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Abstract. For n ∈ N, let [n] denote the integer set {0, 1, . . . , n − 1}. For any subset V ⊂ Z
2, let

Hom(V ) = {cV + b : c ∈ N, b ∈ Z
2}. For k ∈ N, let Rk(V ) denote the least integer N0 such that

for any N ≥ N0 and for any k-coloring of [N ]2, there is a monochromatic subset U ∈ Hom(V ).

The argument of Gallai ensures that Rk(V ) is finite. We investigate bounds on Rk(V ) when V is a

three or four-point configuration in general position. In particular, we prove that R2(S) ≤ V W (8),

where V W is the classical van der Waerden number for arithmetic progressions and S is a square

S = {(0, 0), (0, 1), (1, 0), (1, 1)}.

1. Introduction

Let, for a positive integer n, [n] = {0, 1, . . . , n− 1}. The classical Theorem of van der Waerden [16]

claims that for any n, k ∈ N, there is N0 ∈ N such that for all N ≥ N0 and any k-coloring χ : [N ] → [k],

there is a monochromatic arithmetic progression of length n (n-AP). Define V W (k, n) to be the least

such integer guaranteed by van der Waerden’s Theorem. The number V W (n) = V W (2, n) is usually

referred to as the classical van der Waerden number. The best known bounds are

(n − 1)2n−1 ≤ V W (n) ≤ 222
2
2
2
n+9

,

with the lower bound valid for values of n− 1 which are prime. Here, the upper and lower bounds are

due to Gowers [4], and Berlekamp [1], respectively; see also [5]. The only known exact values for V W

are V W (3) = 9, V W (4) = 35, and V W (5) = 178; the first two are due to Chvátal [2], while the third

is due to Stevens and Shantaram [14]. Kouril proved in [10] that V W (6) ≥ 1132, and conjectured that

equality holds; his proof of this conjecture is featured in a paper which is unavailable at the time of

this writing.

The density version of van der Waerden’s Theorem (see the celebrated result of Szemerédi [15])

asserts that an arithmetic progression of a fixed length is always present in dense subsets of integers,

thus implying the classical van der Waerden Theorem. For the improved bounds, see the results of

Gowers [4] and Shkredov [13].

In search for better bounds and better understanding of van der Waerden numbers, some connections

between higher-dimensional problems and the original problem have been established by Graham [5].

In this note, we continue this effort by studying a problem of independent interest when instead of

arithmetic progressions in [n], configurations in [n]2 are being considered.
1
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For a set V ⊆ Z
2 and b ∈ Z

2, define V + b = {v + b : v ∈ V }. We say that a subset U of the grid

is homothetic to a set V in the grid if U = cV + b, for some constants c ∈ R, c 6= 0, and b ∈ Z
2. In

particular, we consider the set of all squares, i.e., sets homothetic to S = {(0, 0), (0, 1), (1, 0), (1, 1)},

and the set of L-sets homothetic to L = {(0, 0), (0, 1), (1, 0)}. In this note we consider a stronger

notion, when the coefficient c above is a natural number. Let

Hom(V ) = {cV + b : c ∈ N,b ∈ Z
2}.

Given k ∈ N, let

Rk(V ) = min{n : any k-coloring of [n]2 contains a monochromatic set from Hom(V )}.

The argument of Gallai, see for example [6], implies that Rk(V ) exists for finite V . Gallai’s Theorem

together with results of Shelah found in [12] immediately give the upper bound in terms of Hales-Jewett

numbers, HJ ,

R2(S) ≤ 222
·

·

·

2

2HJ(3,4);

where the height of the tower is 24, see Appendix A for details. Here, we improve this bound to

R2(S) ≤ min{V W (8), 5 · 2240

}. One of the results we use is the bound by Graham and Solymosi [7]:

(1) Rk(L) ≤ 22k
.

