7. Fibered products

In what follows it will be convenient to denote a m.p.s. (X. B,u. T) by X
when there is no room for confusion. Suppose a system (Y, D, v, T) 18
simultaneously a factor of two systems (X, By, n'.T) and (X,, B, ", T) with
@ X, — Y the associated homomorphisms. We denote by X, xy X, the space of
pairs {(x, x:)| c:(x,) = a:(x:)}. This is a subspace of X, X X: and we obtain a
o-algebra AB,>y B, by restricting B, % B. to this subspace. There is also a
measure defined on this o-algebra which we denote u'xXyu" This measure is
defined by disintegrating u' = [ pnidv(y), w” = fuydv(y) and setting

(1) u’{,#”=ju;><u’v’dV(y)-

An equivalent definition of ' X, u" is obtained regarding it as a measure on

X, x X, satisfying
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2) [ ferodu’ 5 u” = [ EGIVIEG Yidv

It is now not dithicult to verify that (X, Ky Xan B Xy Boopp' Xyp".T)is a mps.
where T(x,, x)=(Tx), Tx:) and that (Y, 2, v, T) 1s a factor of this system. The
object of this section is to relate the space of generalized eigenfunctions of
X, Xy X, to #(X,/Y,. T) and E(X./Y, T).

Suppose M, C L (X)), M>C L?(X.) are both Y-modules with the property that
they are spanned by bounded functions. We can then define M, Xy M: as the
y-submodule of L*(X,x,X:) spanned by products of bounded functions in M,

and M,. Our main result is

Theorem 7.1. E(X,xX X:/Y.T)=€(X/Y. )@ £(X,Y, T).

Proof. Lct 3,. be the o-algebra of sets on X, Xy X, generated by functions
in (XY, T) Qv XY, T), e, the least o-algebra with respect to which these
functions are measurable. %, is T-invariant and hence TE(f| Biz) = E(Tf! Br2). It
follows that if M isa T-invariant Y-module so is €(M|B..). Soif fisa generalized
eigenfunction on X; Xy X5 so is €(f| B:.) and by subtracting this from f we obtain a
generalized eigenfunction on X, X ., X, which is orthogonal to all gi(x1)g2(x.) where
g € (XY, I). Our object is to prove that such a function vanishes; then the
theorem will be proven. So assume f(x, x:) E €(Xi Xy Xo/Y, T) and is orthogonal
o (XY, YR E(XAY, T) and let M be the T-invariant Y-module it generates.
Every function in M has the same property. Now let fi, -, f. be a Y-orthonormal
basis of M; Tf. = Z,A; (y)f. Recall that (A,) is a unitary matrix. Form

(xi, xi :f P> £.(x0 x2)f (7, x)dp ().
We claim that ¢ is T-invariant.
G(Txi, Txi)= f 2 F(Tx s, ) (Tx T, x2)dp (x2)
- [ 3 Arei T (T Te)du (e
= f S A (0 IA ol b x5, x)dp (%)

[NENA

=f S (xh xof (2 x)dp i(xa) = w(x X
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Morcover (o x i) s d(x 7o x)) and

TN

’ L (x . x;)ﬂlu’i(.r;)J Lf(x, x=) du "'/'("'5’]'" ‘

—
-
=
»t\/‘
P
———

w0 that

’ P (xr x )] dp (e dp ()

o

>

rZ {J J H(xtoxo) [ du (,(xi)du’\’(x;)}‘ =

Wwe now need the following lemma.

Lernma 7.2. Let (X. B u, T) be a mp.s. and (Y. 7, v. T) an ergodic factor
and suppose Ji(x'.x") is defined on X %, X and defines for almost each y €Y u
welf-adjoint - Hilbert -Schmidt operator A, on 9, =L (X, u) with bounded
Hilbert-Schmidt norm. Assume W (Tx'. Tx")= W(x'.x"). Then the compact
operators A, have the same spectrum IAm [ A, L= 0 for almost all y. and the
projectiors P.. onto the eigenspace of A.#Z0 depend measurably on y. If Vi,

denotes this ergenspace then there exists a T-invariant Y -module M, of finite rank

with 1\/[4;\ =3 Ly

Proof. Given an interval [a.b]CR — {0} form a circle ., in the complex
plane having [a, b] as its diameter. If A is a self adiomt compact operator such

that the poirts a. b are not in the spectrum of A then

1
P(Ai(l.b)ﬁ54'. f (zI =AY 'dz
Ll

Ya.l

is the projeciion operator onto the eigenspace of A for cigenvalues between a
and b. For A of fixed bounded norm it is easy to find a sequence of polynomials
p.(X) such that p,(A)-> P(A:a b) weakly. Moreover lim p.(A) will define an
operator of finite range even it a or b belong to the spectrum. This is done by
Approximating y.» by two arcs v, and yZ, above and below the real axis and
on cach of thase replacing (21 ~ A ) ' by a uniformly convergent power series.

Now the «perators A, are defined by
Ayh(x) = J (x, xVh(xydu, (x7).

1 1/,: 9, -, is the unitary operator with U, = ¢ » T then we will find that

these intertwine the operators A.:
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Arh(Ix)= f Y(Tx, x"Yh(x)dur,(x') = J' Y(Tx, Tx'Yh (Tx")dp, (x")
:f Y (x, x Y (TxYdu, (x) = A, Th(x)

so that TA,, = AT or UA: = AU,

Now form the operators P(A,, a, b) as above. By the foregoing this depends
measurably on y and the operators are unitarily equivalent for y and Ty. Hence
the dimension of the range is a measurable T-invariant function of y; hence
constant by ergodicity. From this one deduces that the spectrum of A, is
independent of y. Moreover choosing (a, b) = (A, — £, A, + £) for appropriate &,
we see that P., depends measurably on y. Using Lemma 6.5 we find that the
eigenspace V., is the localization of a finite rank Y-module M. The fact that
UV.r, = Va, implies that M, is T-invariant.

