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1. Introduction

lfh and k are positive integers there exists N(h, k) such that whenever N ^ N(h, k),
and the integers 1,2,...,N are divided into h subsets, at least one must contain an
arithmetic progression of length k. This is the famous theorem of van der Waerden
[10], dating from 1927. The proof of this uses multiple nested inductions, which result
in extremely weak bounds for N{h,k). We shall define Bk to be the collection of all
sets si £= N for which sf contains no arithmetic progression of length k. We then set

pk(N) = - i m a x { # ^ : ^ E B k ) ^ e [\,N]}.

It seems reasonable to conjecture that

0 (N-+OD) (1.1)

for each fixed k ^ 3, which would clearly include van der Waerden's theorem. This
conjecture appears to have been explicitly stated for the first time by Erdos and Turan
[2], in 1936. It has been asked whether the sequence of primes contains arbitrarily long
arithmetic progressions. This would follow from a strengthened form of the
conjecture, namely that

for each k ^ 3. (Less obviously, the estimate pk(N) = 0((loglogiV)/log#) would
suffice.)

The easiest case of the conjecture is k = 3, which was proved by Roth [6] in 1953.
Roth's treatment is analytic, and uses the Hardy-Littlewood circle method.-Roth
shows, indeed, that i

( 1 2 )

This is too weak to imply a result about primes. However it immediately yields
N(h, 3) ^ expexp (O(h)) for the case k = 3 of van der Waerden's theorem; this is far
better than the induction method gives. Lower bounds for p3(N) (and hence for
pk(N), k^A) have also been established. In particular Behrend [1] has shown that

for a suitable constant C > 0. The corresponding set sfeB3 depends on N. However,
it was later shown by Moser [5] that one may construct an infinite set s/eB3 such
t h a t # (J* n [1, N]) > N exp ( - C(log N$)
for all N^ 1.
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The case k = 4 of the conjecture (1.1) was settled by Szemeredi [8] in 1969.
Szemeredi gives a difficult combinatorial argument, which is technically elementary.
An explicit bound for pA(N) is not found, and since the treatment is based on van der
Waerden's theorem, any such bound would be extremely weak. An alternative
proof for the case k = 4 was given in 1972 by Roth [7]. The method here is partly
analytical, though quite different from Roth's treatment of pz(N). However van der
Waerden's theorem is used in this approach too, and again no explicit bound for
pi(N) is given.

The full conjecture (1.1), for all k ^ 3, was finally settled by Szemeredi [9] in 1975,
again by an elementary argument using van der Waerden's theorem. A remarkable
alternative proof, based on ergodic methods, was later given by Furstenberg [3]. In
neither case is an explicit bound for pk(N) obtained.

Our goal in the present paper is to improve on Roth's bound (1.2). Such an
improvement was described by Szemeredi in a seminar in Budapest in 1985. In the
seminar it was shown that . .

dogleg*)'
for any positive constant A. However it was discovered by Balog that if the parameters
in the proof are chosen optimally, one in fact obtains

/>3(ArHexp(-C(loglogJV)£),

for an appropriate constant C > 0. None of this work has been published. The method
is largely analytical. The key new ingredient is the use of the ^-dimensional form of
Dirichlet's approximation theorem, in estimating how often an exponential sum can
be large. (See the proof of Lemma 4 in §2.)

We shall develop these ideas further, and prove the following.

THEOREM. There exists an effectively computable constant c> 0 such that

The author is most grateful to Professor Balog for informing him of Szemeredi's
work on the problem, and for some stimulating discussions on the subject.

