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In these notes we give the standard proof of the Szemeredi regularity
lemma. The presentation we give here is slightly unconventional, as we will
first show how a certain simpleminded probabilistic approach does not work,
and then we will show how the insight used to prove the regularity lemma can
be used to prove a certain result on the distribution of integers in intervals.
The purpose of proving this distribution result is to give one a rough idea
of what types of arguments go in to the proof of the (Szemeredi) lemma, to
make it easier to learn the result. Finally, in the last section, we will prove
the (Szemeredi) lemma.

First, we need to define some terms. Given a graph G, and given vertex
sets X and Y in G, we let e(X, Y ) denote the number of edges connecting a
vertex of X to a vertex of Y . We define the density

d(X, Y ) =
e(X, Y )

|X||Y |
.

We note that this density satisfies

0 ≤ d(X, Y ) ≤ 1.

We say that a pair of disjoint vertex sets V1 and V2 of G is ε-regular, if given
vertex subsets

X ⊆ V1, and Y ⊆ V2,

satisfying
|X| ≥ ε|V1|, and |Y | ≥ ε|V2|,

we have that
|d(V1, V2) − d(X, Y )| < ε.

We now state the regularity lemma (which we will call a theorem):
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Theorem 1 For every ε > 0 and m ≥ 1 there exist constants K > 0 and

M > 0 such that the following holds: If G is a graph having vertex set V
satisfying |V | = k ≥ K, then there exists an integer m′ satisfying

m ≤ m′ ≤ M,

such that there is a partition of G into vertex sets V0, V1, ..., Vm′ , having the

following properties:

1. |V0| ≤ ε|V |. This set is called the exceptional set.

2. |V1| = |V2| = · · · = |Vm′|.
3. All but at most ε(m′)2 of the pairs (Vi, Vj), 1 ≤ i, j ≤ m′ are ε-regular.

1 Proof of the Regularity Lemma

1.1 A First Attempt

As a first attempt at proving the regularity lemma, we try a probabilistic
approach. Let k = mq + r, where 0 ≤ r ≤ m− 1. Then, we select at random
(with uniform probability) disjoint vertex subsets V1, ..., Vm, each having q
elements, and we let V0 be the remaining vertices of G.

Random subsets of a given set often have “regularity”-like properties
with high probability. Let us see that this is not the case for our random
sets V0, ..., Vk for the type of regularity we are interested in: Suppose that we
started with G as a complete bipartite graph having vertex sets A and B,
each having k vertices, such that the set of edges are all pairs (a, b) ∈ A×B.
Thus, G has 2k vertices and k2 edges. Now suppose m = 2. Then, our
random procedure chops G up into two new vertex sets V1 and V2 (V0 is
empty in this case), where each set has roughly k/2 vertices from A, and k/2
vertices from B.

Such a pair of vertex sets (V1, V2) cannot be (1/2 − c)-regular. To see
this, we first decompose V1 = XA ∪ XB, and V2 = YA ∪ VB, where XA is
the set of vertices in V1 coming from the set A, and XB, YA, YB are defined
analogously. Since

|XA| ∼ |XB| ∼ |YA| ∼ |YB| ∼
k

2
,

we find that

e(V1, V2) = e(XA, YB) + e(XB, YA) ∼
k2

4
+

k2

4
=

k2

2
.
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Thus,

d(V1, V2) =
e(V1, V2)

|V1||V2|
∼

k2/2

k2
=

1

2
.

Now, if (V1, V2) were (1/2 − c)-regular, then we would have that

|d(V1, V2) − d(XA, YA)| <
1

2
− c;

however,

d(V1, V2) − d(XA, YA) = d(V1, V2) − 0 ∼
1

2
.

This argument generalizes to m ≥ 3. Thus, we see that a “naive” proba-
bilistic approach will not work. Moreover, it is difficult to imagine any simple
modification of the argument working, as we know from the work of Gowers
that the parameters in the conclusion of the regularity lemma must have
“tower-type” dependence on ε and m; and so, it seems that one would have
to use an iterative approach to prove the regularity lemma, rather than just
a one-step approach as above.