Recall that a collection of points in the plane in general position means that no three of them are

collinear. Note than an immediate lower bound on Rk(V ) for any V in general position with |V | ≥ 3

is Rk(V ) ≥ k; this can be seen by coloring the ith row of [k]2 with color i. Since each row has its

own color and no three points of any X ∈ Hom(V ) can lie on one row, we avoid a monochromatic

homothetic copy of V .

In this manuscript, we study mostly R2(V ), when V is a 3 or 4-element set in general position.

Theorem 1 gives an argument using forbidden configuration for squares. Theorem 2 provides bounds

for arbitrary 3 and 4-element sets in a general position in terms of Rk(L) using a reduction argument

(independent of Theorem 1) by looking at a smaller grid but using more colors; see also presentations

of Bill Gasarch [3] on the topic.

Theorem 1. 13 ≤ R2(S) ≤ V W (8).

For a set A ⊆ [n]2, let the square-size of A be sA = min{ℓ : ℓ ∈ N,∃X ⊆ [ℓ]2 such that X ∈ Hom(A)};

i.e., the size of the smallest square containing A.

Theorem 2. Let T and Q be sets of three and four points in the grid in general position, respectively.

Then

Rk(T ) ≤ 2sT Rk(L), R2(Q) ≤ 20sQR40(L).
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Note that (1) and Theorem 2 imply that R2(Q) ≤ 20sQ2240

. We can also reduce the bound slightly

in the case of the square S to R2(S) ≤ 5 · 2240

. We prove these two Theorems in the next sections,

leaving the routine case analysis for Appendix B. In the last section we compare our results with the

best known density results.

2. Proof of theorem 1

When we consider 2-colorings of the grid, we assume that the codomain is the set {◦, •}. Under an

arbitrary 2-coloring χ, if χ((x, y)) = ◦ we say that (x, y) is colored white, and if χ((x, y)) = •, we say

that (x, y) is colored black.

Upper bound Let n ≥ V W (8). Let χ : [n]2 → {◦, •} be a coloring of [n]2 in two colors. By van

der Waerden’s Theorem, every row of [n]2 contains a monochromatic 8-AP; in particular, the middle

row contains an 8-AP P = {X,X + d, . . . ,X + 7d}. Without loss of generality, we may assume d = 1

and χ(P ) = ◦. Let P = P + (0, 1), P = P + (0,−1), and ∗ ∈ {◦, •}. We consider cases according

to whether either P or P have four consecutive black vertices, three consecutive black vertices in the

center, two consecutive black vertices in the center, or none of the above. We show that there is a

monochromatic square in each of these cases.

In the case analysis (details in appendix B), we use facts about four configurations in the grid, see

Figure 5.

Case 1: P or P contains 4 consecutive black vertices.

Figure 6 deals with the case when there are three vertices to one side of these 4 consecutive vertices.

Figure 7 deals with the case when these 4 consecutive vertices are in the center.

Case 2: Case 1 does not hold and there are three consecutive black vertices in P or in P with at

least two vertices on both sides.

Figure 8 deals with this case.

Case 3: Cases 1 and 2 do not hold and there are two consecutive black vertices in the center of P or

in the center of P .

Figure 9 deals with this case.

Case 4: Cases 1, 2, 3 do not hold.

This case implies that the two central positions above and below P are occupied by white and black

vertices. Since it is impossible to have a white vertex x right above P and a white vertex exactly

below x and P (see Figure 5 (2)), this case (up to reflection) gives the folowing colorings of P and P :
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∗ ∗ ∗ • ◦ • ∗∗ and ∗ ∗ • ◦ • ∗ ∗∗. Figure 10 displays two grey diamonds marked 1. Figures 10, 11, and 12

deal with the case that these both have color ◦. Figures 13, 14, and 15 deal with the case that these

both have color •. Lastly, Figures 16 and 17 deal with the case when these vertices have different

colors, completing the proof of the upper bound.

