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0. INTRODUCTION

Our subject is infinitary Ramsey theory, specifically the existence of
monochromatic structures of infinite cardinality for finite colorings of semi-
groups. Specifically, we shall prove an infinitary version of a recent polyno-
mial extension of van der Waerden's theorem due to Bergelson and
Leibman ([BL1]). Alternatively, this theorem may be viewed as a polyno-
mial version of an infinitary van der Waerden type result of Furstenberg
(Proposition 8.21 in [F]). Then we show that our methods allow for an
extension of this result to so-called VIP-systems in general countable
abelian semigroups.

The subject matter encompassed by ``infinitary Ramsey theory'' may be
well illustrated by an example. Schur's theorem ([S]) states that if
N=�r

i=1 Ci then some cell Cj contains two distinct natural numbers
together with their sum, namely a configuration of the form [m, n, m+n].
A finitary extension of Schur's theorem (see [GRS], where it is attributed
to Folkman), guarantees in one cell a configuration consisting of k distinct
natural numbers together with all their sums (without repeats). The
infinitary version of Schur's theorem, due to Hindman ([H]), is a deeper
result than the finitary versions. It states that in one cell of any finite parti-
tion of N one can always find an infinite sequence (ni)

�
i=1 /N together

with all of its finite sums (without repeats), namely

FS((ni)
�
i=1 )=[ni1

+ni2
+ } } } +nik

: i1<i2< } } } <ik , k # N]. (0.1)

(FS stands for ``finite sums''.)
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Any set having the form (0.1) is called an IP-set. It is convenient to
represent an IP-set by an F-sequence (m:)a # F , where F is the set of non-
empty, finite subsets of N. The F-sequence generated by a sequence (ni)

�
i=1

is given by m:=�i # : ni , : # F, and one easily checks that m: _ ;=m:+m;

whenever : & ;=<. Conversely, if an F-sequence (m:): # F /N satisfies
m: _ ;=m:+m; for : & ;=< then, letting n i=m[i] , the sets FS((ni)

�
i=1)

and [m: : a # F] are equal. Hence, we will usually refer to any F-sequence
(m:) : # F of natural numbers satisfying m: _ ; = m: + m; whenever
: & ;=< as an IP-set (even though, properly speaking, it is [m: : a # F]
which is the IP-set).

Subsequences of F-sequences (x:)a # F arise by restricting : to a special
type of subset of F having the same structure as F. Namely, suppose
(:i)

�
i=1 /F has the property that :i<:j (in the sense that every member

of :i is less than every member of :j) for all i< j. Let F (1) be the set of
all finite unions of the :i 's. Then F (1) is called an IP-ring. The corres-
pondence ; W �i # ; :i is a union-preserving bijection between F and F (1),
and (x:): # F (1) is said to be an IP-subsequence of (x:)a # F .

Van der Waerden's theorem ([vdW], see [F] or [GRS]) states that if
the set of natural numbers N=[1, 2, } } } ] is partitioned into finitely many
cells, N=�r

i=1 Ci , one of the cells contains an arithmetic progression of
length k for all k. In [BL1], Bergelson and Leibman extended this result
about arithmetic progressions to include ``polynomial progressions''. A
special case of their theorem states that if [ p1 (x), ..., pk (x)]/Z[x] with
pi (0)=0 for all i, then for any finite partition N=�r

i=1 C i , some cell Cj

contains a configuration of the form [a, a+ p1 (n), ..., a+ pk (n)], where n{0.
One sees that van der Waerden's theorem corresponds to the case of linear
polynomials in this ``polynomial van der Waerden theorem''. The following
infinitary version of this theorem is a special case of Theorem 1.6 below.

Theorem A. Let k # N and suppose [ p1 (x), ..., pk (x)]/Z[x] are poly-
nomials having zero constant term. Let (n:)a # F be an IP-set. If r # N and
N=�r

i=1 Ci then there exists an IP-ring F (1), an IP-set (a:): # F (1) , and
some j with 1� j�r such that for all : # F (1),

[a: , a:+ p1 (n:), ..., a:+ pk (n:)]/Cj .

The linear case of Theorem A is due to Furstenberg (a special case of
Proposition 8.21 in [F]). A version of this theorem for general countable
semigroups was later obtained by Furstenberg and Katznelson (see the
remark after Theorem 2.5 in [FK]). It states:

Theorem B. Let S be a countable semigroup, let k # N and suppose that
G/Sk is a semigroup containing the diagonal 2(S)=[(x, x, ..., x) : x # S].
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If I/G satisfies (IG _ GI )/I (that is, if I is a two-sided ideal in G), then
for any finite coloring of S there exists a sequence (#~ i)�

i=1 /I such that, writing
#~ i=(#i, 1 , ..., #i, k), the set of products

[#i1 , j1
#i2 , j2

} } } #it , jt
: t # N, i1<i2< } } } <it ]

is monochromatic.

