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Abstract

The van der Waerden theorem in Ramsey theory states that for every k and ¢t and sufficiently
large N, every k-coloring of [N] contains a monochromatic arithmetic progression of length
t. Motivated by this result, Radoi¢i¢ conjectured that every equinumerous 3-coloring of [3n]
contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression whose terms
are colored with distinct colors. In this paper, we prove that every 3-coloring of the set of
natural numbers for which each color class has density more than 1/6, contains a 3-term rainbow
arithmetic progression. We also prove similar results for colorings of Z,. Finally, we give a
general perspective on other anti-Ramsey-type problems that can be considered.

1 Introduction

In 1916, Schur [29] proved that for every k, if n is sufficiently large, then every k-coloring of
[n] :== {1,...,n} contains a monochromatic solution of the equation z + y = z. More than seven
decades later, Alekseev and Savchev [1] considered what Bill Sands calls an un-Schur problem [15].
They proved that for every equinumerous 3-coloring of [3n] (i.e., a coloring in which different color
classes have the same cardinality), equation z + y = z has a solution with z, y and z belonging to
different color classes. Such solutions will be called rainbow solutions. E. and G. Szekeres asked
whether the condition of equal cardinalities for three color classes can be weakened [32]. Indeed,
Schonheim [28] proved that for every 3-coloring of [n], such that every color class has cardinality
greater than n/4, equation z + y = z has rainbow solutions. Moreover, he showed that n/4 is
optimal.

Inspired by the problem above, Radoi¢i¢ posed the following conjecture at the open problem session
of the MIT Combinatorics Seminar.

Conjecture 1 For every equinumerous 3-coloring of [3n] there ezists a rainbow AP(3), i.e., a
solution to the equation 4+ y = 2z in which x, y, and z are colored with three different colors.

This conjecture can be considered as the counterpart of van der Waerden’s theorem in Ramsey
theory. Van der Waerden’s theorem states that for every k and ¢, if N is sufficiently large, then
every k-coloring of [N] contains a monochromatic ¢-term arithmetic progression.

Backed by the computer evidence (n < 56), we pose the following stronger form of Conjecture 1.
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Conjecture 2 For every n > 3, every partition of [n] into three color classes R, G, and B with
min(|R|, |G|, |B|) > r(n), where

| [(n+2)/6] ifn#2 (mod6)
r(n) = { (n+4)/6 ifn=2 (mod 6) (1)

contains a rainbow AP(3).

Unable to settle the above conjectures, in this paper we prove the following infinite version of
Conjecture 2.

Theorem 1 Every 3-coloring of the set of natural numbers N with the upper density of each color
greater than 1/6 contains a rainbow AP(3).

A more precise statement of the above theorem and its proof will be presented in Section 2. We
also show that there exist a 3-coloring of [n] with min(|R|, |G|, |B|) = r(n), where r is the function
defined in (1), that contains no rainbow AP(3). This shows that Conjecture 2, if true, is the best
possible.

An interesting corollary of Theorem 1 is the modular version of Conjecture 2, which states that if
Z,, is colored with 3 colors such that the size of every color class is greater than n/6, then there
exist z, y and z, each of a different color with z+y = 2z (mod n). It turns out that in this case n/6
is not the best possible. We will discuss further generalizations of the modular case of Conjecture
2 in Section 3.

Previous work regarding the existence of rainbow structures in a colored universe has been done
in the context of canonical Ramsey theory (see [10, 8, 7, 25, 24, 19, 20, 21, 18, 26] and references
therein). However, the canonical theorems prove the existence of either a monochromatic structure
or a rainbow structure. Our results are not “either-or” statements and, thus, are the first results
in literature guaranteeing the sole existence of rainbow arithmetic progressions. In a sense, the
conjectures and theorems above can be thought of as the first rainbow counterparts of classical
theorems in Ramsey theory, such as van der Waerden’s, Rado’s and Szemerédi’s theorems [14]. It
is curious to note that anti-Ramsey problems have received great attention in the context of graph
theory as well (see [11, 6, 16, 2, 31, 5, 3, 27, 12, 22, 9, 4] and references therein).

In Section 4, we present a Rado-type theorem for colorings of Z,, using both classical and recent
results from additive number theory. Finally, in Section 5, we give several open problems and a
general perspective of various research problems in this area.