Lower bound Let n = ⌈(V W (k, 4)− 1)/3⌉. We construct a k-coloring χ′ of [n]2 which contains no

monochromatic square. Let χ : {0, 1, . . . , V W (k, 4) − 2} → {1, 2, . . . , k} be a coloring which admits

no 4-AP. Define a k-coloring χ′ on [n]2 by χ′(x, y) = χ(x + 2y). If χ′ admits a monochromatic square,

then there exist (x, y) and d ∈ N such that χ′(x, y) = χ′(x + d, y) = χ′(x, y + d) = χ′(x + d, y + d).

But the definition of χ′ gives that χ(x + 2y) = χ(x + 2y + d) = χ(x + 2y + 2d) = χ(x + 2y + 3d), a

4-AP. This is a contradiction, so Rk(S) ≥ ⌈(V W (k, 4) − 1)/3⌉, as desired. Using a 2-coloring of [34]

with no 4-AP due to Chvátal [2], we can construct a specific 2-coloring of [12]2 which contains no

monochromatic square, and hence R2(S) ≥ 13; see Figure 1.

Figure 1. A 2-coloring of [12]2 with no monochromatic square.

Using the best known lower bounds for W (k, 4) due to Rabung [11] and Herwig, et al. [9], we have

that R3(S) > 97, R4(S) > 349, R5(S) > 751, and R6(S) > 3259.

3. Proof of Theorem 2

Again, we assume that the codomain for any 2-coloring χ is {◦, •}, and say (x, y) is colored white

for χ((x, y)) = ◦, and (x, y) is colored black for χ((x, y)) = •. Define the diagonal Dn of [n]2 to be

Dn := {(x, y) : x + y = n − 1}, and the lower triangle Tn = {(x, y) : (x, y) ∈ [n]2, x + y ≤ n − 1}.

Throughout this section we shall be using a map which allows us to deal with arbitrary three point

configurations as L-sets. We say that a subset {u1,u2,u3} of three distinct elements in the grid forms

a 3-AP, if, up to reordering, there is a vector u such that u3 = u2 + u, u2 = u1 + u. Given X ⊆ Z
2

and m,k ∈ N, we say that a collection of subsets X ⊆ [m]2 ∩ Hom(X) is a forcing set (with respect

to parameters X, m, and k) if in any k-coloring of [m]2 there is a monochromatic set from X . Let
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forc(X,m, k) denote the cardinality of the smallest such collection X . In the next two Lemmas we

find bounds for Rk(T ), where T is a three point configuration and we prove that that for any such T

and k = 2, there is a forcing set with 20 sets in it.

Lemma 1. R2(L) = 5. Furthermore, forc(L, 5, 2) ≤ 20.

Proof. To see that R2(L) ≥ 5, consider the coloring of [4]2 with no monochromatic L-set shown in

Figure 2. Consider a 2-coloring of [5]2. At least 3 elements on a diagonal, D5, are of the same

color, say black. If D5 has a 3-AP, then we immediately have a monochromatic L-set contained

in the lower triangle. If D5 has at least 4 black vertices, then either there is a 3-AP in it, or,

there are exactly four black vertices on this diagonal and the central vertex is white. Then one

of {(0, 4), (0, 3), (1, 3)}, {(3, 1), (3, 0), (4, 0)}, or {(0, 3), (0, 0), (3, 0)} will be a monochromatic L-set.

Therefore there are exactly three black vertices on the diagonal, and they do not form a 3-AP. The

possible colorings (up to symmetries) of the diagonal in this case are shown in Figure 3. In each of

these cases, it is easy to conclude that there is a monochromatic L-set in the lower triangle. Hence,

R2(L) ≤ 5 and thus R2(L) = 5. Since the number of L-sets in T5 is 20, forc(L, 5, 2) ≤ 20. �

Figure 2. A 2-coloring of [4]2 with no monochromatic L-set.

Figure 3. Colorings of D5 with three black points not forming 3-AP.