To retrieve the linear case of Theorem A from Theorem B, let S=N,
I=[(a, a+n: , a+2n: , ..., a+(k&1)n: : a # N, : # F] and G=I _ 2(S).
Other special cases of Theorem B include the Hales�Jewett theorem
([HJ]) and an infinitary version of the Hales�Jewett theorem due to
Carlson and Simpson ([CS]). In Section 2, we will prove a theorem
(Theorem 2.3) which contains Theorem B as a special case. As an applica-
tion of the results of Section 2, we will obtain a much more general version
of Theorem A (Theorem 2.8).

The non-linear case of Theorem A does not follow from Theorem B,
however, due to the fact that the set of k-tuples (a+ p1 (n), ..., a+ pk (n))
whose coordinates form a polynomial progression of a given form, while
being shift invariant, is not a semigroup. For example, (a, a+xk)
+(b, b+ yk) cannot, as luck would have it, be of the form (c, c+zk) if
k�3.

The apparatus used in this paper is similar to that of [FK], but there
is an important difference in methodology owing to the fact that in [FK]
no (finitary) Ramsey-type theorems are employed. Therefore, the proofs of
the infinitary theorems in [FK] provide new proofs of their finitary ver-
sions, whereas our method requires the finitary version in order to get the
infinitary version. The finitary case of Theorem A, which we now state, is
due to Bergelson and Leibman (it is an unstated combinatorial corollary to
Corollary 1.9 in [BL1]).

Theorem C. Let k # N and suppose [ p1 (x), ..., pk (x)]/Z[x] are poly-
nomials having zero constant term. Let (n:)a # F be an IP-set. For any finite
coloring of N there exists a # N and : # F such that

[a, a+ p1 (n:), ..., a+ pk (n:)]

is monochromatic.

Our proof of Theorem A uses Theorem C and hence does not provide
a new proof of Theorem C. By the same token, the proof of Theorem 2.3
(which extends Theorem B) below does not provide a new proof of
Theorem B. In fact, in order to see that Theorem B follows from Theorem
2.3, one has to take for granted Theorem B's finitary version.
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1. THE INFINITARY POLYNOMIAL THEOREM

Suppose that G is a semigroup and E/G. E is said to be left syndetic
if there exist s1 , ..., sk # G such that G=s&1

1 E _ } } } _ s&1
k E, where

s&1E=[t # G : st # E]. A notion of right syndeticity may be similarly
defined. (Obviously in commutative semigroups, the two notions coincide,
and we say merely that E is syndetic; similar remarks apply to the notions
to come. We also remark that what we are calling left syndeticity is called
right syndeticity by some authors. We choose ``left'' because it seems to us
more natural; E is left syndetic in G if finitely many of its left shifts cover
G. Our choice is also consistent with prevailing usage of ``left'' and ``right''
in regard to amenability.) E/G will be called left thick if for every finite
set F/G, there exists g # G such that Fg=[ fg : f # F]/E. One may check
that a set is left thick if and only if its complement fails to be left syndetic.
Finally, E is said to be piecewise left syndetic if there exist s1 , ..., sk # G such
that (s1

&1E _ } } } _ sk
&1E) is left thick. One may show that E is left

piecewise syndetic if and only if E is the intersection of a left thick set with
a left syndetic set.

Proposition 1.1. Let G be a semigroup and let E/G. If A/G is left
syndetic and for every finite set F/A there exists g # G such that Fg/E
then E is left piecewise syndetic.

Proof. We know that there exist s1 , ..., sk # G such that (s1
&1A _ } } } _

sk
&1A)=G. We claim that (s1

&1E _ } } } _ sk
&1E) is left thick. Let

F=[ f1 , ..., ft] be a finite set. For every i, 1�i�t, there exists ji , 1� ji�k,
such that sji

fi # A. Hence by hypothesis there exists g # G such that
[sj1

f1g, ..., sjt
ft g]/E. That is, Fg/(s1

&1E _ } } } _ sk
&1E). K

Piecewise syndetic sets are important to us because of the following
theorem. Let us say that a family A of finite subsets of a semigroup G is
left shift invariant if sA # A whenever A # A and s # G. Right shift
invariance is defined similarly. A will be called partition regular if for every
finite partition G=�r

i=1 C i , some cell Cj contains a member of A.

Theorem 1.2. Suppose that G is a semigroup and A is a partition
regular, left and right shift invariant family of finite subsets of G. Then

(a) For every finite partition E=�r
i=1 Ci of a left thick set E/G,

come cell Cj contains a member of A.

(b) Every left piecewise syndetic subset of G contains a member of A.

Proof. (a) Suppose for every finite set F/G, there exists an r-coloring
#F : F � [1, ..., r] for which there is no monochromatic member of A.
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Extending the domain of each #F to G by setting #F (g)=0 for g � F, [#F]
is a net in the compact space [0, 1, ..., r]G indexed by the family of finite
subsets of G (directed by inclusion). Let # be the limit of any convergent
subnet. One easily checks that the range of # is contained in [1, 2, ..., r],
and that moreover there is no #-monochrome member of A, a contradic-
tion.

Hence there exists a finite set F/G such that for any r-coloring of F,
there exists a monochromatic member of A. Suppose now E=�r

i=1 Ci and
choose g # G such that Fg/E. For f # F, let f # Di if and only if fg # Ci .
Then F=�r

i=1 Di and some D j contains some A # A. Then Ag/Cj .