2 The infinite form of Radoici¢’s conjecture

Assume ¢ : N — {R,G, B} is a 3-coloring of the set of natural numbers with colors Red, Green,
and Blue. We can also think of ¢ as an infinite sequence of the elements of {R,G,B}. Let
R.(n) be the number of integers less than or equal to n that are colored red. In other words,
R.(n) := |[n]N{i:c(i) = R}. Ge¢(n) and B.(n) are defined similarly. A rainbow AP(3) is a
sequence ai,az, a3 such that a; + a3 = 2a2 and c(a;) # c(a;) for every i # j. We say that c is
rainbow-free, if it does not contain any rainbow AP(3).



Theorem 1 Let ¢ be a 3-coloring of N such that

lim sup (min(R¢(n), G¢(n), Be(n)) — n/6) = +oo. (2)

n—oo

Then ¢ contains a rainbow AP(3).

Before proving Theorem 1 we define a few terms. We say that a string s € {R, G, B, ?}* appears
in ¢, if there exists an 7 such that for every j =1,...,k, either s; = c(i + j) or s; =7. In this case,
s appears in ¢ at position i. For z,y,z € {R,G, B},41,i2 € N such that {z,y,2} = {R, G, B} and
i1 < 42 — 1, we say that c has a color-change of type xyz at positions (i1,142), if c(i1) = z, c(i2) = 2,
and ¢(j) =y for every i1 < j < is.

Lemma 1 Let ¢ be a rainbow-free 3-coloring of N. If there is a color-change of type xyz at position
(i1,32) for some 1 < iy < ig, then c(iy —1) =c(ia +1) = y.

Proof: If ¢(iy — 1) = z, then i1 — 1,41,4; + 1 is a rainbow AP(3). Therefore, c(i; — 1) is either y
or z. Assume c(iy — 1) = z. One of the numbers 7; — 1 and i; has the same parity as 5. Let ]
denote this number. It is easy to see that |, (¢ + i2)/2,42 is a rainbow AP(3). This contradiction
show that ¢(i; — 1) = y. Similarly, c(is +1) = y. O

Corollary 1 Let ¢ be a rainbow-free 3-coloring of N. If there is a color-change of type ryz at
position (i1,12) for some 1 < i1 < i9, then both yryy?y and y?yyzy appear in ¢ at positions iy — 1
and 19 — 4.

Proof: It suffices to note that if ¢ has a color-change at position (i1,%2), then i; — i is odd, for
otherwise 41, (i1 +42) /2,42 is a rainbow AP(3). This, together with Lemma 1 imply that if there is
a color-change of type zyz at position (i1,42), then c(i; +4) = c(ies —4) = y. O

Lemma 2 FEvery 3-coloring of N that contains both a color-change of type ryz and a color-change
of type xzy contains a rainbow AP(3).

Proof: Assume c is a 3-coloring of N that contains a color-change of type zyz at position (i1, 12)
and a color-change of type zzy at position (i},}). By Corollary 1, ¢ contains yzyy?y and zzzz?z
at positions i1 — 1 and 7} — 1. Consider the following two cases:

e i1 =i} (mod 2): In this case, consider one of the following arithmetic progressions based on
the value of ¢((i1 + i} +2)/2):

in+1, (i1+d)+2)/2, @ +1 ife((in +1) +2)/2) ==
i1, (i1 +d+2)/2, i +2 ife((in+i,+2)/2) =y
i1 +2, (i1+i+2)/2, if e((in +14) +2)/2) =2
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Figure 1: Different types of color-changes

e i1 # i} (mod 2): In this case, consider one of the following arithmetic progressions based on
the value of ¢((i; + i} + 1)/2):

it —1, (i1+d4+1)/2, i +2 ife((ih+d4+1)/2) =z
i, (+i+1)/2, i +1 ife((in+4) +1)/2) =y
ip+1, (i1 +d+1)/2, 4 ife((iy +14) +1)/2) =2

It is easy to see that in each case the arithmetic progression that we considered is a rainbow
arithmetic progression. O

Similarly, we can prove that a rainbow-free 3-coloring of N cannot contain color-changes of type
zyz and yzz at the same time. Therefore, we get the following corollary.

Corollary 2 Let ¢ be a rainbow-free 3-coloring of N. Then for every two types of color-changes
that are connected in Figure 1 by an edge, ¢ cannot contain both of them at the same time.

The following lemma shows an important property of rainbow-free 3-colorings of N. Note that
we don’t need any assumption about the density of colors here. In fact, it is possible to prove the
conclusion of this lemma even without the assumption that each color is used infinitely many times.

Lemma 3 Let ¢ be a rainbow-free 3-coloring of N. Assume each color is used for coloring infinitely
many numbers in c. Then there are two distinct colors x,y € {R,G, B} that never appear nezt to
each other in c.