In broad outline the proof follows the method of Roth [6]. One takes a set 4
s& <=, [1, AT] and defines r3

S(a) = £ e(n<x). j
nest *

The integral '
/ = \ S(«yS(-2<x)d<x

Jo

then counts arithmetic progressions of length 3 in sf, and is estimated by the
Hardy-Littlewood circle method. At one key point one has to bound

i \S(a)\*da

for a certain subset m of [0,1]. The standard procedure is to replace m by [0,1] and
to use the Parseval identity, giving

[ |S(a)|2 d<x < P |S(a)|2 da = # s/.
Jm Jo
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To see that this is sometimes inefficient, it is helpful to consider the corresponding
large sieve estimate, namely k

(1.3)

for' well-spaced' points fy. If A: is small (< N/ # s4) this is worse than the trivial bound

(1.4)

Thus one might hope to find a form of the large sieve which incorporates both the
estimates (1.3) and (1.4), and which would therefore improve our application of the
circle method. This we do in Lemma 4. The resulting estimate always includes (1.3)
and, subject to mild regularity conditions on si, also includes (1.4). This is the crucial
new ingredient that leads to our improvement of (1.2). Unfortunately the new bound
can only be sharper than the usual large sieve estimate (1.3) when k <̂  log AT. This
limitation is probably too severe for other applications to the circle method.

The necessary lemmas for our proof are established in §2. These are used for an
application of a discrete form of the circle method in §3. This results in a complicated
iterative estimate for p3(N). The final section, §4, is devoted to a simple induction
argument which extracts the required inequality for p3(N) from this iterative bound.
For convenience in what follows we shall merely write B in place of Bz and p(N) in
place of p3(A

r). We shall also employ the notation e(x) = exp (2nix) and

11*11 =min{\x-n\:neZ}.

All constants implied by the symbols <̂  and O{ ) will be absolute and effectively
computable.

2. Lemmas

We begin by proving two rather trivial lemmas.

LEMMA 1. Let si eB and let <? be an arithmetic progression of length n. Then
^)^ np{n).

Let & = {l+k,l+2k,...,l+nk}. If #(si n&) > np{n), then

is a set of more than np(n) integers in the range [1, n]. Thus there are distinct elements
a, a', a"esi n & for which (a — l)/k, (a' — l)/k, (a"-l)/k are in arithmetic
progression. It follows that a, a', a" are also in arithmetic progression, contradicting
our assumption that sieB.

LEMMA 2. Ifm^n, then p(n) ̂  2p(m). Ifm\n, then p(n) ̂  p(m).

Let sfeB, sf £ [1,«] with # s i = np(n). If m ^ n we break the range [l,n] into
1 +[n/m] subintervals of length at most m. By Lemma 1 each subinterval contains at
most mp(m) elements of s/, whence

np{ri) = # sf ^ ( 1 + — )/n/>(m) < (m+n)p(m) ^ 2np(m).

13-2
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The first part of the lemma follows. The second part is proved in the same way, save
that now n/m subintervals suffice.

Our third lemma is essentially the same exponential sum estimate as was used by
Roth [6]. We reproduce the proof here, for completeness.

LEMMA 3. Let an - 0 or 1 (1 ^ n < N). For any M^N define £(M) by

an},
]

{
neP(\[l,N]

where & runs over all arithmetic progressions of length M. Put

S(<x) = I fln e(na), T(<x) = RN) I e(n<x).
i i

Then
S(a) = T(a) + O{N\{(N)-Z{M)\) + O(MNl)

for any M ^ N.

We begin by supposing that a = (h/q)+fi for some hel, qeN. (Note that h/q
is not assumed to be in lowest terms, nor to be an approximation to a.) Then

q N N

E E X ane(na)= I ane(nu)wn,
r - i rra-i m^n<m+qM n-1

n = r(mod q)

with r „
_{qM, n^qM,

Wn ~ \O(qM), n < qM,
It follows that

nsr(mod q)

In the innermost sum on the right we have

whence N

S(OL) = - ^ I e(-) I eimfi) 1 an + O(qM) + O(qMN\fi\)- (2.1)
n = r(mod q)

By the definition of £(M) we see that

Z Man = M£(M)-A(q,r,M,m),
n = r(modq)

say, with A( ,̂ r, M, m) ^ 0. Thus

7/,\\ / N \ f \
S e I e(mfi) ) + O I—-I 2 Afo.r.JIf.w)
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However, if we take a = 0, ft = 0, h = 0 in (2.1), we find that

\ - A(q, r, M, m)) + 0{qM),

whence

It follows that

q \r_! \qJJ\m-i
. (2.2)

Now let q ̂  AT*, (/i, #) = 1 and \fi\ ^ q'W-*, as is possible by Dirichlet's theorem.
When Ia|| > N~k, we have q > 1, and the estimate (2.2) reduces to

5
Moreover,

so that the lemma follows in this case. If ||a|| ^ N~l, we may take q = 1, so that (2.2)
yields N

ma) + 0(N\£(N) -

thereby establishing the lemma in this case too.