We now proceed with the proof of Theorem 7.1. We apply the lemma to the
function ¥(x',x") on X,XyX, form the bundle of operators A, and the
corresponding eigenspaces V.., and the T-invariant Y-bundles M, C L*(X;). Let
{¢} be a Y-orthonormal basis of some M,  We have T, = 2 K, (y)d. We have

for almost all y,

n= [ A B e, or

no= [ [ e x08eDB T D 5

= f f f 2> fi(xi x)fi(xh, x2) b (x )i (x)dp y(x D du (x V) dp (x2).

Consider now the functions
g () = [ fixi, 2 (x e D)
We have
(1= [ fiet, T (e (x0) = [ £(TcL, T (T (x)

-3 MK () [ hssxasyxnauiced

= 2 Aa () K, (¥)8i (X2)-
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[his shows that g, C€ (XY, T) where éy(x))ga(x:) < E(X Y. oo (X Y. T)

and by hypothesis, the f are orthogonal to such functions. But we can write
A f J S ) (x)é (xNdp (x5 dp(x) 0.

We conclude that there are no non-zero cigenvalues so that A, is the O operator
and hence ¢(x), x7)=0. Now form the Hilbert space s, which is the direct sum
of r copies of 9, We have a map F: X,— 9, defined for ae. y by
Fix) = (flx,. ). flenx:) o flx xe)). The fact that ¥(x;. x7) =0 says that for
almost all pairs in X, %, X, F(x) L F(x') as clements in $,. We shall show that
this implies that F(x,)-~0, i.e., all the f are 0. This of course completes the

proof. What remains therefore is to prove

lLemma 7.3. LetF: X —$ beameasurable map from a measure space (X.u)
to a separable Hilbert space . If for almost all pairs with respect to .y < . we have
F(x) L F(x") then F(x)=0.

Proof. The map F determines a probability distribution on $. If u is a point in
the support of this distribution we will find that in each neighborhood of u there are
vectors that are mutually orthogonal. But this implies that u = 0. This completes
the proof.

When X, «nd X. are simultaneously extensions of Y then X, Xy X: is an
extension of both Y and cach of the X. We can then study generalized
cigenfunctions on X, Xy X, with respect to, say. X..

Notice that the decomposition of the measure ' Xy w" according to the factor X

lLL! ? er — l /.L£\ /.L:fdl/(,\’) = f ’J“,‘:"‘J) X 8,&‘(1#”(,(\)

where . Xo » Y is the associated homomorphism. As a result we can identify

fibres over x, in X %y X with the fibre over a:(x:) in X,

Theorem 7.4. If (X, T) is ergodic  then EX XX T
XY, T) LX),

Proof. Ax above we assume we have a generalized eigenfunction orthogonal
to ¢ (XY, TR L*(X.)and that it generates a T-invariant X--module M which is
orthogonal to this space. Again for an X--orthonormal family {f,. - f} we will
have Tf, = 2 A, (x:)f. Set

T WL

£
-

A Ea. ...

Y- 5N

3

B
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P (xi. x7 :f 2 £,0ch x2)f (e, x2)dp Y(x2).

Then o (Txi. Tx?)= (x}, x7) exactly as above. Using ¢ we construct a bundle of
Hilbert—Schmidt operators {A, } for y € Y. Let M(A) be the Y-module in L*(X)) of
functions having A as an eigenvalue for A, and suppose ¢ € M(A) with

[i¢|*du, =1 for each y. then

A = f f U(xh XD (x) P (x ) du i(x ) dp x")

:fffE fi(x i x2)fi (x5, b (x D (xh)dp x ) du (x")dp (x2),

and setting g.(x2) = [ fi(x1, x2)d(x1)du (x1), we find

v = [ [ S RO RIS GDe (e x" e 1)

But ¢(x})g (x2) € E(X/Y, T)® L*(X.) and by hypothesis each f; is orthogonal to
these. Hence A = 0 where ¢ = 0. Now as in the foregoing theorem we obtain f; =0.
We mention a notion that arises naturally in connection with fibered products of

systems.

Definition 7.1. If (Y, @, v, T) is a factor of an ergodic m.p.s. (X, B, u, T) we
say X is a relatively weak mixing extension of Y in case E(X/Y, T)= L*(Y).

The following may be deduced from Theorem 7.1 and its proof. We omit details

since we shall not need this result.

Theorem 7.5. X is a relatively weak mixing extension of Y if and only if
X Xy X is erzodic. If X is a relatively weak mixing extension of Y and Z is any

ergodic extension of Y, then X Xy Z is ergodic.

§8. Distal systems

In this section we shall study extensions (X, B, u, T) of systems (Y, 9D, v, T) for
which €(X/Y, T)= L*(X). For reasons that will become clear presently these will
be called isometric extensions. A system that can be constructed from the trivial
system by a wequence of isometric extensions will be called distal. We start with a

special case.
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Definition 8.1. (X, B, u, T)is a group extension of (Y. @, v, T) if there exists
a compact metrizable group G and a measurable function y: Y — G such that
X = Yx G with T defined on X by T(y.g)=(Ty,y(y)g). If in addition u =
v % me, where me denotes Haar measure on G, then X will be called a strict group

(G-) extension of Y.

Given (Y, @. v, T) and an arbitrary measurable function y: Y — G where G is a
compact metric group, we can construct a (strict) group extension by setting
T(y,g)=(Ty, y(x)g). We note that different functions y may lead to isomorphic
extensions. Namely, let p: Y — G be arbitrary measurable; we reparametrize
Y x G by renaming (y.g) as (y,p(y)'g). Then T(y,g)=(Ty, y(y)g) will be
renamed (Ty, p(Ty) 'y(y)g) and this system arises also from the function

y'(y)=p(Ty) 'y(y)p(y)-

We refer to the procedure as reparametrization.

Suppose that a G-extension of (Y, @, v, T) is reparametrized so as to obtain y'(y)
s above with +alues in a proper closed subgroup H CG. Then the sets of the form
Y x Hg, are invariant and a measure g cannot be ergodic unless it concentrates on

one such set. The next theorem makes this precise.