Proof: Assume, for contradiction, that every two distinct colors appear next to each other some-
where in c¢. In other words, for any two distinct colors z and y, there is an ¢ such that one of ¢
and 7+ 1 is colored with = and the other is colored with y. Consider the smallest number j greater
than ¢ that is colored with the third color, z. Such a number exists, since by assumption each
color is used infinitely often in ¢. There must be a color-change of type zyz or yzz at position
(4',7), for some j' < j. This shows that for every three distinct colors z,y,z € {R, G, B}, either
a color-change of type zyz, or a color-change of type yzz must appear in ¢. A similar argument
shows that either a color-change of type zyz or a color-change of type zzy must appear in ¢. This
together with Corollary 2 imply that for every two types of color-changes that are connected in
Figure 1 by an edge, ¢ contain exactly one of them. Therefore, either ¢ contains color-changes of
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Figure 2: Lemma 3

types RGB, BRG, and GBR, and no color-change of type RBG, BGR, or GRB, or vice versa. We
assume, without loss of generality, that ¢ contains color-changes of types RGB, BRG, and GBR,
and does not contain any color-change of type RBG, BGR, or GRB.

Consider a color-change of type RGB at position (i1, 142), let i4 be the smallest number greater than
19 that is colored red, and is be the smallest number greater than 44 that is colored green. Since
¢ does not contain any color-change of type BGR or RBG, there must be a color-change of type
GBR at position (i3,14) for some iy < i3 < i4, and a color-change of type BRG at position (i3, i)
for some i4 < i5 < ig. Notice that all numbers between 42 and i3 are colored blue or green, and all
numbers between iy and i5 are colored blue or red. (See Figure 2). One important observation is
that R and G do not appear next to each other after 4; and before ig.

By Corollary 1, ¢ contains G?TGGBG and RBRR?R at positions i2 — 4 and i5 — 1. We consider
two cases based on the parity of ig + 5.

e iy +i5 is odd: Consider the number (i + 5 — 1)/2. In ¢, this number cannot be colored
red, for otherwise we have a rainbow AP(3): 42 — 1, (i2 + 45 — 1)/2,i5. Also, it cannot be
colored blue because of the arithmetic progression iy — 2, (i3 + i5 — 1)/2,i5 + 1. Therefore,
c((ie +i5 — 1)/2) = G. Similarly, the arithmetic progressions is, (i2 + i5 + 1)/2,45 + 1 and
ig — 1, (12 + i5 + 1)/2,45 + 2 show that ¢((i2 + 45 + 1)/2) = R. But this is in contradiction
with the observation that G and R never appear next to each other between i1 and 7.

e iy +i5 is even: Considering the arithmetic progressions is — 2, (ia + i5 — 2)/2,i5 and
io—1, (i2+1i5—2)/2,i5—1 shows that c((ia+i5—2)/2) = G. Also, ¢((i2+i5+2)/2) = R because
of the arithmetic progressions i, (ia +1i5+2)/2,i5 +2 and 12+ 1, (i2 +i5+2) /2,45 + 1. Since G
and R never appear next to each other between i; and ¢, (i2 + i5)/2 cannot be colored with
green or red. Therefore, it is colored with blue. Thus, (ig+1i5—2)/2), (i2 +15)/2, (i2 +i5+2)/2
is a rainbow AP(3), which is a contradiction.

Therefore, the assumption that every two distinct colors appear next to each other leads to a
contradiction in both cases. O

Lemma 3 shows that for any rainbow-free 3-coloring, there is a color z, such that for every two
consecutive numbers that are colored with different colors, at least one of them is colored with
z. We call such a color a dominant color. In the rest of this proof, we assume, without loss of
generality, that red is the dominant color. In other words, we will assume that B and G do not
appear next to each other in c.

Lemma 4 Let ¢ be a 3-coloring of N and assume red is the dominant color in c. If there are
infinitely many i’s such that i and i + 1 are both colored blue, and infinitely many j’s such that j
and j + 1 are both colored green, then ¢ contains a rainbow AP(3).



