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Let w(m,n) be the van der Waerden number in two colors. It is
shown that w(m,n) is at least c( n

logn )m−1 for fixed m, where c =
c(m) is a positive constant.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let m and n be positive integers. Define the van der Waerden number w(m,n) to be the smallest
integer N such that if [N] = {1,2, . . . , N} are colored by red and blue, there is a red m-AP (arithmetic
progression of m distinct terms) or a blue n-AP.

It is easy to see that w(1,n) = n, and for n � 2, w(2,n) = 2n if n is odd and 2n − 1 otherwise.
However, it is hard to prove the existence of w(m,n) for fixed m � 3 or m = n; see van der Waer-
den [12,13] and Graham, Rothschild and Spencer [8]. As usual, an existence proof often gives an upper
bound. A recent result of Gowers [6] is

w(n,n) � 22222n+9

.

Although this upper bound is rather large, it greatly improved much larger bounds resulting from
van der Waerden’s proof (see [8] for a description) and the work of Shelah [9]. Szabó [11] proved

✩ Supported in part by NFSC.

* Corresponding author.
E-mail addresses: li_yusheng@tongji.edu.cn (Y. Li), jlshu@math.ecnu.edu.cn (J. Shu).
0196-8858/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.aam.2009.01.007

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yaama
mailto:li_yusheng@tongji.edu.cn
mailto:jlshu@math.ecnu.edu.cn
http://dx.doi.org/10.1016/j.aam.2009.01.007


244 Y. Li, J. Shu / Advances in Applied Mathematics 44 (2010) 243–247
that w(n,n) � (1 − o(1)) 2n−1

en , and Berlekamp [2] proved w(p + 1, p + 1) � p2p for prime p. The two
lower bounds are very close, but the proofs are completely different. This may suggest that the lower
bounds are much closer to the truth than the known upper bounds.

For the van der Waerden function w(3,n), it is known that

n2−1/ log log n � w(3,n) � ncn2
.

The upper bound is due to Bourgain [3], and the lower bound is a special case of that of Brown,
Landman and Robertson [4] who proved that

w(m,n) � nm−1

n1/ log log n
(1)

for fixed m � 3 and large n. It is suggested that w(3,n) might be bounded from above by some
polynomial on n (perhaps even a quadratic!); see [4,7]. It would be very interesting to see whether
or not the van der Waerden function w(m,n) behaves similarly to the graph Ramsey function r(m,n).
We will prove the following result.

Theorem 1. Let m � 3 be fixed. Then

w(m,n) � c

(
n

logn

)m−1

for all large n, where c = c(m) > 0 is a constant.

2. The proof

Brown, Landman and Robertson [4] proved (1) by the Lovász local lemma [5], in which they used
the symmetric form of the lemma by elegantly balancing the probabilities of monochromatic m-AP
and n-AP. For random events A1, A2, . . . , An , define a graph D , called dependency graph, on vertex
set {1,2, . . . ,n}, in which every event Ai is mutually independent of all A j with {i, j} /∈ E(D), i.e.,
each Ai is independent of any Boolean combination of the {A j: {i, j} ∈ E(D)}. The following is the
general form of the local lemma; see [1,10].

Theorem 2. Let A1, A2, . . . , An be random events. Suppose that there exist real numbers x1, x2, . . . , xn such
that 0 < xi < 1 and

Pr(Ai) � xi

∏
{i, j}∈E(D)

(1 − x j).

Then Pr(
⋂n

i=1 Ai) > 0.

The following form of the local lemma given by Spencer is slightly more convenient for some
applications, in which yi = xi/Pr(Ai).

Corollary 1. Let A1, A2, . . . , An be events. If there exist positive numbers y1, y2, . . . , yn such that
yi Pr(Ai) < 1 and

log yi � −
∑

i j∈E(D)

log
(
1 − y j Pr(A j)

)
,

then Pr(
⋂

Ai) > 0.
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Proof of Theorem 1. Color each integer of [N] by red and blue randomly and independently, in which
each integer is colored red with probability p and blue with probability q = 1 − p, where the proba-
bility p will be determined.

For each S of m-AP of [N], let A S signify the event that S is monochromatically red. For each T of
n-AP of [N], let BT signify the event that T is monochromatically blue. Then

Pr(A S) = pm, Pr(BT ) = qn.