Theorem 8.1. Let X =Y X G, where G is compact metric, and let T(y,8)=
(Ty. y(y)g) define an ergodic group extension (X, B, u, T). Then X may be
reparametrized so that y'(y) takes values in a closed subgroup HC G and p =
» X mu. All the ergodic extensions of Y to X then have the form u, where g' € G and
W is the image of w under the group translation (y, g)— (y, 88')-

Proof. [t will be convenient to choose for Y a compact metric model for which
the function y(y) is continuous. It is important to notice that the group G acts on
X = Y x G by oy, g) = (y,g¢') and the o, commute with the action of T. With
X = Y x G a topological space we say that a point x € X is generic for p if

RN '
L3 p - [ pau
for all continucus f on X. By the ergodic theorem and the fact that X is metrizable,

it follows that almost all points with respect to wp are generic for u. By the

commutativity of the o, with T we obtain

*) x is generic for u & o, (x)is generic for o, (u).

e

i 2% Ra . ..

i AE
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Now let H ={g € Glo(n)=n} Hisa closed subgroup of G. We claim that if
h € H and x is generic for u, so is o (x). Conversely, if x and some o (x) are
generic for u then g € H. Both statements follow from (*). Thus we see that on a
fibre y x G, the set of points generic for u, if they exist at all, belong to a coset

y X p(y)H. Now n is carried by the generic points so we can write
p = [ 8% pImudv ().

Here y — p(v)H is a measurable function to G/H. Since for compact groups one
can find a borel measurable cross-section p: G/H — G, this may be lifted to a
measurable map y = p(Y) to G ([4]). Using the fact that u is T-invariant we now

conclude that T(y,p(y)H)= (Ty, p(Ty)H) or
y'(y)=p(Ty) 'y(y)p(y) € H.

So if we use p(y) to reparametrize the product Y X G we find that

7 =f 5, X mudv(y) = v X mu.

Clearly all the measures J; () are ergodic. Also any ergodic measure has generic
points above almost all y € Y and the generic points of the oy (n) exhaust all of
these; it follows that the only ergodic extensions are oy ().

Suppose X =Y X G is a G -extension of Y and let p: G — AutC” be a finite

dimensional representation of G. Let pi(g) be the component functions. Then

regarding ¢, as functions on Y x G we have
Tp, (v, 8) = s (y(¥)8) = 2 du(y(¥))Pu(8)

so that the p, are generalized eigenfunctions. Since these ¢,(g) separate points of
G we see that €(X/Y, T)= L*(X).

More gencrally we can obtain (XY, T)= L*(X) by letting X =Y xS where S
is a homogeneous space of some compact metric group. S = G/L, and setting

T(y,s)=(Ty. v(y)s).

Here y: Y — G as before. It is well known that on any such space S the functions
spanning finite dimensional G -invariant spaces are dense, and these functions

determine generalized eigenfunctions on X with respect to Y.
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Definition 8.2. An extension (X, &, u, T) of a system (Y, . v, T) 1s called
isometric if there exists a homogeneous space $ of a compact metric group G, a
measurable function y: Y — G, such that X = Y X § and T(y. s)=(Ty.y(y)s).

Theorem 8.2. If (X. 3. u, T) is an ergodic isometric extension of (Y. 2., v.T)
then (X, 3. u. T is a factor of an ergodic group extension of (Y, 2 v, T).

Proof. It is again convenient to regard Y as a compact metric space and to
assume the map y: Y -—> G continuous, where X =YxG/L and T(y.s)=
(Ty. y(y)s). We know that u maps onto the measure v on Y. Consider the set of all
regular measures g’ on Y x G which map to ¢ under the map (y, g)— (y.gL). This
is a T-invariant compact convex set and so there exists a T- invariant measure u’

mapping to u. Take its ergodic decomposition. The components are again
[-invariant measures mapping to ergodic components of w. But u 1is ergodic so
these all map to u. Hence there exists an ergodic group extension of Y of which X

is a factor.

Theorem 8.3. If (X, B, u, T) is an ergodic extension of a system (Y, D, v, T)
and L°(X)= E(X/Y, T). then (X, B, u. T)isan isometric extension of (Y, 2. v. T).

For the proof of this we need a preliminary lemma.

Lemma 8.4. Let (Z.. Bu tn T.) be a sequence of isometric extensions of a
system (Y. Z. . T) all of which are factors of (X, B, . T). Then there exists an
isometric extension (Z'. B'. w'. T) which is a factor of (X, 8, . T) and which has all

(7. Bo pn. T as factors.

A more procise statement is that given the commutative diagram

commutative.

A
)
:

b

o R B
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Proof. Let a denote the homomorphism a: X — Y. The maps a,: X — Z, are
given by a.(x)= (a(x), s.(x)) where s. € G,/L. and T on Z, is given by
T(y.s) = (Ty, ya(y)s), ¥n: Y > G, Weset G=I1G,, y=My. Z=YX I1G./L,,
B(x)=(a(x). Mls.(x)). This completes the proof.

We now prove Theorem 8.3. Let {M,} be a sequence of T-invariant finite rank
y-modules in L*(X) which together span all of L*(X). For each M,, choose a
Y-orthonormal basis {h7, i =1,---, r.}. Then Th} =X A% (y)hT where (A T(y)isa
unitary matrix. We have already remarked that S, h7(x)] is invariant with
respect to T, and since by hypothesis X is ergodic, we have S| h7(x)[ = constant
which must equal r, by the normality of the functions h 7. Now define s.: X = S,
where S, =S, the 2r, — 1 dimensional sphere, by letting s.(x) be the r.-
dimensional complex vector with components r."*h7(x). G, is the unitary group
U(r.) and v.(y)= (A% (y)) Then it is clear that Y x S, is a factor of X which
defines an isometric extension of Y. If a, is the homomorphism of X to Y X S,
then L3(Y X S,)°a CL*(X) and this subspace contains the functions h7(x); hence
M, CL¥Y % S.)°oa. Now apply Lemma 8.4 to obtain a single isometric extension Z
which has all Y X S, as factors. If B: X — Z is the corresponding homomorphism,
[*(Z)-B will contain all M, Hence L*(Z)°B = L*X) and B is a measure-
theoretic isomorphism of X and an isometric extension Z of Y. This proves the

theorem.