Our next result is the key one referred to in the introduction.

LEMMA 4. Let an e C (1 ^ n < #) , and put S(<x) = S f an e(n<x). For any M ^ N
define £(M) by

where & runs over arithmetic progressions of length M. Let al5..., afc e U satisfy

H « * - « f l l ^ 0V/) . (2.3)
Then k

 N

Z|5(a^)|MiV^(iV)^M),
1-1

where M = [i/V1'***1)].

Our starting point is the Sobolev-Gallagher inequality

L/(*o)l < <5"M \Ax)\dx+\ \f\x)\dx,

valid for any continuously differentiable function^*). (See Montgomery [4, Lemma
1.1].) We take S = N~\f{x) = S(xf, and we sum for x0 = a, (1 <y < it). Thus

, ^ N 2 |5(a)|2 rfa+2I \S(<x) 5'(a)| da

(2.4)
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where

Z(l) — V I I C/oA|2 yV/V

by Cauchy's inequality. The intervals here are disjoint modulo 1, by the spacing
condition (2.3). We now use the key idea introduced by Szemeredi. Let Q be a positive
integer. By the ̂ -dimensional version of Dirichlet's theorem we may find q < Qk such
that ||0a,|| ^ Q-1 for each a,. If Q = 2M ^ N1^^ we deduce that

whenever <Xj ^ a < iV^ + a/. It follows that

a ("2

r-i J -

- l

2(<?Q)

oo

S\-+*

- ? X
msn(mod q)

Here w runs over an interval of length qQ/2 = qM for each available value of m. Thus

7r2 AT ^ 2

In an exactly similar way we find that

The lemma follows, by (2.4).

Our final lemma is just a form of the large sieve.

LEMMA 5. Under the hypotheses of Lemma 4 we have
k N
2 |iS(a^)|2 ^ N Yd |fln|

2-
j-l . n-i

For a proof, see for example Montgomery [4, Corollary 2.2].

3. The circle method

In this section we take a set sfeB, si £ [l.N] with #sf = Np(N), and use the
circle method to estimate the number of 3-term arithmetic progressions in s/. Since
this number should be zero, we shall conclude that the error terms in our estimate
are at least as big as the supposed main term. We write Ns = 24" (s = 0,1,2,...) and
v(s) = p(N8), and we take N = Nt so that p(N) = v(/). For 1 ^ n < AT let

_ f l , nes/,
2n~\0, nisf,
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and S^OL) = £ a n e(n<x), S2(<x) = £fln e{—2«<x). Instead of using the circle method in its
classical form we shall set L = 3N and investigate

1 ' / V - , / /

HZ
say. The advantage in using a sum rather than an integral is merely that it is easier
to pick out well-spaced points. Since L > IN and sfeB,we have

(3.1)

Si

We now write

and

Then

= I#{(/i1,/i2,/i8):/i<e.$rf

= L#{(n1,n2,n3):nies4

= LNv(t).

N

T1(<x) = v(t)Ile(n<x),

',«l + «2

x) (i =

= 2«3(mod L)}

= 2«3}

r1(-2a),

1,2).

,sf 52 = r; r2+(27; £>! T2+D\ T2+T\ D2+2TX DX D2+D\ D2).