Proof: Assume, for contradiction, that ¢ is a 3-coloring of N with no rainbow AP(3) in which BB
and GG appear infinitely many times, and R is the dominant color. Therefore, there is 11 < 79 < 13,
such that BB appears at positions i; and i3, and GG appears at position 5. Let j; be the largest
number less than i5 such that a BB appears at position j;, and jo be the smallest number greater
than 45 such that a BB appears at position js. Let k1,k1 + 1,..., ks be the longest sequence of
consecutive numbers between j; and j, that are colored green (i.e., j1 < k1 < k2 < jo, ¢(k) = G for
every k1 < k < ko, and ko — k1 + 1 is maximum). By the definition of j; and ja, neither j; + 2 nor
jo —1 is colored blue. Therefore, since red is the dominant color, ¢(j1 +2) = ¢(j2 —1) = R. Consider
one of the numbers j; or j; + 1 that has the same parity as jo — 1. The arithmetic progression
consisting of this number, j; — 1, and their midpoint |(j1 + j2)/2] shows that ¢(|(j1 + j2)/2]) # G.
Similarly, the red at j; + 2 and one of the blues at ja or jo + 1 imply that ¢([(j1 + j2)/2] + 1) # G.
Therefore, since k1 < kg, we either have ko < |(j1 + j2)/2], or k1 > [(j1 + j2)/2] + 1.

Assume ko < |(j1 + j2)/2]. For every i, k1 < i < ko, the arithmetic progressions j1,4,2¢ — j1 and
J1 +1,4,2¢ — j; — 1 show that 2 — j; — 1 and 2¢ — j; are not colored red. Therefore, none of the
numbers between 2k; — j; — 1 and 2ko — j; is red. This, together with the fact that red is the
dominant color, imply that all of the numbers between 2k; — j; — 1 and 2ke — j; must be colored
with the same color, either blue or green. If they are all blue, we get a contradiction with the
definition of j; and jo, as these definitions imply that no BB appears after j; and before jo. If they
are all green, we have a contradiction with the definition of k; and ko, since by the assumption
ko < [(j1 + j2)/2], the sequence 2k — j1 — 1,...,2ky — j1 is a sequence greens between j; and jo
that is longer than the sequence ki, ..., ko.

Therefore, we get a contradiction in either case. A symmetric argument leads to a similar contra-
diction for the case k1 > [(j1 + j2)/2] + 1. O

Next we show that the density assumption (2) implies that the dominant color must appear in ¢
with a high frequency. We start with the following simple lemma.

Lemma 5 Let ¢ be a 3-coloring of N that satisfies the density assumption (2). Then there is a
k <5 such that for every i, there exists j > i such that j and j + k are both colored green.

Proof: Assume not, then there is an i such that every two numbers greater than ¢ that are colored
green are at least 6 apart. Therefore, G.(n) < n/6 + 4, which is a contradiction with (2). 0

Lemma 6 If ¢ is a rainbow-free 3-coloring of N that satisfies the density assumption (2), and red
is a dominant color in c, then there is ng such that for every i > ng, either c(i) or c(i + 1) is red.

Proof: By Lemma 4, the number of appearances of either BB or GG in c is finite. Assume,
without loss of generality, that GG appears only a finite number of times in ¢. That is, there is an
ng such that no GG appears in c after ng. If no BB appears after ng, then we are done. Otherwise,
consider a BB at position i > ny.

By Lemma 5, there exists £ < 5 and j > ¢ such that j and 7 + k& are both colored green. The
arithmetic progressions 4, 7,27 —¢ and 1+ 1, j,25 —¢ — 1 imply that 25 —¢—1 and 2j —¢ are not red.
Therefore, since red is the dominant color, either they are both blue, or both green. The latter case
is impossible, since 25 —i — 1 > ng. This shows that there is a BB at position 25 — — 1. Similarly,
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having a BB at position 25 —¢ — 1 and a G at position j + k implies that there is another BB at
position i + 2k. (See Figure 3).

Repeating the same argument, we conclude that BB appears at positions 7 + 2kt for every integer
t > 0. Using Lemma 1 it is not difficult to see that if there is a BB at position 41, and a G at
position 9 > %1, then i9 > 4; + 6. Similarly, if there is a BB at position 4; and a G at position
19 < i1, then 49 < 47 — 5. Since k < 5, these facts imply that for every ¢ > 0, none of the numbers
between i + 2kt and 7 + 2k(t + 1) is colored green. Therefore, the number of greens is finite, which
is a contradiction. O

Lemma 7 If ¢ be a rainbow-free 3-coloring of N that satisfies the density assumption (2), and red
is a dominant color in c, then there is ng such that for every i > ny, either c(i) or c(i + 2) is red.