Definition 8.3. A system (X, 3, u, T) is called distal if it has a sequence of
factors indexcd by ordinals X,, 7 = no and with X = X, X, = trivial system on on¢
point, and such that forany £ <mn =mo, X152 factor of X,, with X, ., an isometric

extension of X, and Xym¢ = Inverse lm X,.

The reason for this definition is that if (X, B, u, T) is a distal system in this sense
and we regard X as a metric space, it will have the property that for any distinct
points xi, X,, the images T"x,. T"x, remain at a distance bounded away from zero
from one ancther. A converse result is given in [1]. For our purposes here we need

only be concerned with finite step distal systems.

Definition 8.4. (X, B.u.T) is a distal svstem of order n if there exists a
sequence {(X,, B ., T)} of factors, i = 0,1, -, n, with X = X, X.., an isometric

extension of X, and X, the trivial system.

A Kronecker system is accordingly a distal system of order 1.

[ et Y be o factor of an ergodic system X. We can interpolate between Y and X a
largest isometric extension of Y. Namely we form €(X/Y, T)C L*(X). This
subspace is spanned by the algebra of bounded generalized eigenfunctions and we
can take Z to be the factor of X defined by this subalgebra. Alternatively one can
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tollow the proof of Theorem 8.3 to obtain a factor Z with Z =Y an isomefric
cxtension and B: X -» 27 such that [ (Z)- B - E(XIY. ). We shall write
Z (XY, T)for this system. Now let Z,(X) = X, denote the trivial point system. The
maximal Kronecker factor of X will be Z,(X) = Z(X/X., TY. It Z(X)= X we
may continne and set Z+(X) = Z(X/Z(X). T). In this way we continue, inductively
defining Z, (YY) ZAXIZ,(X). T). We call {£,(X)} the distal series of the system
X

The series 7Z.(X) can also be cxtended transfinitely and one obtains for
wup Z:(X) the maximal distal factor X, of the system X. It is obvious that
X/ Xp T) = [°(Xp) so that X is rcl:{tivcly weakly mixing with respect to 1ts
maamal distal factor. These notions were referred to in the Introduction, but we

Lhall not actuully make use of them in the sequel
89, Conditional product measures on product spaces

Let (X, By, Ty, i =12 k bek measure preserving systems and form the
product (X, B)-= (ILX.1TA)). In §5 we introduced the notion of a standard measure
« on (X, A) as one whose projections in the components (X, 4;) coincide with w'
In this section we shall be studving certain classes of standard measures in product
spaces.

Now let o, (Xo B ™. T (Y, r v ). i = 1.2, k denote homomorph-
isms. and fet o X =1 X, —11Y, = Y denote the composition of these. If g o150
standard measare en X, then a(w) s a standard measure on Y. For cach i we have
1 decomposition @0 [ Cde " (y). We can use this decomposition to lift meas

ares on Y to X

Definition 9.1. lct ¢ be a standard measure on (X, :4) and denote 1ts image
on (Y. Z)by & = a(#). We say that 0 is a ¢ onditional product measure relative 10 Y

if
(t) f - [ TR TR W de (v, ve o)

Note that the w ' are only defined for almost all vy, with respect to v However
wnce B s a steadard measure on Y. the formula (1) is meaningfil. [hroughout our
cubsequent dizcussion the measutes on product spaces that will oceur will be

standard measures.

Lemma 9 L. A standard measure on X i a conditional product measure

relative 10 Y ir and only «f for all & uples & T (NG AL S0 TR SRR SR

R S S B
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f f‘(-xl)fl(xl) T 'fk (x« )do(xl, X2, "' % xk)

= f E(fi| YO)E(ff Y)(y2) - E(fe] Ya) (y)dO'(yr, y2 s yi)-

This is immediate from the definition. Note that the second integral in (2) can be
equated to an integral over X with respect to 6 if the conditional expectations are

regarded as functions on X.:

f filx) - f(x)do(x,, -y x)

- f E(h 1Y) () ECh | Yo)(an(x)do(xi, -+, x0).

Of course E(f]Y)(a(x))=E(f la;'(2:))(x,). Equations (2) and (3) can be
interpreted as saying that defines a distribution in (xi, Xz, - * , X») such that the
variables x, are conditionally independent given the algebras a;'(2;). From this it
is evident that the larger the o-algebras the more likely one is to have indepen-

dence.

Lemma 9.2. Suppose for each i=1,2-- k we have homomorphisms
o B F . ..
X, > Z,— Y, and that the measure 6 on [1 X, is a conditional product measure

relative to 11 Y. Then it is a conditional product measure relative to 11Z.

Proof. Apply (3) together with the observation that E(fila™'B7'%)=
E(E(f|a"€) a'B7'%,) where &, is the o-algebra on Z; so that B7'@, C €.

Now fix a standard measure 6 on X =11 X, let a: X; — Y; denote homomorph-
isms, let a be the composition of these homomorphisms, a: X -»>Y=I01Y, and let
8’ = a(#). We shall use the symbol Y to denote the measure space (Y, 2, 0'). Y. is
a factor both of X, and of Y. (This uses the fact that @' is a standard measure on Y.)
We can form the measure spaces X; Xy, Y which in turn have Y as a factor, and we

can form
X = (XX V)X (Xa Y)x - 5 (X X Y)

as a measure space. The underlying space of X, Xy, Y is a subset of X; X Y and so
the underlying space of X is a subset of Il Xi x Y* = X x Y*. In fact the Y*
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Lomponcnts will be in the diagonal of Y* and can be identified with Y, and we can
egard X as a subset of X x Y. Let us define a: X > X by @(x;, X2 - x) =

(X a(x)), (xoa(x)), - (a a(x)) with x = (x,, X2, - - -, x. ). The following lemma

gives another interpretation of the notion of a conditional product measure.

ILemma 9.3. If 6 is a conditional product measure relative to Y then «a is a

measure prescrving isomorphism of X with X.