For a given three point subset T of Z
2 in general position, define the parallelogram size pT to be the

square size of the parallelogram defined by T . Recall that the square size of a set X corresponds

to the size of the smallest square containing X. For example, when T = L, pT = 1; when T =

{(0, 0), (1, 2), (−1, 3)}, pT = 5. Note that pT ≤ 2sT . By choosing an appropriate linear transform, we

find a bound on Rk(T ) in terms of Rk(L).

Lemma 2. If T ⊆ Z
2 is in general position with |T | = 3 then Rk(T ) ≤ pT Rk(L). Furthermore,

R2(T ) ≤ 5pT and forc(T, 5pT , 2) ≤ 20.

Proof. Let T = {t1, t2, t3} ⊂ Z
2 be a set in general position with two sides corresponding to vectors

u = t2 − t1 and v = t3 − t1, let k ≥ 2 be an integer and let q = Rk(L). Let n = pT q and Q be the

parallelogram defined by T . Then qQ is contained in an n × n square grid. Formally, let x ∈ Z
2 such

that qQ + x ⊆ [n]2.
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Let X = [n]2 ∩ {ku + lv + x : k, l ∈ N ∪ {0}}. Define φ : X → [n/pT ]2 by φ(ku + lv + x) = (k, l).

Let χ be a k-coloring of [n]2. This induces a k-coloring χ′ of [n/pT ]2 by χ′(k, l) = χ(ku + lv + x). As

q = Rk(L), there is a monochromatic L-set under χ′, say {(l, l′), (l + d, l′), (l, l′ + d)}. By definition

of φ, this corresponds to a monochromatic set {lu + l′v + x, (l + d)u + l′v + x, lu + (l′ + d)v + x}

which is a triangle with sides du, dv, a homothetic image of T . Since there exists a forcing set X with

parameters L, 5, 2 and |X| ≤ 20, we may take φ−1(X) to be a forcing set for T in [pT R2(L)]2 = [5pT ]2

to see that there exists a forcing set with respect to parameters T , 5pT , and 2 of cardinality at most

20. �

Note that for any four point subset Q of Z
2, there is a three point subset T ⊆ Q such that sT = sQ.

This is easily seen by taking T to be two points of Q with maximal Euclidean distance together with

any third point of Q. This leads us to our next Lemma. First, for n an even positive integer and d

any positive integer less than n, we define the middle square of width d of [n]2 to be the d× d subgrid

{n
2 − ⌊d

2⌋,
n
2 − ⌊d

2⌋ + 1, . . . , n
2 + ⌊d

2⌋ − 1}2.

Lemma 3. Let Q be a set of four points in the grid in general position and let T ⊆ Q, |T | = 3 such

that sT = sQ. Then R2(Q) ≤ 20sQR40(T ), and R2(S) ≤ 5R40(L).

Proof. Let q = 5sT = 5sQ, n = 4qR40(T ), and χ : [n]2 → {•, ◦}. We shall construct another coloring

χ′ : [n/q] → {1, 2, . . . , 40} generated by χ. We shall first show that χ′ has a monochromatic homothetic

image T ′ of T in [n/q]2. Using this T ′, we shall find a monochromatic homothetic image of Q in the

original coloring.

By Lemma 2, we have that R2(T ) ≤ q and forc(T, q, 2) ≤ 20. Let {X1, . . . ,X20} be a forcing set

with respect to parameters T , q, and 2, and let

(Y1, . . . , Y40) = ((X1, ◦), (X2, ◦), . . . , (X20, ◦), (X1, •), (X2, •), . . . , (X20, •)). Any 2-coloring of the q × q

grid has some set Xi colored in ◦ or • which corresponds to either Yi or Y20+i, respectively, 1 ≤ i ≤ 20.

Split [n]2 into q× q grids A(x,y) = {(a, b) : qx ≤ a < q(x+ 1), qy ≤ b < q(y + 1), 0 ≤ x, y ≤ n/q− 1}.