(b) Let E/G be left piecewise syndetic. There exist s1 , ..., sk # G such
that s1

&1E _ } } } _ sk
&1E is left thick. By (a), therefore, some si

&1E contains
a member A of A. In other words, siA/E. K

A semigroup S is called a compact right topological semigroup if it is
endowed with a topology with respect to which it is a compact Hausdorff
space and with respect to which the map t � ts is continuous for all s # S.
(Notice the asymmetry of this condition: we do not assume that the map
t � st is continuous for all s, and in general this will not be the case.) Recall
that an element t # S is called an idempotent if t2=t.

Proposition 1.3. (see [E]) Any compact right topological semigroup S
possesses an idempotent.

Proof. Let M denote the family of non-empty closed subsets P/S for
which P2/P. By Zorn's Lemma that M contains a minimal element P
with respect to inclusion. Let p # P. Then Pp/P is compact (being the con-
tinuous image of a compact set), non-empty, and moreover (Pp)2/P,
hence Pp=P. In particular the set Q=[q # P : qp= p]/P is non-empty
and, being the intersection of the continuous inverse image of a singleton
with P, closed. Furthermore Q2/Q, so that Q=P. That is, qp= p for all
q # P. In particular, p2= p. K

Let S be a compact right topological semigroup and let J/S be non-
empty and closed. If SJ/J then J is said to be a left ideal. Any left ideal,
itself being a compact right topological semigroup, contains an idempotent
by Proposition 1.3. If J is a left ideal of S which is minimal among left
ideals with respect to inclusion, then we call J a minimal left ideal, and any
idempotent % # J is called a minimal idempotent. By Zorn's Lemma every
compact right topological semigroup contains a minimal left ideal and
hence a minimal idempotent.

We shall now apply the foregoing notions. Put N0=N _ [0]=
[0, 1, 2, } } } ]. Let r # N be fixed and put X=[0, 1]N0. With the product
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topology, X is compact. Let 0=XX. With the product topology, 0 is
compact (though not metrizable). This topology has a subbasis consisting
of sets of the form [% # 0 : %#(n)=i], where # # X and i # [0, 1]. The map
g � g b f is continuous for all f # 0. Hence 0 forms a compact right
topological semigroup under composition. We can embed N in 0 as
follows: for every n # N and every # # X (that is, for every function
# : N0 � [0, 1]), let T n# # X be given by the rule T n#(m)=#(m+n). This
determines a map T n : X � X, and one may check that in fact [T n : n # N]
is a semigroup consisting of continuous self-maps of X. We shall restrict
our attention to the closure in 0 of this embedded copy of N (i.e. the
enveloping semigroup of T ),

S=[T n : n # N].

We shall repeatedly make use of the fact that for any subsets A, B/N,
(A)(B)/A+B (where we identify A/N with [T n : n # A]/S). A proof of
this (which is valid for general semigroups) may be found below equation
(2.3) in [FK]. In particular, taking A=B=N, we get that S is a semi-
group. (Actually, S is the Stone�C8 ech compactification of N (see, for
example, [HS, Theorem 19.15]). An isomorphism between S and ;N,
taken as the set of ultrafilters on N, is given by the map which sends , # S
to the ultrafilter p,=[E/N : , # [T n : n # E]]. This isomorphism preserves
the semigroup operation as well (composition in S corresponds to addition
in ;N).)

The following proposition consists of standard facts about the Stone�
C8 ech compactification of a semigroup. For a proof of (an ultrafilter exposi-
tion of) part (b) (which is all we need in the sequel), for example, see [HS,
Theorem 4.40]. We include a proof for completeness.

Proposition 1.4. Let J/S be a minimal left ideal and let % # J. If
t, l # N and #1 , ..., #t # X then:

(a) the set Bl=[n : %#j (n+i)=%#j (i), 1� j�t, 0�i�l] is syndetic.

(b) the set Pl=[n : #j (n+i)=%#j (i), 1� j�t, 0�i�l] is piecewise
syndetic.

Proof. (a) Suppose not. Then for every n # N there exists ln # N such
that for every m # [ln , ln+1, ..., ln+n], %#j (m+i){%#j (i) for some j,
1� j�t, and some i, 0�i�l. Equivalently, for every b, 0�b�n,
T ln%#j (b+i){%#j (i) for some j and some i, 0�i�l. Let , be an accumula-
tion point in S of [T ln : n # N]. Then for every b # N0 , ,%#j (b+i){%#j (i)
for some j and some i, 0�i�l. Since J is a minimal left ideal, and S,%/J
is a left ideal, we have S,%=J. In particular, there exists � # S such that

219INFINITARY POLYNOMIAL vdW



%=�,%. Recall that S=[T n : n # N]. Hence we may choose b # N such
that T b approximates � to the extent that T b,%#j (i)=�,%# j (i)=%#j (i),
1� j�t, 0�i�l. (By this we mean that T b lies in the open set
[! : !,%#j (i)=�,%#j (i), 1� j�t, 0�i�l], which is a neighborhood of �.
In the future, we shall make such approximation claims without formulating
the accompanying neighborhood specifically.) That is, ,%#j (b+i)=%#j (i),
1� j�t, 0�i�l, a contradiction.