Proof. Both X and X have Y(=(Y,8') as a factor, and so to check the
isomorphism it suffices to show that & maps the “relative’” measure 6, on X to the
corresponding relative measure in X. On the one hand, if 6 is a conditional product

relative to Y,

(k)

0V1~Y:~ ! “’Vx))( ,U..(‘} X - - X :u’w ’
and

(;(Bvl-vzv“ Vk)_ (I“LVI)X 8 )X (lu’(2>>< SV)X s X (/“"“‘)>< 8 )

On the other hand the measure on X, X, Y is
Il(l): f /Jf(vl,)x 9’,‘.de“)()).’)

and we need to determine its decomposition over Y. Writing 6. = [6,d0.(y) and
8" = [68.dv@iy,), we have

= [ i b8y )ar ()

B ( pl) > 8,.d6'(y)

where in the last integral y, is the ith component of y. This gives 2\’ = u ) ¥ 8, and

so the result follows.
The following theorem plays a basic role in our proof of Theorem 1.4, With X
and Y, as before, but now regarded as measure preserving systems with transforma-

ENE )
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tions T, we shall write Y, = Z(X.1Y, T), the largest isometric extensions of Y; in
X.

Theorem 9.4. Assume (X, B, u", T) is an extension of an ergodic m.p.s.
(Y. @iy vy ), 1= 1,2,---,k and that 0 is a standard measure in X =1 X, which is
T-invariant. If 8 is a conditional product measure relative to Y =11Y,, then almost all
ergodic components of 6 are conditional product measures relative to Yy=1Y.

Proof. Let 8’ = a(8). We may assume 8’ is ergodic on Y. For in any case 6’
can be decomposed into ergodic components, which by §5 are standard measures,
and if we integrate the measures 6, over these components we shall obtain
invariant standard conditional product measures on X relative to Y, and the
ergodic components of 8 are ergodic components of these. So we assume 6’

ergodic.
We claim that the conclusion of the theorem will follow if it can be shown that the

subspace of T-invariant functions L¥X, Br, ) CL*(X, B, 0) is contained in
E(X/ Y, TR E(X:/ Y, NR - RQEX/Y:, T) C L*(X, %, 6), where the tensor
product as usual refers to the closure of the space spanned by the products in
question. For let f, € L™(X, B, u') and let fi=E(f] B;) where 2, is the o -algebra
defined by functions in €(Xi/Y, T), or equivalently, the preimage in X; of the
o-algebra of the space Y. Since X;— Y;,— Y, and 0 is a conditional product
relative to 1Y, it is also a conditional product relative to [1Y, and so

[ Fx0fie) o)A e 5, x0)

@)
= [ Ffie) - s xi xo o x).

Replace f; by ff: where fi€ E(Xi/ Y T). f—f7 = ff.and we conclude from (4) that

[ Flenfe) - flrdg e, om0 g x0)
)
= f f—x(-‘f;)fz(xz)' e f—k(xk)‘  fie (i )g (X1, X2, 77 X )dO(xi, %2, Xk )

forany g € € (X\/ Y. TYQ €(Xz/ Y, TR R E(Xi/Ys T). If we know that this
tensor product contains L*(X, #r, 0), it follows from (5) that
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{0) E(fi(x)f(x:) - f (X)) Br) = _E(fx(xl)f_z(xz)' e f_k (xx )| Br).
But the ergodic decomposition 6 = [ 6,d6(x) is such that [ 6fd6. = E(f18:)(x)

a.c., and so (A) implies that for almost all ergodic components #. we have

4

f filx)fa(xz) - - fx (xi)dO (x1, x2, - -, X )

= [ FRited - Fuu)don(enxe - x0)

From $5 we know that almost all 8, are standard measures and from this and
Lemma 5.1 it follows that (7) need be verified only for a countable set of products
fif: -+ f. We conclude that (7) is valid for all products for almost every x 50 that
the 6. are conditional product measures relative to Il Y.

[t remains to show that

LA(X. Br.0)CEXJY, T)REXSY, TR - E(Xu/ Y, T).
By Lemma 9.} a: X — X is an isomorphism of measure preserving systems and so

we may transfer the problem to L*(X. A, 6). The invariant subspace L X, Br. 0)is
clearly a subspace of E(X/Y, T). But by Theorem 7.1,

EXIYV, )X EX X Y Y. T)QEXXY/Y. IR - REX, x Y/Y,T)

and by Theorem 7.4, €(X, X, Y/Y, T)=€(X,/Y, T)S) L°(Y) so that
EXIY.T)=EX)Y, TYREXSY, TR+ & E(Xi/Yi, TYRL(Y).
Pulling back o X one sces immediately that
L(X. B @) CEX/Y,, TVREXSY, TYR - R E(X/ Y, T).
This completes the proof of the theorem.
We shall need a slight generalization of Theorem 9.4. Let us call a system
quasi-ergodic if it decomposes into finitely many ergodic components. For exam-

ple, if (X, &, ., T') is ergodic, then (X, B, u, T") is quasi-ergodic.

Theorem 9.5. Assume each (Y. D,v'.T) is a quasi-ergodic factor of
(X. B! T), i=12- -k Let @ be a T-invariant standard measure on X = 11 X,

.
|

k.. . il

. N
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which is a conditional product measure relative to Y = I1 Y.. Then almost all ergodic

components of 6 are conditional product measures relative to Yy=1Y.

Proof. We decompose each Y, into a finite union Y, = UY, of T-invariant
sets. Let X, =a.'(Y,) and restrict the analysis to boxes X, =
X, X Xop X -+ X X, Clearly the ergodic components of 8 lie in these boxes and
the retriction of 8 to such a box is either 0 or a standard measure. The conclusion of
the theorem follows then from the fact that Y, can be identified with the part of Y
lying above Y,. This in turn follows from the fact that the chatacteristic functions
xx, are in the algebra &(Xi/Y, T) and are T-invariant, so that €(X./Y, T)=

R, €(X, /Y, T).
§10. Measures generated by diagonal measures

We now fix an ergodic system (X, 3B, u, T) andset o = Tx T?x---x T* on Xk,
fork =1,2,3---. Welet & denote the algebra of standard functions (cf. §5) on X*

and let u¥ denote the diagonal measure on X*:

ffx(xl)fz(xz)'"fk(xk)d,uvg(xhxza"'axk)'—’ffl(x)fZ(x)"’fk(x)d/-"-

For any sequence {N, Mi}, N — M, — =, we can find a subsequence for which

N,

1 n k
Nl - MI /\;1 f kad#A

converges for all f € ., and so we can find a subsequence {N, M.} such that p3 is
generic for a measure p & with respect to the sequence {N, M,} and the algebra of
standard functions, for each k (cf. §5). Our object is to study the measures T
Unlike the situation for k =3, the measures wi, k>3, may depend on the
averaging sequence {N, M}.