1.2 The Idea

The basic idea for how to prove “Szemeredi regularity”-type theorems is to
cook up a certain “L2 norm” such that if some partition of sets fails to be
“regular”, then we can refine the partition so that our norm increases by
a small constant depending only on ε. By giving a good upper bound on
the norm of any partition, we then deduce that the refinement cannot go on
forever; and so, it must stop with a “regular partition”.

Perhaps the best way to give a detailed description of the key ideas at
play in the regularity lemma is to prove a much simpler theorem, which
nonetheless requires some of the same methods to prove. In this subsection
we will do just that.

First, we need a notion of regularity for our problem. Given a subset P of
the integers from {1, 2, ..., k}, and given an interval I ⊆ [1, k], we denote the
set of integers in P belonging to I by PI . Now, we will say that an interval
I is ε-regular if the following holds: For every subinterval J ⊆ I satisfying

|J | = δ|I|, where δ > ε,

we have
||PJ | − δ|PI|| < ε|J |.
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This is just saying that I has about the expected number of elements in
every subinterval J when ε is small. Notice how similar-looking this notion
of regularity is to the one appearing in Szemeredi’s regularity lemma.

The theorem mentioned above is as follows:

Theorem 2 Suppose that 0 < ε < 1, and m ≥ 1 are given. Then, there

exists an integer M > m such that the following holds for all sufficiently

large integers k: Suppose that P ⊆ {1, ..., k}. Then, for some m′ satisfying

m ≤ m′ ≤ M

we will have that all but at most εm′ of the following consecutive intervals

are ε-regular:

(0, k/m′], (k/m′, 2k/m′], (2k/m′, 3k/m′], ..., ((m′ − 1)k/m′, k].

Proof. Before we launch into the heart of the proof, we need to define the
function

f(t) = t
∑

1≤j≤t

|P((j−1)k/t,jk/t]|
2.

That is, we are summing the square of the number of elements of P in each
of t consecutive sub-intervals. This function f(t) satisfies the uniform upper
bound

f(t) ≤ k2; (1)

and, if P contains θk elements in {1, ..., k}, then we have the easy-to-prove
lower bound

f(t) ≥ θ2k2. (2)

If m′ = m satisfies the conclusion above, then we are done. So we may
assume that at least εm of the intervals

(0, k/m], ..., ((m − 1)k/m, k]

are not ε-regular.
Now let h be the least integer larger than ε−3, and then let n = mh.

Consider the value of f(n): To calculate it, we will need a definition. If

I = ((j − 1)k/m, jk/m], (3)
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then we define I1, ..., Ih to be consecutive subintervals of width k/(mh) which
tile I. With this notation, we have that

f(n) = mh
∑

1≤j≤m
I = ((j−1)k/m,jk/m]

h∑

i=1

|PIi
|2.

To see how f(n) and f(m) compare, suppose that I is as in (3). Then, from
the Cauchy-Schwarz inequality we can conclude that

m|PI |
2 ≤ mh

h∑

i=1

|PIi
|2;

and so, we have established

Fact. f(n) ≥ f(m). That is, when we refine our partition of P , the value
of f cannot go down.

But we will show even more. We will now see that if there are εm intervals
in our m partition that are not ε-regular (as we have assumed), then f
increases by c(ε)k2, where the constant here depends only on ε. To see this,
suppose that I is as in (3), and is not ε-regular. Then, there is some sub-
interval J of I, having length δ|I|, where δ > ε, such that either

|PJ | > δ|PI| + ε|J | > δ|PI | + ε2|I|, (4)

or
|PJ | < δ(1 + ε)−1|PI | < δ|PI| − ε|J | < δ|PI| − εδ|I|. (5)

Suppose now that (4) holds. Then, if we chop up I into the intervals
I1, ..., Ih, the union of some ∼ δh of these intervals contain J . Since J has
slightly more elements of P than expected, the elements of PI are not uni-
formly distributed amongst PI1, ..., PIh

, and from an application of Cauchy-
Schwarz inequality we can show that for ε > 0 sufficiently small,

mh

h∑

i=1

|PIi
|2 > m|PI |

2 + m(ε4 + O(1/h2))|I|2

For h small enough this error O(1/h2) will be smaller than ε4/2 in absolute
value.
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Since there are εm intervals I of width k/m that are not ε-regular, we
can deduce that

f(n) > f(m) + (εm)m(ε4/2)|I|2 = f(m) + (ε5/2)k2,

We get a similar conclusion if we assume (5); in particular, that

f(n) > f(m) + c(ε)k2,

where the constant here depends only on ε.