We thus separate the involved events into two types, type A and type B . To use Corollary 1, we
shall find y1, y2, . . . that consist of only two distinct numbers: one type yi for A-events and the
other type yi for B-events. Let x ∈ [N] be fixed. The number of m-APs in [N] that contain x is at
most mN/(m − 1), since there are m positions that x may occupy and the common difference of
an m-AP cannot exceed N/(m − 1). Similarly, the number of n-APs in [N] that contain x is at most
nN/(n − 1). Obviously, two events are dependent if and only if they have some integer in common.
Hence, each A event is mutually independent of all but at most m2N/(m − 1) other A events and
mutually independent of all but at most mnN/(n − 1) of the B events; each B event is mutually
independent of all but at most mnN/(m − 1) of the A events and mutually independent of all but at
most n2N/(n − 1) other B events.

We will prove that the hypotheses of Corollary 1 are satisfied. To do this, we will show the exis-
tence of positive a and b such that apm < 1 and bqn < 1, and the following inequalities hold:

log a � − m2N

m − 1
log

(
1 − apm) − mnN

n − 1
log

(
1 − bqn), (2)

log b � − mnN

m − 1
log

(
1 − apm) − n2N

n − 1
log

(
1 − bqn). (3)

We shall take yi = a for each A event, and yi = b for each B event. By Corollary 1, if such a and b
are available, then there exists a red/blue coloring of [N] in which there is neither red m-AP nor blue
n-AP; in other words w(m,n) > N . To this end, let c = c(m) > 0 be an arbitrary constant with

c <

(
m − 1

m2

)m

. (4)

We shall choose N, p,b and a in order by

N = c

(
n

logn

)m−1

,

p = m log(nN)

(m − 1)n
,

b = 1

nNqn
, a = bm/n.

It is easy to verify that (1 − p)n ∼ e−np as n → ∞ and

b = 1

nN(1 − p)n
∼ enp

nN
= (nN)m/(m−1)

nN
= (nN)1/(m−1).

Thus from the fact that log(nN) ∼ m log n we have

log b ∼ log(nN) ∼ m
log n.
m − 1 m − 1
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As bqn → 0 and log(1 + x) ∼ x for x → 0, the second term in the right-hand side of (3) is asymptot-
ically equal to nNbqn = 1. Note that a → 1, apm → 0 and p ∼ m2 log n/((m − 1)n), and the first term
in the right-hand side of (3) is asymptotically

m

m − 1
nNapm ∼ cm

m − 1

nm

(log n)m−1

(
m2 log n

(m − 1)n

)m

= cm2m+1

(m − 1)m+1
logn.

Therefore (3) is satisfied for large n if

m

m − 1
>

cm2m+1

(m − 1)m+1
,

which is valid from the equivalence to (4). We then verify inequality (2), which should hold as the
proportion of the right-hand sides in (2) and (3) is m/n and we have chosen a = bm/n . In details, the
second term in the right-hand side of (2) is asymptotically

mNbqn = m

n
= o

(
log n

n

)
,

and the first term in that side is asymptotically

m2

m − 1
Napm ∼ cm2

m − 1

(
n

logn

)m−1( m2 logn

(m − 1)n

)m

= c

(
m2

m − 1

)m+1 logn

n
.

The left-hand side of (2) is

log a = m

n
log b ∼ m2

m − 1

logn

n
.

So (2) is satisfied if

m2

m − 1
> c

(
m2

m − 1

)m+1

,

which is equivalent to (4) also. Therefore we have obtained that

w(m,n) � c

(
n

logn

)m−1

for all large n. �
We conclude this note with a problem: prove or disprove that

w(m,n) � cnm−1

for fixed m.
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[5] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraph and some related questions, in: A. Hajnal, et al. (Eds.),

Infinite and Finite Sets, North-Holland, Amsterdam, 1975.
[6] W.T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001) 465–588.
[7] R. Graham, On the growth of a van der Waerden-like function, Integers 6 (2006) #A29.
[8] R. Graham, B. Rothschild, J. Spencer, Ramsey Theory, 2nd ed., Wiley, New York, 1990.
[9] S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc. 1 (1988) 683–697.

[10] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977) 69–76.
[11] Z. Szabó, An application of Lovász’ local lemma—A new lower bound for the van der Waerden numbers, Random Structures

Algorithms 1 (1990) 343–360.
[12] B.L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskd. 15 (1927) 257–271.
[13] B.L. van der Waerden, How the proof of Baudet’s conjecture was found, in: Studies in Pure Mathematics (Presented to

Richard Rado), Academic Press, London, 1971, pp. 251–260.


	A lower bound for off-diagonal van der Waerden numbers
	Introduction
	The proof
	Acknowledgments
	References