(b) For every n # N0 there exists kn # N such that #j (kn+i)=T kn#j (i)
=%#j (i), 1� j�t, 0�i�n+l. Therefore, if 0�b�n and b # Bl , that is, if
%#j (b+i)=%#j (i), 0�i�l, 1� j�t, then #j (kn+b+i)=%#j (b+i)=%#j (i),
0�i�l, 1� j�t as well, so that kn+b # Pl . Therefore,

.
�

n=0

((Bl & [0, 1, ..., n])+kn)/Pl .

Hence Pl contains a shifted copy of every finite subset of a syndetic set, and
is therefore piecewise syndetic by Proposition 1.1. K

Theorem 1.5. Suppose J/S is a minimal left ideal, % # J, (n:)a # F is an
IP-set in Z and k # N. Suppose that p1 (x), ..., pk (x) # Z[x] with pm (0)=0,
1�m�k. Let E/Sk consist of all k-tuples (T a+ p1(n:), T a+ p2(n:), ..., T a+ pk(n:)),
where a # N and a # F are such that a+ pm (n:) # N, 1�m�k. Then
(%, ..., %) # E.

Proof. We must show that for every t # N and every choice of
#1 , ..., #t # X and n1 , ..., nt # N0 there exists a # Z and a # F with a+
pm (n:) # N, 1�m�k, such that

T a+ pm(n:)#j (nj)=%#j (n j), 1�m�k, 1� j�t. (1.1)

Let l=max[nj : 1� j�t]. By Proposition 1.4, the set Pl=[n : #j (n+i)=
%#j (i), 1� j�t, 0�i�l] is piecewise syndetic. Let A consist of all sets
lying in N and having the form [a+p1 (n:), ..., a+pk (n:)] (for some a # N
and a # F). According to the Bergelson�Leibman theorem (Theorem C in
the introduction), A is a partition regular family. Therefore, by Theorem
1.2, Pl contains a configuration in A, say [a+p1 (n:), ..., a+pk (n:)]. It
follows that

T a+ pm(n:)#j (i)=#j (a+ pm (n:)+i)=%#j (i), 1� j�t, 0�i�l, 1�m�k.

In particular, (1.1) holds. K

We are now ready to apply Theorem 1.5 to obtain the proof of (actually
something more general than) Theorem A from the introduction. To
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illustrate the technique, let us first establish a special case; namely let us see
that, given a coloring N=�r

i=1 C i , we can find j, with 1� j�r, and two
IP-sets, (a:)a # F and (m:)a # F , such that for all a # F, [a: , a:+m2

:]/Cj .
We begin by letting X, T and S be as above Let % be a minimal idempo-

tent in S. There exists a unique j with 1� j�r such that % # [T n : n # C j].
Put #=1Cj

# X. Clearly %#(0)=1. By Theorem 1.5, there exist a1 and n1 in
N (Theorem 1.5 says that n1 can come from any prescribed IP-set, but we
won't use this full strength yet) such that (T a1, T a1+n2

1) approximates (%, %)
in S2 to the extent that

#(a1)=T a1#(0)=%#(0)=1,

%#(a1)=T a1%#(0)=%2#(0)=%#(0)=1,

#(a1+n2
1)=T a1+n2

1#(0)=%#(0)=1, and

%#(a1+n2
1)=T a1+n2

1%#(0)=%2#(0)=%#(0)=1.

Next, pick by Theorem 1.5 a2 and n2 so that (T a2, T a2+n2
2 , T a2+n2

2
+2n1n2)

approximates (%, %, %) in S3 to the extent that

#(a2)=T a2#(0)=%#(0)=1,

#(a1+a2)=T a2#(a1)=%#(a1)=%#(0)=1,

#(a2+n2
2)=T a2+n2

2#(0)=%#(0)=1, and

#(a1+a2+(n1+n2)2)=T a2+n2
2
+2n1n2#(a1+n2

1)=%#(a1+n2
1)=%#(0)=1,

and so that, similarly,

%#(a2)=%#(a1+a2)=%#(a2+n2
2)=%#(a1+a2+(n1+n2)2)=1.

Choose a3 , n3 so that (T a3, T a3+n2
3 , T a3+n2

3
+2n2n3, T a3+n2

3
+2n1n3,

T a3+n2
3
+2(n1+n2)n3) approximates (%, %, %, %, %) in S 5 to the extent that

#(a3)=#(a3+a2)=#(a3+a1)=#(a3+a2+a1)=#(a3+n2
3)

=#(a3+a2+(n3+n2)2)=#(a3+a1+(n3+n1)2)

=#(a3+a2+a1+(n3+n2+n1)2)

=%#(a3)=%#(a3+a2)=%#(a3+a1)=%#(a3+a2+a1)=%#(a3+n2
3)

=%#(a3+a2+(n3+n2)2)=%#(a3+a1+(n3+n1)2)

=%#(a3+a2+a1+(n3+n2+n1)2)=%#(0)=1.