Proof: By Lemma, 6, there is an ng such that for every i > ng, either ¢ or ¢ + 1 is colored red.
Assume, for contradiction, that there exists ¢ > mg such that neither 7 nor ¢ + 2 is colored red.
By Lemma 6, ¢(i + 1) = R. Therefore, i and i + 2 are either both green, or both blue. Assume,
without loss of generality, that they are both blue. Consider an arbitrary ! > i whose parity is
the same as the parity of 4. If [ is colored green, then the arithmetic progressions i, (i +1)/2,l and
i+2,(i+1)/2 + 1,1 show that neither (i +)/2 nor (i +1)/2 + 1 is red, which is a contradiction
with Lemma 6. Therefore, no [ > ¢ with the same parity as ¢ is colored green.

Now consider an arbitrary i’ > 7 that is colored blue and has the same parity as 7. Using Lemma
5, there is j > 4’ such that j and j + k are both colored green (for a fixed k¥ < 5). By the above
argument, neither j nor j + k has the same parity as i. Therefore, k is either 2 or 4. The arithmetic
progression 7', j, 27 —i' shows that 25 —i' is not red. Also, since it has the same parity as i, it cannot
be green. Therefore, ¢(2j —i') = B. Similarly, the arithmetic progression i’ + 2k,j + k,2j — i’ and
the fact that i’ + 2k has the same parity as ¢ show that c(i’ + 2k) = G. This means that for every
¢ > ¢ with the same parity as 4, if 4’ is colored blue, then so is 7’ + 2k. Thus, all numbers 7 + 2kt
and i + 2kt + 2 for ¢ > 0 must be colored blue.

e If £ = 2, this means that every number greater than ¢ that has the same parity as ¢ is
colored blue. Therefore, by Lemma 3 no number greater than ¢ is colored green, which is a
contradiction.

e If k = 4, this means that for every integer ¢t > 0, ¢ + 8¢, 1 + 8t + 2 and ¢ + 8¢ + 8 are colored
blue. Therefore, by Lemma 3, i+ 8t+1, i +8t+3, and i 4+ 8¢+ 7 are not green. Also, i+ 8t+4
and 7+ 8¢+ 6 have the same parity as ¢ and therefore cannot be colored green. Thus, the only
numbers that can be colored green are in the form i + 8¢ + 5. Therefore, G.(n) < ng + %n,
which is a contradiction with (2).



Now, we are ready to prove Theorem 1.

Proof of Theorem 1: Assume ¢ does not contain any rainbow AP(3). Therefore, by Lemma
3, there is a dominant color. Assume without loss of generality that the dominant color is red.
By Lemmas 6 and 7 there is an ng such that for every i > ng, at least two of the numbers
i,i+1,i+2 are colored red. Therefore, for every n, Re(n) > Z(n —ng). Thus, min(Ge(n), Be(n)) <
2(n—2(n —ng)) = gn + ing, contradicting (2). O
A natural question is whether the assumption (2) in Theorem 1 can be weakened. Notice that
Conjecture 2 suggests that the conclusion of Theorem 1 is true with the weaker assumption that
lim sup,, o (min(Re(n), Ge(n), Be(n)) — $n) > 3. We still haven’t been able to prove this fact.
However, the following proposition shows that the constant 1/6 in the density assumption cannot
be substituted with a smaller constant.

Proposition 1 There is a rainbow-free 3-coloring c of N such that for every n,

min(R.(n), Ge(n), Be(n)) = [(n +2)/6].

Proof: Consider the following coloring of N:

B ifi=1 (mod 6)
c(@i):=< G ifi=4 (mod 6)
R otherwise

It is easy to see that c¢ contains no rainbow AP(3) and min(R.(n),Gc(n),B.(n)) = G.(n) =
[(n+2)/6]. O

The following proposition shows that Conjecture 2, if true, is the best possible.

Proposition 2 For every n > 3, there is a rainbow-free 3-coloring c of [n] in which the size of the
smallest color class is r(n), where r is the function defined in (1).

Proof: For n # 2 (mod 6), Proposition 1 gives such a coloring. Assume n = 6k + 2 for an integer
k. We define a coloring c¢ as follows:

B if1<2k+1andiisodd
c(i1): =< G ifi>4k+ 2 and i is even
R otherwise

Since every blue number is at most 2k + 1, and every green number is at least 4k + 2, a blue and a
green number cannot be the first and the second, or the second and the third terms of an arithmetic
progression with all terms in [n]. Also, since blue numbers are odd and green numbers are even, a
blue and a green cannot be the first and the third terms of an arithmetic progression. Therefore,
¢ does not contain any rainbow AP(3). It is not difficult to see that ¢ contains no rainbow AP(3)
and min(R.(n),G(n),B:(n)) =k+ 1= (n+4)/6. O



3 Rainbow arithmetic progressions in Z,

A 3-term arithmetic progression (AP(3)) in Z, is a sequence a1, a9, a3 such that a; + a3 = 2as
(mod n). For a 3-coloring ¢ : Zp, — {R, G, B} of Z,,, we define R, := {i : ¢c(i) = R}. G, and B, are
defined similarly. An interesting corollary of Theorem 1 is the following.