The idea of the proof is to now iterate the above argument: Starting with
a partition of [1, k] into m intervals, we either have that the conclusion of
the theorem is satisfied; or else, there are at least εm of the intervals that are
not ε-regular. If this is the case we iteratively refine the interval [1, k] into a
set of ni intervals, where

m = n1 < n2 < n3 < · · · ,

such that
f(ni) > f(ni−1) + c(ε)k2,

From (1) we must obviously have that the procedure terminates after at most

c(ε)−1 steps

with an m′ satisfying the conclusion of the theorem.

1.3 The Proof of Szemeredi’s Regularity Lemma

The analogous function (to the one in the previous subsection) f we use for
Szemeredi’s lemma is the following: Suppose we partition the set V of G as
V = V0 ∪ · · · ∪ Vm0 , where each of the Vi’s have the same size for i ≥ 1, and
where |V0| ≤ εk. Then, we define

f(V0, ..., Vm0) =
1

m2
0

∑

1≤i<j≤m0

d(Vi, Vj)
2.

It is easily seen that

f(V0, ..., Vm0) <
1

2
.
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Suppose now that we start with a partition V0, ..., Vm0 of V , where |V0| <
εk/2, and where |V1| = · · · = |Vm0 |. Further, suppose that this partition
does not satisfy the conclusion of the regularity lemma. Thus, for at least
εm2

0 pairs (i, j), with i < j, there exist pairs of vertex sets (Xi(j), Xj(i)),
Xi(j) ⊆ Vi, Xj(i) ⊆ Vj, such that either

d(Xi(j), Xj(i)) > d(Vi, Vj) + ε, (6)

or
d(Xi(j), Xj(i)) < d(Vi, Vj) − ε. (7)

If (Vi, Vj) is regular, then we will assume Xi(j) and Xj(i) are the empty set.

We use these vertex sets to refine our partition of V , where we will break
each Vi up into 2m0−1 pieces, possibly of unequal size: Basically, we partition
Vi according to which combinations of the following vertex sets that a vertex
v ∈ Vi lies in

Xi(1), ..., Xi(i − 1), Xi(i + 1), ..., Xi(m0).

There are 2m0−1 combinations here, which includes those vertices that do not
lie in any of the sets Xi(j)’s. Denote these new vertex sets by Vi,n, where
n = 1, ..., 2m0−1. Note that Vi is the union of Vi,n over all n.

These new vertex sets Vi,n may be of unequal size, so we will further refine
them: Let s be the least integer greater than k/(m0)

22m0 . Then, we break
these Vi,n’s up into a series of even smaller sets, each of size s, in an arbitrary
manner. As the sizes of the sets Vi,n may not be evenly divisible by s, there
will be some “scraps” that we shunt into the exceptional set. 1

It is obvious that there at most the following number of “scrap vertices”

m0∑

i=1

2m0−1∑

n=1

k

m2
02

m0
<

k

m0
.

As the exceptional set was initially (the first set V0) of size at most εk/2, in
the new partition it will have size at most k(ε/2 + O(1/m0)).

1For example, if a vertex set has st + r, 0 ≤ r ≤ s − 1 vertices, then we break the set

up into t vertex sets each of size s, and then we will be left with one “scrap” vertex set of

size r.
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We now consider how much f grows when we use this new vertex parti-
tion. We suppose that Vi, Vj is a pair of vertex sets that are not ε-regular.
Then, when we pass from the partition V0, ..., Vm0 to this finer partition, the
quantity d(Vi, Vj)

2 in the expression for f gets replaced with
∑

t0≤i≤t1
u0≤i≤u1

d(Wi, Wj)
2,

where W0, ..., Wr is the new vertex partition, and where Wt0 , ..., Wt1 are those
vertex sets that lie in Vi, and Wu0 , .., Wu1 are those that lie in Vj.