Continuing in this fashion we achieve our aim, letting a:=�i # : ai and
m:=�i # : ni . K
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Notice that what is being exploited here is that for any fixed m, the poly-
nomial q(x)=(x+m)2&m2=x2+2mx has zero constant term. It is a tri-
vial matter that a similar fact holds for any polynomial p(x) # Z[x]. That
is, if m is fixed then q(x)= p(x+m)& p(m) has zero constant term, i.e.
q(0)=0. More details for the inductive scheme are given in the proof to
follow (albeit in a very general form).

Theorem 1.6. If r # N, N=�r
i=1 Ci , and (n:)a # F is an IP-set in Z then

there exists j, with 1� j�r, an IP-ring F (1), and an IP-set (a:): # F (1) having
the property that for every polynomial p(x) # Z[x] with p(0)=0, there exists
; # F such that for all : # F (1) with :>; we have (a:+ p(n:)) # Cj .

Proof. Let p1 (x), p2 (x), ... be an enumeration of the members of Z[x]
which have zero constant term. Let X, T, and S be defined as above and
let % be any minimal idempotent in S. Pick j with 1� j�r such that
% # [T n : n # J]. Let #=1Cj

. Plainly %#(0)=1.
By Theorem 1.5, we may select a1 # N and :1 # F such that

(T a1, T a1+ p1(n:1
)) approximates (%, %) in S2 to the extent that

#(a1)=T a1#(0)=%#(0)=1,

#(a1+ p1 (n:1
))=T a1+ p1(n:1

)#(0)=%#(0)=1, r,

%#(a1)=T a1%#(0)=%2#(0)=%#(0)=1 and

%#(a1+ p1 (n:1
))=T a1+ p1(n:1)%#(0)=%2#(0)=%#(0)=1.

We introduce some useful notation. If B is a family of sets, we denote by
FU< (B) the set of finite unions of members of B, including <. Moreover,
we agree that n<=0. Suppose now that a1 , ..., at&1 and :1< } } } <:t&1

have been chosen such that

for all j, 1� j�t&1, and all : # FU< ([:j , :j+1 , ..., :t&1]) ,
(1.2)

#(a:+ p(n:))=1 and %#(a:+ p(n:))=1,

where we are writing a:i1 _ } } } _ :im
=ai1

+ } } } +aim
.

Let [q1 (x), q2 (x), ..., qr (x)] consist of all polynomials of the form q(x)=
pj (x+n:)& pj (n:), where 1� j�t and : # FU< ([ j, j+1, ..., t&1]) . Note
that qi (0)=0, 1�i�r. Choose, by Theorem 1.5, at # N and :t in F, with
:t>:t&1 , such that

(T at+q1(n:t), T at+q2(n:t), ..., T at+qr(n:t))t(%, %, ..., %) in S r,
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where t is taken to mean that

#(at+a:+ p j (n:t
+n:))=T at+ pj(n:t+n:)& pj (n:)#(a:+ pj (n:))

=%#(a:+ pj (n:))=%#(0)=1 and

%#(at+a:+ p j (n:t
+n:))=T at+ pj(n:t+n:)& p(n:)%#(a:+ pj (n:))

=%2#(a:+ pj (n:))=%#(a:+ pj (n:))=%#(0)=1

for all j, 1� j�t, and all : # FU< ([:j , :j+1 , ..., :t&1]) . One may now
check that (1.2) holds with t&1 replaced by t. Continue until (Ai)

�
i=1

and (:i)
�
i=1 have been chosen and let F(1)=FU((: i)

�
i=1 ) . We have

(a:+ pi (n:)) # Cj for all : # F (1) with :>:i , completing the proof. K

2. SHIFT INVARIANT CONFIGURATIONS IN SEMIGROUPS

In this section, G will be any semigroup. Let Ge=G _ [e], where e is an
identity for G (not necessarily an element of G). For r # N, put
X=[0, 1]Ge. With the product topology, X is compact. We consider the
space 0=XX, with the product topology, which is a compact right
topological semigroup under composition, and embed G in 0 by putting
Tg#(h)=#(hg) for # # X and h # G. Let

S=[Tg : g # G].

As we pointed out in the previous section (for G=N), for every A, B/G
we have (A)(B)/AB. In particular, S is a semigroup.

The following general version of Proposition 1.4 is again well known.
Again for completeness, we give a proof.

Proposition 2.1. Let J/S be a minimal left ideal, let % # J, t # N and
#1 , ..., #t # X. If F/G is a finite set then:

(a) the set BF=[g : %#j (hg)=%#j (h), 1� j�t, h # F] is left syndetic.

(b) the set PF=[g : # j (hg)=%#j (h), 1� j�t, h # F] is left piecewise
syndetic.

Proof. (a) Suppose not. That is, assume that Bc
F is left thick. Then for

every finite set H/G, there exists gH # G such that HgH /Bc
F . [TgH

] is a
net in S indexed by the family of finite subsets of G. Choose any convergent
subnet and let , be its limit. Then for every b # G, we can conclude (by
approximating , by some TgH

, where b # H) that ,%#j (hb){%#j (h) for
some j, 1� j�t, and some h # F. Since J is a minimal left ideal, there exists
� # S such that %=�,%. Hence we many choose b # G close enough to �
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that Tb,%#j (h)=�,%#j (h)=%#(h), 1� j�t, h # F. That is, ,%#j (hb)
=%#j (h) for all j, 1� j�t, and all h # F. This is a contradiction.