On X* we consider two other transformations: T X T x - -+ X T which we denote
simply T, and I X T X T?x ---x T* ' which we denote ow. T, o« and 7 = To
naturally commute, Tugi = wk, and so Ty = uy, and since T £ =y we also
have o s = T = np s = p 5. SO w* is invariant under T, o and 7.

wk is a standard measure and so w is also a standard measure. We can
decompose this measure relative to the projection of X* to its first coordinate X

and we obtain

(1) wy= f 8, X w.du(x)

X
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where o, is a measure on X*'. Now oy = py gives

wh o= J o (8, X w )du(x) = J 8. %1 wdu(x)
X

X

which implies that w, = 1w, for almost all x.
Let 7 denote the projection (X, Xz, -y Xu )= (XL X ) E X
ko1

Lemma 10.1. m(u,)= .

Proof.

f flx) - fu(xydmd(p Y= f fa(x2) - fulx )dp KOy, X0 X))

= lim ‘—*_Z’W—, P J’f(l"’"x)fq”"‘x) i (TFx)du (x)

:llm M, o ff(T x)f(T r) fk TU‘ ”"x)d;.l,(?c)

= j Fo(x)fs(xa) - fe(x)dp 7' (x)-

Since m (8. X w,) = w, we have, by (1),

) fwdp.(x)~,u -

Now let us take the ergodic decomposition of the Ti-i-invariant measures @y we =

[ m.dp.(z). This gives an ergodic decomposition
(3) we = f f n.dp. (2)dp(x).

Definition 10.1. Let (Y. 2, v, T) be a factor of (X, A u T). A standard
measure 8 on (X* B*) will be said to be defined over Y if 8 is a conditional product

measure in X “ relative to Y* in the sense of Def. 9.2.

Thus 8 is defined over Y if and only if there exists a standard measure ' on Y*

with

FOE P T

ES

.
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(‘4) Ozf/‘Ly‘xl‘l‘)’ZX.'.X:u‘)’de'(yl’ 2"."y")'

Note that if a collection of measures {6;} are defined over Y and 8 = f 8.dp(§) then
9 is defined over Y. With this we can prove the main result of this section.

Theorem 10.2. u* is defined over Zi (X), where {Z.(X)} is the distal
sequence of (X, B, un, T).

Proof. By induction on k. w2 =p xp which is an absolute product measure,
so that w2 is defined over Zo(X). Assume the theorem correct for k — 1 so that
w7 is defined over Z..(X). Notice that the hypotheses of Theorem 9.5 are
verified for (X, B, u', T)=(X, B, n, T'), i =1,2,- -, k —1and Y = Z._+(X), since
(X, B, w, T') is quasi-ergodic. It follows that the ergodic components of u ;™' are
defined over Z«-.(X). By (3), by the uniqueness of ergodic decompositions (§4), it
follows that almost all n, (z with respect to p.) for almost all x are defined over
Zi-»(X). From this it follows that almost all w, are defined over Z, »(X). Hence

[ Al i 3 x50
= J fi(x1) {f fa(x2) - - fu(n)dws(x2, - xk)} dp (x1)

:fﬂug{fﬁug~-ﬁunm%ub~»nﬂduuo

where f, = E{f,| Z«-2(X)) regarded as a function on X. We then have

[ Aot Al bxn - 0)

%) - f fl(xl)fz(xz) T fk(xk Ydp s (x1, X2, 0 xi)

:]im—z\—l.l—;l—}\‘zM'Z’H fl(T"x)f-Z(Tz"x)"'fk(T""x)dp.(x).

Now all the functions f,(T"x), i =2, -, k are in the subspace of functions defined
over Zx_»(X). and so is their product. It follows that in (5) we may replace f, by

fi=E(fi|Zc (X)) and this, in effect, says that u is defined over Z ..
y
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Each Z(X) is a distal system of finite order. We shall prove in the next section
(hat the Szemerédi theorem is valid for distal systems of finite order. More precisely
we shall show that if X is a distal system of finite order and fEL(X, B,u)f0,
and f is not ae. 0, then if w ¥ is generic for p§ with respect to some averaging

~cheme we will have

f f(xl)f(x2) e f(xk)dli :(xh X2, "0, xk)> 0

1

50 that

lim inf i ff(T"x)f(T“x)- - F(T*"x ) (x) > 0.

According to Theorem 102 this will imply the same result for any ergodic system

<ince

fim f FTx)f(T>x) - - f(T*"x)dp (x)
= lim = M, w f (T z2)f(T*z) - f(T*"z)dp(z)

with g the image of p in Zi :(X), and f. = E(f| Z. X))
In summary. Theorem 1.4 will follow from the following theorem which will be

proved in the next section.

Theorem 10.3. If (X, B, u, T) is a distal system of finite order, us and p |
defined as above for some averaging scheme {M, N}, and if fEL"(X. B, ) is a

nonnegative function which is not a.e. 0, then

f f(xl')_f(xz) et f(xk )dPL :(Xx, Xy ot oy xk)>0.

811. The ergodic Szemerédi theorem for finite order distal systems

Our object is to prove Theorem 10.3 which was formulated above. Let us note
that the integral in Theorem 10.3 is that of a function whose integral with respect to
the diagonal ineasure ju 5, rather than w ¥, is clearly positive. This motivates the

following definitions.
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Definition 11.1. Let 8 be a standard measure on X = X* - ¥(8) consists of
all k-tuples fi, fro o fe € L7(X, AB,u) with 0= f =1 and

f firlx)fx(x2) - - fio (% YO (x1, Xz, 700y X ) = 0.

Definition 11.2. Let 6’ and 68" be standard measures on X = X*. We write
9'< 0" if N(8")CN(6').