Theorem 2 Ewvery 3-coloring ¢ of Z,, with min(|R.|,|G¢|,|Bc|) > n/6 contains a rainbow AP(3).

Proof: For a 3-coloring ¢ of Z,, we define a 3-coloring ¢ of N as follows: For every ¢ € N,
¢(i) := c(i mod n). The assumption min(|R.|, |G¢|, |Bc|) > n/6 implies that

lim sup (min(Rz(n), Gz(n), Bz(n)) — n/6) = +oo.
n—oQ
Therefore, by Theorem 1, there is a rainbow AP(3) in ¢. By computing the terms of this arithmetic
progression modulo n we obtain a rainbow AP(3) in c. O

A natural question is whether the condition min(|R,|,|G¢|,|B.|) > n/6 in Theorem 2 can be weak-
ened. For n divisible by 6, the coloring defined in Proposition 1 shows that this condition is tight.
However, for most other values of n it is possible to use number theoretic properties of Z, to
substitute this condition with a weaker assumption. The following theorem is an example.

Theorem 3 Letn be an odd number and q be the smallest prime factor of n. Then every 3-coloring
¢ of Zy with min(|R.|,|G¢|,|Bc|) > n/q contains a rainbow AP(3).

First, we prove the following lemma.

Lemma 8 Let ¢ be a 3-coloring of Z,,, a be an integer relatively prime to n, and b be an arbitrary
integer. Let ¢ (1) := ¢((ai + b) mod n) for every i € Z,. Then ¢ contains a rainbow AP(3) if and
only if ¢ contains a rainbow AP(3). Furthermore, |[Ry| = |R|, |Ge| = |G|, and |By| = |Be|.

Proof: Tt is enough to note that since a is relatively prime to n, the mapping i — ai+b (mod n)
is an automorphism of (Zp, +). O

Proof of Theorem 3: Assume, for contradiction, that we have a 3-coloring ¢ of Z, with no
rainbow AP(3) such that min(|R.|,|Gc|,|Bc|) > n/q. Assume, without loss of generality, that
|G| = min(|Re|, |Ge|, |Be|)- Since |G¢| > n/q, there exist k < ¢ and 7 such that ¢ and 7 + k are
both colored green. Since k& < g and ¢ is the smallest prime factor of n, k is relatively prime to mn.
Therefore, Lemma 8 with a = k and b = ¢ gives a coloring with the same properties as ¢ in which
0 and 1 are both colored green. From now on, we let ¢ denote this coloring. Therefore, ¢ does not
contain any rainbow AP(3), and it satisfies |G| = min(|R,|, |G¢|,|B¢|) > n/q and ¢(0) = ¢(1) = G.
From ¢, we construct a coloring ¢ of N as in the proof of Theorem 2. Lemma 3 shows that there is
a dominant color in ¢. We consider the following two cases:

Case 1: (@ is the dominant color in ¢. Since ¢ is periodic, Lemma 4 implies that ¢ cannot contain
BB and RR at the same time. Assume, without loss of generality, that ¢ does not contain any
BB. This, together with the fact that G is the dominant color imply that in ¢ every B is followed



by a G (i.e., for every i € Zy, if ¢(i) = B, then ¢(i + 1) = G). Furthermore, since by Lemma 3 no
R can be followed by a B in ¢, there must be at least one R in ¢ that is followed by a G. Thus,
|G| > |Be| + 1, contradicting the assumption that |G| = min(|R.|, |G|, |Be|)-

Case 2: (@ is not the dominant color in ¢. Without loss of generality, assume R is the dominant
color in ¢. In ¢, GG appears at positions nt for every ¢ > 0. Therefore, by Lemma 4 no BB appears
in ¢. On the other hand, the assumption |B.| > n/q implies that there exist k¥ < ¢ and 7 such that
1 and ¢ + k are both colored blue. Now, consider the arithmetic progressions 0, 4,27 and 1,¢,2¢ — 1.
These arithmetic progressions show that neither of 2; — 1 and 2: can be red. Therefore, since ¢
doesn’t contain BB, they must be both green. Similarly, the arithmetic progressions 2k, i + k, 2i
and 2k + 1,7 + k,2¢ — 1 show that there is a GG at position 2k. Repeating the same argument
implies that there is a GG at position 2kt (mod n) for every ¢ > 0. But since k is smaller than the
smallest prime factor of n, and n is odd, 2k is relatively prime to n. Thus, we have proved that
every number in {2kt (mod n) :t > 0} = Zy, is colored green, which is a contradiction. O

For any integer n, we define m(n) as the largest integer m for which there is a rainbow-free 3-
coloring ¢ of Zj,, such that |R|,|G¢|,|Bc| > m. Theorems 2 and 3 show that for every integer n,
m(n) < min(n/6,n/q), where ¢ is the smallest prime factor of n. Computing the exact value of
m(n) for every n remains a challenge. The following theorem gives a general lower bound for the
value of m(n).