(b) For every n # N there exists kn # G such that

#j (hbkn)=Tkn
#j (hb)=%#j (hb), 1� j�t, h # F, b # En .

It follows that for all b # (En & BF), we have #j (hbkn)=%#j (hb)=%#j (h),
1� j�t, h # F, implying that bkn # PF . Therefore

.
�

n=1

((En & BF)kn )/PF .

By Proposition 1.1, PF is left piecewise syndetic. K

The following theorem serves the same function as Theorem 1.5 in the
previous section.

Theorem 2.2. Let J/S be a minimal left ideal and let % # J. Let A be
a two sided shift invariant, partition regular family of finite subsets of G. Let
t # N, #1 , ..., #t # X and h1 , ..., ht # G. There exists A # A such that

#j (hj a)=Ta# j(h j)=%#j (hj), a # A, 1� j�t.

Proof. By Proposition 2.1 the set P=[g : #j (hjg)=%#j (hj), 1� j�t]
is left piecewise syndetic. Therefore by Theorem 1.2 P contains some
A # A. K

As was stated earlier, the following theorem may be used to get Theorem
B from the introduction (provided one assumes the finitary version of
Theorem B).

Theorem 2.3. Let G be a semigroup, and suppose that A is a two-sided
shift invariant, partition regular family of finite subsets of G. Let r # N. For
any partition G=�r

i=1 C i, there exists j with 1� j�r and a sequence
(An)�

n=1 /A such that the set of all finite products of the form an1
an2

} } } anm
,

where n1< } } } <nm and ani
# Ani

, is contained in Cj .

Proof. Let % be any minimal idempotent in S. There exists j with
1� j�r such that % # [Tg : g # Cj]. Putting #=1Cj

, we have %#(e)=1. By
Theorem 2.2, we may select A1 # A such that, for all a # A1 ,

#(a)=%#(e) and %#(a)=%2#(e)=%#(e)=1.
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Having chosen A1 , ..., At&1 such that

#(an1
} } } anm

)=1 and %#(an1
} } } anm

)=1
(2.1)

for all 1�n1< } } } <nm�t&1 and ani
# Ani

, 1�i�m,

select, by Theorem 2.2, At # A such that for all at # At ,

#(an1
} } } anm

at)=%#(an1
} } } anm

)=%#(e)=1 and

%#(an1
} } } anm

at)=%2#(an1
} } } anm

)=%#(an1
} } } anm

)=%#(e)=1

for all 1�n1< } } } <nm�t&1 and ani
# Ani

, 1�i�m.

It follows that (2.1) holds with t&1 replaced by t. Continuing in this
manner completes the proof. K

Theorem 2.3 has many natural applications. For example, suppose G is
taken to be N and A is taken to be the family of singletons. Theorem 2.3
in this context is Hindman's theorem. If A=[[a1 , ..., ak] : (a1 , ..., ak) # I] ,
where I is a two-sided ideal in some semigroup of Gk which contains the
diagonal, then Theorem 2.3 in this context implies Theorem B from the
introduction. (Notice that in order to apply Theorem 2.3 in this case we
need to know that A is partition regular, which is a consequence of the
finitary version of Theorem B.)

For some applications, Theorem 2.3 isn't quite what we need. Theorem
1.6, for example, is not an immediate consequence of Theorem 2.3. One can
see this already in the special case (which dealt with the single polynomial
p(n)=n2) treated after Theorem 1.5. At the first stage of the inductive pro-
cedure, the family under consideration was

A1=[[a, a+n2] : a, n # N] .

At the next stage, it was

A2=[[a, a+n2, a+n2+2n1 n] : a, n # N] .

After that it was

A3=[[a, a+n2, a+n2+2n1 n, a+n2+2n2n,

a+n2+2(n1+n2)n]: a, n # N] .

Notice that at each stage, the family one needed to consider depended on
previous choices of ni . Taking this into account, we formulate the following
more general version of Theorem 2.3, which can be proved in the same
way.
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Theorem 2.4. Let G be a semigroup, let S be a set, and suppose that for
every s # S, Ts is a set. For each s # S, let As be a 2-sided shift invariant,
partition regular family of finite subsets of G indexed by Ts ; namely, for each
t # Ts , let As, t # As , such that As=[As, t : t # Ts]. Let s1 # S and suppose
, : [(s, t) : s # S, t # Ts] � S is a function. For each finite coloring of G there
exist sequences (sn)�

n=2 /S and (tn)�
n=1 such that tn # Tsn&1

and such that
,(sn&1 , tn&1)=sn for n�2 and such that the set of all products
an1

an2
} } } anm

, where n1< } } } <nm and ani
# Asni , tni

, is monochromatic.