In this notation, Theorem 10.3 asserts that for a distal system of finite order, if the

diagonal measure wk is generic for some measure u X then ui <py.

Definition 11.3. A subset A CX will be said to be of standard measure 0 if
8(A) =0 for any standard measure 6 on X.

Definition 11.4. Let 8 be a standard measure on X. A subset S will be a
supporting set of 0 if 8(S)=1 and if for every (fi, f2 -, fi)E N(0) the product
fi(x)fa(x2) -+ fi(x) vanishes in S but for a set of standard measure 0.

We shall sometimes abbreviate fi(xi)fx(xz2) " i) to L Q- X f.

Lemma 11.1. Every standard measure has a supporting set.

Proof. Choose a sequence of k-tuples { (M fim - fiM)) in N(8) which s
dense in the sense that any k-tuples in A'(8) can be approximated componentwise
in L'(X, ) to any degree of accuracy. Let #(8) be the simultaneous zeros of
FxOf$(x:) - fiV(x). Clearly 9(#(8))=1. On the other hand if
(fi, for - s f ) E N (8) and fe—f,i=12,--,kand 6’ is any standard measure

'f(lﬂ")(xl)f(zn")(xZ) e f‘k"p’(xk)-— f;\(xl)fz(Xz) to fk (Xk)' d6'—0

()

by Lemma 5.1 and so [ fr(x)fo(x2) -+ - fi (e )d8" = 0. This proves the lemma.
We will use the notation ¥#(8) to denote some supporting set of the measure 9.

We shall use Zs(6) to denote the supporting set constructed in the proof of the

lemma. It is easily checked that any two versions of #»(8) differ only on a set of

standard measure 0.

Lemma 11.2. If #(6')C¥(8") then 8" < 6"

I NSINCY A LS S G R L Eap S
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Proof. Let (fi.fo o fi)EN(H7) so that [ ) 2003 fidf” = 0. We have
O fG- -Gl fi =0 on F(H7) but for a set of standard measure 0. Since
9 (4 (8") == 1 rhis gives [ .50 f00 - (9 hdf = 0.

The converse to the lemma is clear since if V(8") T A (') the scts S0 and

#.(0") constructed in the proof of Lemma 1101 will satisfy F,(8") C.£,(87).
ILemma. The diagonal is a supporting set of p\.

Proof. One need only check thatif [f & f.00- -2 fudu § = 0 then the subset
of the diagonal for which f. &) f. &3O f # () has standard measure (0. But one
sees easily that a subset of the diagonal with .y measure () has standard measure 0.

According to the foregoing lemmas, the claim of Theorem 10.3 is that if the
diagonal measure w3 is generic for some measure u ¥, where the system is a distal
svstem of finite order, then the diagonal lies in a supporting set of wa. Ltis
instructive to note that an analogous result is valid in topological dynamics for
arbitrary distal lows: For a distal flow, if a measure v is generic for a measure w
with respect to some averaging scheme and with respect to the algebra of
continuous functions, then the support (in the usual sense) of v 18 contained in the
support of u.

The principal result of this section is the following.

Theorem 11.3. [f (X, B, p. T)is an ergodic distal system of finite order, w3 is
the diagonal measure on X = X* and for some averaging scheme % is generic for

under the ransformation 7, = T x T?x - x T* then TR T

For the proof of Theorem 11.3, we make use of the structure of distal systems,
using induction on the order of the system. All the measures in question reduce to a
single point in the case of order 0 and the theorem is trivial. So we assume the
theorem is vahd for all distal systems of order n. and we want to prove its vahdity
for order n + | Clearly, Theorem | 1.3 1s valid for (X. 8. w. T) if the latter 1s a factor
of 4 system (N. A . T) for which the theorem is true, since one can always refine
an averaging scheme to converge for the targer system. We now use Theorem 8.3
according to which a distal system of order n + 1 is a factor of un ergodic group
extension of a distal system of order n. We also use Theorem 8.1 which asserts that
an ergodic greup extension is a strict group extension (possibly for a smaller group).

Thus we are icft with proving the following.

Proposition 11.4. Assume Theorem 11.2 valid for a system (Y, /. 0. T) and
let (X, A, . Ty be astrict group extension of (Y, o, T). Then Theorem 11.3 15 also
ralid for (X, 2w, T
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<

We let X = Y X G: let G = G* so that X* = Y* x G. Inasmuch as X is a strict
group extension, the group action pg(y, g) = (y, gg') is measure preserving. We shall
also need the fact that if f€ L'(X, B, p) then pof = f°p, (by definition) depends
continuously in g’ as an element in L'Y(X, B, ). Similarly pg(y1. y2 " Ye g)=
(Vi Y2 s Yo gg’). On X* we will consider both the transformation T X T X -+ - X
T which we denote T and T x T x ---x T* which we denote 7 Both T and 7.

commute with all pe.

Definition 11.5. Let A be a measure on G and @ a standard measure on X~

Then A * 8 is defined by
(1) ff(x)dA «0(x) = [ Flpu(x)dA@)d00)

We proceed with the proof of Proposition 11.4. We are given that w4 is generic
for w ¥, and projecting these on Y, v¥ is generic for vy. On Y* we assume that

PrEYCHF(vE), or vy < Ve
Lemma 11.5. If ms denotes Haar measure on G then nk <me * .

Proof. Suppose (fi,f., - fi) E N(mes *p ). This says that

f f—l(-’CI)f—Z(xz) T ﬁ(xk)dli s(x, X2 X)) = 0

for fi(x) =1 fpe(x))dmes(g). But then f; is in fact a function of y. where
x, = (y, g) and p § restricted to these functions is exactly v¥. So (fi. fx " foe€
N(v5)C N (v5). Now a k-tuple of non-negative functions belongs to N (v}) exactly
when their product vanishes a.e. From this it follows that f,(x)f:(x) - fi(x) =0a.e.
For if not we could replace f,(x) by [o fi(pe (x))dmg(g) for U a small neighborhood
of e in G and the resulting product would not vanish a.e. But then f,f.- - f. #0.