Theorem 4 For every integer n that is not a power of 2, if q denotes the smallest odd prime factor
of n, then m(n) > | 3]

Proof: It suffices to show that there is a rainbow-free 3-coloring c of Z,, with min(|R,|, |G|, |B¢|) >
l35]- We know that exactly n/q elements of Zy are divisible by g. Color |z ] of these numbers
with green and the remaining |'2ﬂq'| multiples of ¢ with blue. Color other elements of Z, with red.
Since ¢ is odd, if two elements of a 3-term arithmetic progression are divisible by ¢, the third term
should also be divisible by gq. Therefore, the coloring ¢ constructed above does not contain any
rainbow AP(3), and we have min(|R.|, |G|, |Bc|) > | 3]- O

In the following theorem we characterize the set of natural numbers n for which m(n) = 0.

Theorem 5 For every integer n, there is a rainbow-free 3-coloring of Z, with non-empty color
classes if and only if n does not satisfy any of the following conditions:

(a) n is a power of 2.
(b) n is a prime and ord,(2) =n —1 (i.e., 2 is a generator of Zy,).
(c) n is a prime, ord,(2) = (n —1)/2, and (n —1)/2 is an odd number.
Proof: We first prove the if part. We need to prove that for every n that does not satisfy any of

the above conditions, there is a rainbow-free coloring of Z,, with no empty color class. We consider
the following two cases: n is not prime, and n is prime.

If n is not a prime number, then by conditions above n can be written as n = pq where p is an odd
number and g > 1. Let ¢ denote the coloring of Z, obtained by coloring 0 with red, other multiples
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of p with green, and other numbers with blue. In this coloring, every rainbow AP(3) must contain
0 and a multiple of p. Since p is odd, the other term in such an arithmetic progression must also
be a multiple of p. Therefore, ¢ is rainbow-free.

If n is a prime number, then we define the coloring ¢ as follows: 0 is colored with red, all numbers
in {2?modn : i€ ZyU{-2"modn : i € Z} are colored with green, and other numbers are
colored with blue. By conditions (b) and (c) we know that either ord,(2) < (n—1)/2, or ord,(2) =
(n—1)/2 = 2k for an integer k. In the former case, |G.| < 2o0rd,(2) < n — 1. In the latter case, we
have 2 = —1 and therefore |G| = ord,(2) < n — 1. Thus, B, is non-empty in either case. Also,
every rainbow AP(3) in ¢ must contain 0. Since G, is closed under multiplication/division by 2 and
—1, any 3-term arithmetic progression that contains 0 and an element of G, must contain another
element of G.. Thus, ¢ is rainbow-free.

For the only if part, we need to argue that if n satisfies any of the conditions (a), (b), or (c), then
every coloring of Z, with non-empty color classes contains a rainbow AP(3). If n satisfies one of
the conditions (b) or (c), then by Theorem 3 any coloring ¢ of Z,, with min(|R.|, |G|, |B¢|) > 1
contains a rainbow AP(3). If min(|R,|, |G|, |B.|) = 1, then assume without loss of generality that
0 is the only number colored with red and 1 is colored with green. For every number i € Z,, \ {0}
that is colored green, 2i must also be green; otherwise 0, 7,27 will be a rainbow AP(3). Similarly,
if i is green, then —i must also be green. This implies that every number in {2’ modn : i €
Z}U{—2"mod n: i € Z} must be colored green. However, if one of the conditions (b) or (c) hold,
then {2 modn: i € Z}U{-2"modn: i € Z} = Z, \ {0}. This contradicts with the assumption
that B, is non-empty.

The only case that remains to check is when n satisfies (a), i.e., we need to prove that when n = 2*
for an integer k, there is no rainbow-free coloring of Z,, with non-empty color classes. We prove
this statement by induction on k. The induction basis is easy to verify. Assume this statement
holds for k — 1, and (for contradiction) consider a rainbow-free coloring ¢ of Zyx with non-empty
color classes.