Let

χ′((x, y)) = min{i : A(x,y) has a colored set Yi under χ}.

Note that χ′ is a coloring of [n/q]2 in at most 40 colors.

To allow for us to later choose additional points which belong to the grid, we consider the middle

square M , of [n/q]2 of width 1
4

n
q = R40(T ). Then M contains, under χ′, a monochromatic set

T ′ = {x1,x2,x3}, T ′ ∈ Hom(T ). Let x4 be the point such that {x1,x2,x3,x4} ∈ Hom(Q).

Since χ′(x1) = χ′(x2) = χ′(x3), the corresponding subgrids Ax1
, Ax2

, and Ax3
have a three element

set from Hom(T ) in the same position and of the same color. I.e., T ′′ = {t1, t2, t3} ∈ Hom(T ),

T ′′ ⊆ [q]2, so that T1 = T ′′ + qx1 ∈ Ax1
, T2 = T ′′ + qx2 ∈ Ax2

and T3 = T ′′ + qx3 ∈ Ax3
are

all monochromatic, (say black). Let t4 be the grid vertex such that {t1, t2, t3, t4} ∈ Hom(Q) and

T4 = T ′′+qx4. Since T1, T2, T3 are monochromatic, T4 is monochromatic (white), otherwise if one of its
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points, say t1+qx4 is black under χ, then {t1+qx1, t1+qx2, t1+qx3, t1+qx4} ∈ Hom(Q), a monochro-

matic set. Similarly, we have χ(t4 + qx1) = χ(t4 + qx2) = χ(t4 + qx3) = •, and χ(t4 + qx4) = ◦. Let

Q′ = {qx1 + t1, qx2 + t2, qx3 + t3, qx4 + t4}. (See Figure 4 for a pictorial representation.)

Claim: Q′ ∈ Hom(Q) and Q′ is monochromatic under χ. Let Q = {q1,q2,q3,q4}. Then xi = aqi+b

and ti = a′qi + b′, i = 1, 2, 3, 4 for some a, a′ ∈ N, b,b′ ∈ Z
2. So, we have that qxi + ti =

q(aqi + b) + (a′qi + b′) = (qa + a′)qi + (qb + b′). This concludes the proof of the claim.

What remains for us to check is that indeed all the selected points tj + qxi, i, j = 1, 2, 3, 4 belong to

the grid [n]2. Note that qx1, qx2, qx3 are in the middle grid M ′′ of [n]2 of width n/4. Since sT = sQ,

all four points qxi, i = 1, 2, 3, 4 are contained in the square of size at most n/4, so qx4 is in the middle

square of [n]2 of width 3n/4. Since tj ∈ [q]2 for j = 1, 2, 3, and sT = sQ, we have that tj is in a

3q × 3q grid for j = 1, 2, 3, 4. Hence, tj + qxi are in the middle square of [n]2 of width 3n/4 + 6q for

i, j = 1, 2, 3, 4. Since n = 4qR40(T ) ≥ 4q · 40 ≥ 4q · 6, we have 6q ≤ n/4 and hence tj + qxi belong to

[n]2 for i, j = 1, 2, 3, 4.

Remark: In case when Q = S, we can take n = qR40(L), instead of 4qR40(T ) because in the proof,

the point x4 will be in the square determined by xi, i = 1, 2, 3; similarly qxi + t4, i = 1, 2, 3, 4 will be

in the squares determined by corresponding qxi + tj, i = 1, 2, 3, 4, j = 1, 2, 3.