Since L is even we have

(3.2)

Lz 3 L
= Z

l-l

?/\ 13 Z-

r.l -7 i - i <)l
with similar results for D2 and D^ Moreover,

whence

By Holder's inequality it therefore follows from (3.2) that

where

Since

Z2=

= 2«3 (modL)}

we therefore conclude from (3.1) that either

or
£2 •

(3.3)

(3.4)

We shall estimate D^a) by means of Lemma 3, in which we take M = N$ = Nt_v

From our definitions we have £(#) = p(N), and by Lemma 1 we have £(Af) < p(M).
Moreover, since M \ N, Lemma 2 yields
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Thus Lemma 3 produces

D&) < N(v(t-\)-v(t))+Nt
We now set

L 1\\\

XW 'Z3=Z
whence

Z2 < {N(v(t- l ) - v ( 0 ) + A ^ E 3 . (3.5)

We proceed to bound X3, using Lemmas 4 and 5. We split £ 3 into three sums depending
on the residue class of / (mod 3), and call the largest of the sums £4 , so that

Z 3 < Z4- (3.6)

We then label the corresponding points l/L as al5 a2,..., in such an order that

The points <% will satisfy the spacing condition (2.3). Moreover, if bn = an —p(N), then
Lemmas 1 and 2 yield

Z \bn\^ Z an + Mp(N) ^ Mp(M) + Mp(N) 4 Mp(M),

where & is any arithmetic progression of length M ̂  N. We may therefore apply
Lemma 4 to D^a), with £(M) <| p(M). This yields

Z l^i(o,)|2 <̂  N*p(N)p(M),

where M = [\Nl^k+1)], Now if 2*"1 ^k<2h, one has

providing that h < /. Thus M ^ «̂-ft> whence Lemma 2 produces p(M) < 2v(/—/i).
It follows that

^ 2*,1 < A < 0,
so that

M f S f l \ (3.7)
Jfc<2t

For the remaining range 2* ^k <€ L we use an analogous argument based on
Lemma 5. Here we observe that, if bn = an—p(N) as before, then

One therefore obtains

A > t

In conjunction with (3.7) this yields

/ 4}. (3.8)
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We now note that v(j) = p(N}) ^ 1 forj ^ 0, whence

v(t-\)-v(t)4l
and

I v(t-hf2-hi*<\.
t

A comparison of (3.3), (3.4), (3.5), (3.6) and (3.8) then shows that either

v(t) 4 2-«\ (3.9)
or

I v(t-hp-h'*. (3.10)

4. Completion of the proof

In this section we shall use induction, based on the estimates (3.9) and (3.10), to
bound v(t). We write the implied constants in these estimates as 2A, so that either

v(0 ^ I*-1'1 (4.1)
or

v(0* ̂  2A{v(t-1)-v(0}« Z v(t-K$2-hl*. (4.2)

Here A is an effectively computable numerical constant. We choose further constants
B and C such that

0<iU4 (4.3)

2 B < l+2-2^-8, (4.4)

C = max 04,0). (4.5)

We shall now prove, by induction ony, that

v O ) ^ 2 c " ^ (y>0). (4.6)

If j = 0, then v(0) = /?(24°) < 1, and (4.6) follows, since C ̂  0, by (4.5). We now
assume the truth of (4.6) for each non-negative integer j < t, and proceed to prove
(4.6) for j=t.

If (4.1) holds, then the case./ = / of (4.6) is immediate, since C ̂  A, by (4.5), and
B ^ \, by (4.3). If (4.2) holds our induction assumption yields

(4.7)

We now observe that \—\B ̂  \, by (4.3), and that

2 2-h'8 ^ 24.
ft-i

We may therefore deduce from (4.7) that

v(0*

we shall have

and the casey = t of (4.6) will follow. Otherwise, we have
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whence i
^ 1 + 2 - 2 . - 8 v ( * - lK2-*v ( f - l )

by (4.4). However, our induction assumption yields

so that the casey = t of (4.6) follows in this instance also. This completes the proof
of the estimate (4.6).

We now have
p(Nt) = v(t) « 2~Bt < (log Nt)~

D, (4.8)

where D = \B. It remains to consider more general values of N. For TV ^ 2, we choose
/ ^ 0 so that Nt^N< Nt+l. Then

whence Lemma 2 in conjunction with (4.8) yields

p(N) ^ 2p(Nt) < (\ogNt)-
D 4 (log #)-».

This completes the proof of the theorem, with c = D.

Note added 16.9.86. Since this paper was submitted for publication the author
has learned from Professor Szemeredi that he has refined his method to give the same
result as our theorem, even with an explicit exponent c = ^ .
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