Let us see how much the union of Wt0 , ..., Wt1 differs from Vi: For each
n = 1, ..., 2m0−1, when we break up the set Vi,n into equal-sized parts Wi

of size about k/m2
02

m0 , each such n can contribute at most k/m2
02

m0 scrap
vertices; so, Vi and the union of Wt0 , ..., Wt1 differ by at most

2m0 ×
k

2m0m2
0

=
k

m2
0

vertices.

Likewise, for this fixed pair i, j if we let X denote those Wi’s lying entirely
in Xi(j), and let Y be those lying entirely in Xj(i), then we deduce that the
union of the vertex sets in X has size

|Xi(j)|(1 + O(1/m0)),

and the union of vertex sets in Y has size

|Xj(i)|(1 + O(1/m0)).

It follows also that e(X, Y ) (through an abuse of notation this means e(A, B),
where A is the union of vertex sets W ∈ X and B is the union of vertex sets
W ′ ∈ Y ) and e(Xi(j), Xj(i)) differ by at most

O(|Xi(j)||Xj(i)|/m0).

Now suppose that (6) holds. Then, we have that

∑

W∈X,W ′∈Y

d(W, W ′) =
e(X, Y )

|W1|2

=
|Xi(j)||Xj(i)|d(Xi(j), Xj(i))(1 + O(1/m0))

|W1|2

>
|Xi(j)||Xj(i)|

|W1|2
(d(Vi, Vj) + ε + O(1/m0)).
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Thus, as expected, the d(W, W ′)’s are (on average) a little bigger than they
“should be” when W ∈ X and W ′ ∈ Y . We also know that

∑

u0≤i≤u1
t0≤j≤t1

d(Wi, Wj) =
e(Vi, Vj)

|W1|2
(1 + O(1/m0))

=
|V1|

2d(Vi, Vj)

|W1|2
(1 + O(1/m0)).

Using these facts and the Cauchy-Schwarz inequality, it is not too difficult
to show that

∑

u0≤i≤u1
t0≤j≤t1

d(Wi, Wj)
2 >

|V1|
2

|W1|2
(d(Vi, Vj)

2 + cε4 + O(1/m0)).

for some absolute c > 0.
If (Vi, Vj) were regular, we would likewise get the bound

∑

u0≤i≤u1
t0≤j≤t1

d(Wi, Wj)
2 ≥

|V1|
2

|W1|2
(d(Vi, Vj)

2 + O(1/m0)).

It follows that

f(W0, W1, ..., Wr) ≥
|V1|

2

|W1|2r2

∑

(Vi,Vj) not regular

(d(Vi, Vj)
2 + cε4 + O(1/m0))

+
|V1|

2

|W1|2r2

∑

(Vi,Vj) regular

(d(Vi, Vj)
2 + O(1/m0)).

Now, as

r =
m0|V1|(1 + O(1/m0))

|W1|
,

we deduce from this that

f(W0, W1, ..., Wr) ≥ f(V0, V1, ..., Vm0) + cε5 + O(1/m0).

The same bounds holds if we were to assume (7), rather than (6).
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Just as with the regularity theorem in the previous sub-section, we iterate
the refinement until we get a regular set: We construct a sequence of vertex
partitions

P1 := {V0, ..., Vm0} ≥ P2 ≥ · · · ,

where Pi ≥ Pi+1 means that the partition Pi is finer than Pi+1 except for
the exceptional sets. These partitions satisfy

f(Pi+1) ≥ f(Pi) + cε5 + O(1/|Pi|)

for i ≥ 2, and the number of vertex sets in Pi+1 is at worst exponential in
the number of vertex sets in Pi. Obviously this procedure must terminate
after at most O(c−1ε−5) steps as f is always bounded from above by 1/2.

Thus, our algorithm terminates with an ε-regular partition. Note here
that it is easy to check that the exceptional set never has more than 3εk/4 <
εk vertices, provided m0, the size of our initial partition, is sufficiently large.
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