�

t2+qx1
t1+qx1

t3+qx1 t4+qx1

t2+qx3
t1+qx3

t3+qx3 t4+qx3 t3+qx4

t1+qx4
t2+qx4

t4+qx4

t4+qx2t3+qx2

t1+qx2
t2+qx2

Figure 4. An example of the configuration from Lemma 3 is describing. In this

example, the points tj + qxi are elements of shaded subgrids Axi .
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Proof of Theorem 2. Let Q ⊆ Z
2 be a set in general position with |Q| = 4. By Lemmas 2 and 3

together with inequality (1), we have immediately that R2(Q) ≤ 20sQ · 2240

. �

4. Density results

We now compare the bound Rk(L) ≤ 22k
by Graham and Solymosi [7] with the following den-

sity result of Shkredov [13]. Let L(n) = 1
n2 max{|A| : A ⊆ [n]2 such that A contains no L-set}.

Shkredov showed that L(n) < 1
(log log n)1/73 . Thus, if we have a k-coloring of [n]2, the pigeonhole prin-

ciple implies that there is a monochromatic subset of [n]2 of cardinality at least n2/k. Assume that

n2/k > n2/(log log n)1/73, then by the above Theorem, we can conclude that this k-coloring of [n]2

contains an L-set. For this to hold, we have that k73 < log log n, i.e., n > 22k73

.

5. Appendix A

Define Cn
t = {(x1, . . . , xn) : xi ∈ {0, . . . , t − 1}}. Define a (combinatorial) line in Cn

t to be a set of

points x0, . . . ,xt−1 ∈ Cn
t , where xi = (xi1, . . . , xin) such that, for all 1 ≤ j ≤ n, either x0j = x1j =

· · · = xt−1,j , or xsj = s for 0 ≤ s < t. The Hales-Jewett Theorem [8] states that for all positive

integers r and t, there exists N0 = HJ(r, t) such that for all N ≥ N0, any r-coloring of the vertices of

CN
t admits a monochromatic combinatorial line.

Let V be a finite subset of Z
2. Let CN

|V | = {(x1, . . . , xN ) : xi ∈ V }. Let φ : CN
|V | → Z

2 be an injective

function with φ((x1, . . . , xN )) =
∑N

i=1 kixi, for some integers ki; such an injective function exists for

some choice of ki. For any k-coloring of Z
2, φ produces a k-coloing of CN

|V |. So, if N = HJ(k, |V |)

then there is a monochromatic combinatorial line in CN
|V | under this coloring. Let, without loss of

generality, in this monochromatic line Q = (x1,x2, . . . ,x|V |), the first i coordinates be constant in

each xj and in all other coordinates t > i, xj is equal to xj . Let b =
∑i

j=1 kjxj , let c =
∑N

j=i+1 kj.

Then Q = cV + b, a homothetic image of V , which is monochromatic. Now, to find R2(S) we need

to find N large enough to guarantee this function φ being injective.

For the square V = S = {(0, 0), (0, 1), (1, 0), (1, 1)}, we argue that choosing ki = 2i will guarantee

that φ is injective. Let x,y ∈ CN
|V |, and say x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . yN ) with x 6= y.

Suppose φ(x) = φ(y), and hence
∑N

i=1 2i(xi − yi) = 0.

As x 6= y, we may assume (without loss of generality) that there exist xi and yi that differ in the

first coordinate. Let, without loss of generality, indices i1 < i2 < · · · < ij be such that xiq 6= yiq in

the first coordinate, q = 1, . . . j. However, we have that
∑j

ℓ=1 2iℓ(xiℓ − yiℓ) is 0 in the first coordinate.

Note that in the first coordinate xiℓ and yiℓ differ by at most 1 in absolute value. Dividing the above
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sum by 2i1 gives an odd number, which is supposed to be equal to zero, a contradiction. Thus φ is

injective. Thus, we have R2(S) ≤ HJ(2, 4)2HJ(3,4) ≤ 222
·

·

·

2

2HJ(3,4), where the height of the tower is

24. (The last inequality is due to Shelah; see [12].)

6. Appendix B

(2)(1) (3) (4)

Figure 5. The configurations used in the case analysis. Trivially, the diamond in (1)

must have color ◦. We refer to the Figure above labeled (2) as the cross; note that if

the diamond in (2) has color •, we can no longer avoid a monochromatic square. We

refer to (3) as stacked rows and (4) as staggered rows. In each, the diamond must have

color ◦.