This proves the lemma.
Lemma 11.6. For any two standard measures ', 9" if 0<p <1,
Fulpf' +(1 —p)o") = FAO YU F(0").
Proof. [he set £.(0) is the zero set of a countable set of standard functions

fORfMR R f and therefore the zero set of F,=22"f1"®
fUR R . Now [ FyFyd(po'+(1 -p)8)=0 and so
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Fo(pd' +(p)B") Czero set of If,,Fgr' = Yu(8")YU Fu(8").
But the reverse inclusion i?s obvious.
[Lemma 11.7. For «zﬁy measure A on G, $y(A *u ) is T-invariant.

Proof. p )} is T-invariant; hence so is u ; (since T commutes with 7). Since the
action of G commutes with T, A * u & is also T-invariant; hence so is Fy(A * u )

(naturally, up to sets of standard measure 0).

Lemma 11.8. Let A be a non-trivial convex combination of measures A, and

Aon G If uh <A *uk then either p5s <Ay *xpi or pi < A:xp g

Proof. We use the fact that (X, B, u, T)is ergodic. Therefore u i is an ergodic
measure for T on X. Now Fo(A *u )= Fo(A,* ) U Fo(Az i), Since wyi is
supported on (A * u ) it must assign positive measure to one of these sets. Since
both are T-invariant, we will have u5(&Fo(A * ) =1 for i =1 or 2. But this
means that F.(A, * w }) contains a supporting set of (s hence pwi <A *ut.

Now decompose G into a sum of finitely many borel sets V, of small diameter.
For any subset V CG of positive Haar measure, let A, denote the normalized
restriction of Haar measure to V. We then deduce from the last lemma that

wi < Ay, * oy for some V.

Definition 11.6. Let S be the set of § € G such that there exist arbitrarily
small neighborhoods V of § with puf <Av*u .

Lemma 11.10. I is a non-empty closed semi-group.

Proof. That it is non-empty follows from the foregoing discussion. It is also
clear that ¥ is closed. To prove that 3 is a semigroup it will suffice to show that if
pw X <Ay, *phand wk < Av,x ok then ph < Ay, * Ay, * u since the latter is domi-
nated by Ay, *ps. Now, since the action of G commutes with 7, Ay, *u; is a
r -invariant measure. Suppose [ fi D f: Q- X fid(Av,* i) = 0. Then for all n,

f Tnf1 QZ) Tznf: ® T @ Tk"jfkd(/\\'A,* o :) = (),

Since uX <A xu  [TF QTR Tfidus =0 for all n, and this implies
[ R Dfdut=0. Hence pj < Ay, *u . But this implies that nh <
A * X< Ay, # Ay, * u . This proves the lemma.

Since ¥ is a closed subsemigroup of the compact group G, it is a group. and, in

particular the identity is in 2. This proves
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Lemma 11.11. Forany neighborhood V of the identity inG, uh <Av*p,.

Lemma 11.12. LetG,C G denote the diagonal subgroup of G §€ECGs&g=
(g.g.---.8). and let A, denote the Haar measure on G. Then Ay* ph=ps

Proof. This follows from the fact that As* wh = w3 and that . commutes with
the action of G; hence 7, commutes with convolution.
Let

fifu €L (X p)=L(YXGvX mea).

We define an operator Q on standard functions by
OF 1@ @f = [ F g9y gg) + frn )Mo ()
or alternatively
of = [ 1+pudrs(@)
Note that [ Qfd6 = [ fdAs* 6 so that by Lemma 11.12,
@ [ ofdn= | an

We now complete the proof of Proposition 11.4. Suppose we did not have
w’ < pk Thensome (fi,f: - Lf)E N () but (fi for oo f) & N(pna). The latter
says that I (O f(x) - fo(x)du(x) #0, whereas [ fi(x)folx2) -
fo(x)du g(xi. - x) = 0. Replace f, by f = fif: - fur then f = 0, fisnot a.e. 0 and
[ f(xz, - f)du “(x1, -, x) = 0. We shall derive a contradiction from this.

The function f: X = Y x G — [0, 1] defines a measurable function ®: Y — L'(G)
where ®,(g)= f(y, g). Here measurability is meant with respect to the strong
topology of L'(G). ® determines a probability distribution &(v) on L'(G) and
since f is not a.e. 0, ®(v) has in its support non-zero elements in L'(G). Let ¢ be a
non-zero element in the support of ®(v). We may assume ¢ takes values between 0

and 1 since this is so for all points ®,. Set a = [ ¢*dms and let

A ={yll®, — o] <aldk}



ERGODIC BEHAVIOR

There exists a neighborhood of the identity U € G such thatif g, € U

J (b (g.g)— (g dma(g)< a/tk.

Soforye A, g U

fE‘D\(gxg)’v‘bv(g)idma(g)é [ (b, (g.g) — d(gig)dmal(g)

1o s dmato) [ 19,0 #te) dma(s)
= 3a/4k
and hence, by Lemma 5.1, if (yi, y2 - W) E A (g g g E U

f ®,(g.8)D.(g:8) - P, (gug)dmas(g) = al+.

[n other words, if (xi, Xz %) E (A X U)",

Q(f@f@"'®f)(x1~x:,‘"',Xk)> als.

That means that

, |
OFDFR - @)= axa X acw X X Xanwe

Now let V be a neighborhood of the identity in G with VV 7' C U. Then for some
¢ >0

Cf xv (88 )xv (8 dma(g1) = xu(8).
FV=VxVx -xVand f = yi. wecan then write

O af R DN =bact [ (FRF® D pdma (@)
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This gives
() fO(f®f®-~-®f)duizcwf(f’®f’®-~®f’)dkv*ui-

Now apply (2) and Lemma 11.11. We find that the left side of (3) vanishes and the
right hand side is positive since f' is not a.e. 0. This completes the proof of

Proposition 11.4.
Putting together the pieces we find that we have proven:

Theorem 11.13. If (X, AB. . T) is an ergodic system. feL (X & u) f=z0
and f not a.e. 0, then for any k,

lim inf

mint a7 2 [ SRR T ) =0

This proves Theorem 1.4 in the case of an ergodic system. By the remarks of §4 it
follows now for any system. Finally by §1 we see that we have obtained a proof of

Szemerédi’s theorem on arithmetic progressions.
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