We now move to an application of Theorem 2.4 involving VIP-systems,
which were introduced in [BFM]. VIP-systems are variants of IP-sets hav-
ing a ``polynomial'' nature. In a commutative group (G, +), a sequence
indexed by F (more generally, by any IP-ring F (1)), say (v:)a # F , is called
a VIP-system if there exists some non-negative integer d such that for every
pairwise disjoint :0 , :1 , ..., :d # F we have

:

;i{;j , 1�i< j�t
[;1 , ..., ;t]/[:0 , ..., :d]

(&1)t v;1 _ } } } _ ;t
=0 (2.2)

If (v:)a # F is a VIP-system then the least non-negative d for which (2.2)
holds is called the degree of the system. If d=1, this equation reduces to
simply v:0 _ :1

=v:0
+v:1

. In other words, the VIP-systems of degree 1 are
just the (non-identically zero) IP-sets.

Recall the alternative characterization of IP-sets; namely as the set of
finite sums of some sequence. A similar characterization of VIP-systems
will be useful. For d # N, let Fd denote the family of non-empty subsets of
N having cardinality at most d.

Proposition 2.5. Let G be an additive abelian group and let d # N. A
sequence indexed by F, (v:)a # F , in G is a VIP-system of degree at most d
if and only if there exists a function from Fd to G, written # � n# , # # Fd ,
such that

v:= :
#/:, # # Fd

n# (2.3)

for all a # F.

Proof. First we establish that any sequence (v:)a # F satisfying (2.3) is a
VIP-system of degree at most d. Let :0 , :1 , ..., :d be pairwise disjoint mem-
bers of F. We need to show that

:

;i{;j , 1�i< j�t
[;1 , ..., ;t]/[:0 , ..., :d]

(&1)t \ :
#/(;1 _ } } } _ ;t), # # Fd

n#+=0. (2.4)

226 RANDALL McCUTCHEON



Fix # # Fd with #/(:0 _ :1 _ } } } _ :d). Let k be the number of :i 's # inter-
sects non-trivially. For 1�t�d, the number of choices of pairwise distinct
;1 , ..., ;t from [:0 , ..., :d] such that #/(;1 _ } } } _ ;t) is 0 if t<k and
( d+1&k

t&k ) otherwise. Hence the number of times n# is counted in (2.4) is
�d+1&k

i=0 ( d+1&k
i )(&1) i=(1&1)d+1&k=0. Since # was arbitrary we are

done.
For the converse, suppose (v:)a # F is a VIP-system of degree d. For each

# # Fd , put

n#= :
;/#

(&1) |#|&|;| v; .

We need to show that

v:= :
#/:, # # Fd

n# (2.5)

for all : # F.
If |:|�d this reduces to

v:= :
#/:

:
;/#

(&1) |#|&|;| v; . (2.6)

Let ;/:. We shall count how many times v; is counted on the right hand
side of (2.6). If ;=:, clearly once. Otherwise, for |;|�k�|:| there
are ( |:|&|;|

k&|;| ) sets # with ;/#/: and |#|=k. Hence ; is counted
� |:|

k=|;| ( |:|&|;|
k&|;| )(&1)k&|;| =� |:| &|;|

i=0 ( |:| &|;|
i )(&1) i=0 times, yielding (2.5)

as required.
For |:|>d, we use induction. Let : # F with |:|>d and suppose (2.5)

holds for all sets of cardinality less than |:|. Write :=:0 _ :1 _ } } } _ :d ,
where :i & :j=< for 0�i{ j�d. We have

:

;i{;j , 1�i< j�t
[;

1
, ..., ;t]/[:

0
, ..., :d]

(&1)t v;1 _ } } } _ ;t
=0. (2.7)

On the other hand, by the prior implication (2.4) holds, namely

:

;i{;j , 1�i< j�t
[;

1
, ..., ;t]/[:

0
, ..., :d]

(&1)t (&1)t \ :
#/(;1 _ } } } _ ;t), # # Fd

n#+=0. (2.8)

Since, according to the induction hypothesis, v;1 _ } } } _ ;t
=

�#/(;1 _ } } } _ ;t), # # Fd
n# when [;1 , ..., ;t] is a proper subset of [:0 , ..., :d],

equations (2.7) and (2.8) establish it for [;1 , ..., ;t]=[:0 , ..., :d], as
desired. K
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Many natural polynomially generated sequences (v:)a # F can be shown
to be VIP-systems. For example, let (n:)a # F be an IP-set in Z, and put
v:=n2

: . Then (v:)a # F is a VIP-system of degree (at most) 2, for letting
ai=n2

[i] and b ij=2n[i] n[ j] , one sees with the help of the multinomial
theorem that (2.3) holds. This phenomenon is fully elucidated by the
following proposition.

Proposition 2.6. Let R be a commutative ring, k, d # N, and let
p # R[x1 , x2 , ..., xk] be a polynomial of degree d with coefficients in R
and with p(0, ..., 0)=0. If (n (i)

: )a # F are IP-sets in R, 1�i�k, then
letting v:= p(n (1)

: , n (2)
: , ..., n (k)

: ), : # F, the resulting sequence (v:): # F is a
VIP-system of degree at most d.