5

3 4

(2)

(1)

1 1

2 2

Figure 6. Both diamonds marked 1 must have color ◦, while both diamonds marked 2

must have color •, else we have a monochromatic square. (1) examines the case where

the diamond marked 3 has color •; here, the diamond marked 4 cannot be colored. (2)

examines the case where the diamond marked 3 has color ◦; here, the diamond marked

5 cannot be colored.
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1 1

2 2

3

Figure 7. Both diamonds marked 1 must have color ◦, and both diamonds marked

2 must have color •. This immediately shows that the diamond marked 3 cannot be

colored, concluding the proof of case 1.

3 3

1

2

Figure 8. The diamond marked 1 must have color ◦, and the diamond marked 2 must

have color •. However, the diamonds marked 3 cannot be colored. This concludes the

proof of case 2.

3

4

6

5

(2)

(1)

3

12

Figure 9. The diamonds marked 1 and 2 cannot both have color ◦. Without loss of

generality (due to symmetry), we color the diamond marked 1 ◦. Since the diamonds

marked 3 cannot both have color ◦, we examine the cases where both have color • and

where one has color • and the other has color ◦. Similarly, either the diamond marked

4 or the vertex above the upper diamond marked 3 must have color •, so by symmetry

we say that the diamond marked 4 has color •. (1) examines the case where both

diamonds marked 3 have color •; here, the diamond marked 5 cannot be colored. (2)

examines the case where one diamond marked 3 has color ◦ and the other has color •;

here, the diamond marked 6 cannot be colored. This concludes the proof of case 3.
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1

1

2

3

4

Figure 10. Under the hypothesis that the diamonds marked 1, 2, and 3 all have color

◦, the diamond marked 4 cannot be colored.
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3

4

4

55

Figure 11. Under the hypothesis that the diamonds marked 1 have color ◦, and the

diamonds marked 2 and 3 have color •, the diamond marked 4 must have color ◦

(staggered rows). The diamonds marked 5 cannot be colored.

1
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3

4 5

Figure 12. Under the hypothesis that the diamonds marked 1 have color ◦, the di-

amond marked 2 has color •, and the diamond marked 3 has color ◦, the diamond

marked 4 must have color ◦ (staggered rows). The diamond marked 5 cannot be col-

ored.
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1
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4

4

5

Figure 13. Under the hypothesis that the diamonds marked 1, 2, and 3 all have color

•, the diamonds marked 4 must have color ◦ (stacked rows). The diamond marked 5

cannot be colored.

5

1

13

2

4

Figure 14. Under the hypothesis that both diamonds marked 1 have color •, the

diamond marked 2 has color •, and the diamond marked 3 has color ◦, the diamond

marked 4 must have color ◦ (stacked rows). This shows that the diamond marked 5

cannot be colored. (We need not consider the case where the diamond marked 2 has

color ◦ and the diamond marked 3 has color •; we use symmetry to take care of this.)
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4

4

5

1

13

2

Figure 15. Under the hypothesis that both diamonds marked 1 have color • and

both diamonds marked 2 and 3 have color ◦, the diamonds marked 4 must have color

◦ (stacked rows). This shows that the diamond marked 5 cannot be colored.

4

1

12

3

Figure 16. Under the hypothesis that one of the diamonds marked 1 has color ◦ and

the other has color • and that the diamond marked 2 has color •, the diamond marked

3 must have color ◦ (stacked rows). The diamond marked 4 cannot be colored.
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3

4

1

12

Figure 17. Under the hypothesis that one of the diamonds marked 1 has color ◦ and

the other has color • and that the diamond marked 2 has color ◦, the diamond marked

3 must have color ◦ (stacked rows). The diamond marked 4 cannot be colored. This

concludes the proof of case 4.
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