Proof. It suffices to establish it for k=d and monomials of the form
p(x1 , ..., xd)= gx1x2 } } } xd , where g # R (The reason we may assume k=d
and that all the exponents are 1 is that some of the IP-sets can be repeats.
The reason we may assume p is a monomial is that the sum of two
VIP-systems of degree at most d is again such.)

We use the characterization of Proposition 2.5. Namely, let, for # # Fd ,

n#= :
[a1, a2 , ..., ad]=#

gn (1)
[a1] } } } n (d )

[ad] .

One may easily check that

v:= :
#/:, # # Fd

n#

for all a # F. K

Our concern with VIP-systems arises out of the following theorem. It is
a consequence of a polynomial Hales�Jewett theorem ([BL2]) due to
Bergelson and Leibman. (We remark, however, that a direct proof of
Theorem 2.7 could be given by the more elementary methods of [BL1].)

Theorem 2.7. Let G be an additive abelian group and let k # N. If
(v (i)

: ): # F are VIP-systems in G, 1�i�k, then for any finite coloring of G
there exists a monochromatic configuration of the form

[a+v (1)
: , a+v (2)

: , ..., a+v (k)
: ],

where a # G and : # F.

As an application of Theorem 2.4, we shall give an infinitary version of
Theorem 2.7. Recall that in proving Theorem 1.6 we used the fact that for
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a polynomial p(x) and fixed integer m, the polynomial q(x)=
p(x+m)& p(m) has zero constant term. We make here a similar observa-
tion, namely that if (v:)a # F is a VIP-system (of degree d ) in a commutative
group G, and ; # F is fixed, then letting u(;)

: =v: _ ;&v; for all : # f satisfying
: & ;=<, the sequence (u (;)

: ): # F, : & ;=< is a VIP-system (indeed, of
degree at most d ).

This is easily seen via the characterization of Proposition 2.5. Namely,
there exists a sequence (n#)# # Fd

such that v:=�#/:, # # Fd
n# . We have

u (;)
: = :

#/: _ ;, # # Fd

n#& :
#/;, # # Fd

n#= :
#/:, # # Fd

m# ,

where m#=�! /;, ! _ # # Fd n! _ # .

Theorem 2.8. Let G be an additive abelian group and let

(v:): # F , (w:): # F , ..., (z:): # F

be VIP-systems in G. For any r # N and any r-coloring G=�r
i=1 C i there

exists j, 1� j�r, an IP-ring F (1), and an IP-set (a:): # F (1) such that for all
: # F (1) we have

[a:+v: , a:+w: , ..., a:+z:]/Cj .

Proof. We use Theorem 2.4. Let

S= .
�

n=1

[(:1 , :2 , ..., :n&1) : :1 , :2 , ..., :n&1 # F, :1<:2< } } } <:n&1 ]

be the set of finite, increasing sequences taken from F (by considering
n=1 in the union, we are including the empty sequence). For
s=(:1 , :2 , ..., :n&1) # S, let

As=A(:1 , :2, ..., :n&1)

={ .
; # FU<(:1, :2 , ..., :n&1)

[a+v (;)
: , a+w (;)

: , ..., a+z (;)
: ] :

: # F, :>:n&1 , a # G=
and let Ts=G_[: # F: :>:n&1].

By Theorem 2.7 and the fact that (v(;)
: ):>:n&1

, (w (;)
: ):>:n&1

, ..., (z (;)
: ):>:n&1

are VIP-systems for fixed ; # FU< (:1 , ..., :n&1), for all s # S As is a 2-sided
shift invariant, partition regular family whose members are indexed by Ts .
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Namely, we let As, a, : , where s=(:1 , ..., :n&1) # S, a # G, and : # F, with
:>:n&1 , be the set

As, a, := .
; # FU<(:1, :2 , ..., :n&1)

[a+v (;)
: , a+w (;)

: , ..., a+z (;)
: ].

Also let ,(s, a, :)=(:1 , ..., :n&1 , :) # S.
Let s1 be the empty sequence. Theorem 2.4 guarantees us sequences

(sn)�
n=2 and (tn)�

n=1 such that, firstly, ,(sn&1 , tn&1)=sn , n�2. From this
it follows that there exists an increasing sequence (:n)�

n=1 /F such that
sn=(:1 , :2 , ..., :n&1), n # N, and a sequence (an)�

n=1 /G such that
tn=(an , :n). Put F (1)=FU((:n)�

n=1). For : # F (1), put a:=�:i/: ai .
Then (a:): # F (1) is an IP-set.

Secondly, the set of all sums bn1
+bn2

+ } } } +bnm
, where n1< } } } <nm

and bni
# Asni , tni

, is monochromatic. We claim that, in particular, the set

.
: # F (1)

[a:+v: , a:+w: , ..., a:+z:]

is monochromatic. To see this, let :=:n1
_ } } } _ :nm

be a member of F (1).
We have, for example,

a:+v:=(an1
+v:n1

)+(an2
+v (:n1)

:n2
)+(an3

+v(:n1 _ :n2)
:n3

)+ } } }

+(anm
+v (:n1

_ } } } _ :nm&1)
:nm

).

This is a sum of terms bn1
, ..., bnm

with bni
# Asni , tni

. K
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