We can partition Zgr into two sets: the set of even numbers Zi = {2i mod 2% : i € Zy} and
the set of odd numbers Z$, = {2 + 1 mod 2 : i € Zy}. It is clear that each of Z%, and Z3, is
isomorphic to Zqr-1. Therefore, by the induction hypothesis if ¢ restricted to either one of them has
non-empty color classes, then ¢ will contain a rainbow AP(3). Thus, we may assume without loss
of generality that no element of ka is colored blue and no element of Zg)k is colored green. Also,
assume without loss of generality that |G¢| > [Bc|, and let G. = {a1,a9,...,0/g,} C ka. Now,
consider an arbitrary = € ch that is colored blue, and some 4, 1 < i < |G.|. Since 2a; — z mod 2k
belongs to ch, it can not be green. Also, it can not be red, since otherwise 2a; — z,a;,z will
be a rainbow AP(3). Thus, for every i and every z that is blue, 2a; — x is also blue. Starting
from a fixed blue element x and using the above statement, we obtain that all the elements of
{2a; —z mod 2% : 1 <4 < |G|}U{2(a; —a1)+z mod 2*: 1 <i < |G|} are colored blue. We know
that for distinct 4, j, 2a; — ¢ # 2a; —z (mod 2¥) and 2(a; —a1)+z # 2(a; —a1)+z (mod 2*). Also,
if for some i, j, 2a; —z = 2(a; — a1) + = (mod 2*), then 2(a; — a1 — a; + x) must be divisible by 2%,
which is impossible since a; — a1 — a; + = is an odd number. Thus, there are 2|G,| distinct numbers
in {2a; —zmod 2% : 1 <4< |G|} U{2(a; —a1) +zmod?2*: 1 <i< |G|} that are all colored
blue. This shows that |B.| > 2|G.|, which is in contradiction with the assumption |G.| > |B.| > 0.
a
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4 Additive number theory and rainbows in 7Z,

Strong inverse theorems from additive number theory have proved to be useful tools in Ramsey
theory. For example, Gowers’ proof of Szemerédi theorem relies on the theorem of Frieman [13].
Likewise, we will use a recent theorem of Hamidoune and Rgdseth [17], generalizing the classical
Vosper’s theorem [34], to prove that almost every coloring of Z, with three colors has rainbow
solutions for almost all linear equivalence relations in three variables in Z,. Moreover, we classify
all the exceptions.

We write p to denote a prime number and (m,n) to denote the greatest common divisor of m
and n. For a,b € Z,, we define sequence {i}% in Z, as {i|i € Zy,a < i < b}, if a < b, and
{i|i € Zp,a <i<p—1or0<i<b}, otherwise. For X,Y C Zpand j € Z,, let j X = {jz |z € X},
X-j={z—-jleeX}tand X+Y ={z+y |z € X,y € Y}. We also define the distance
function Dy(k,l) in Z, as the smallest nonnegative value of |k — [ + pj|, over all j € Z. Hence,
Dy(k) := Dp(k,0) = min{k,p — k}. Note that D,(k) < &.

Theorem 6 Let a,b,c,e € Z,, with abc Z0 (mod p). Then every partition of Z, = RUBUG into
3 color classes, with |R|,|B|,|G| > 4, contains a rainbow solution of ax + by + cz = e (mod p) with
the only exception being the case when a = b = ¢ and every color class is an arithmetic progression
with the same common difference d, so that d"'R = {i}?i;ll, d'B = {z}fi;j and d71G = {i}?;;;,
where (a1 + a2 +a3) =e+1 or e+ 2 (mod p).

Before proving Theorem 6, we recall the classical theorem of Cauchy and Davenport [23] and the
recent result of Hamidoune and Rgdseth [17].

Theorem (Cauchy-Davenport) If S,T C Zj, then |S +T| > min{p, |S| + |T| — 1}.

Theorem (Hamidoune-Rgdseth ) Let S,T C Zj, |S| >3, |T| >3, 7<|S+T| <p—4. Then
either |S+T| > |S|+|T|+ 1, or S and T are contained in arithmetic progressions with the same
common difference and |S| + 1 and |T| + 1 elements respectively.

We also need the following two lemmas.

Lemma 9 If S C Zj, is contained in an arithmetic progression of length |S| + 1 with common
difference d, then there are at most two pairs of elements of Z, of the form (z,z + d) such that
ze€Sandx+d¢gS.

Proof: Let § C {a+di}°,. Define X = {a+ (i +1)d |0 <i < |S|,a+id € S,a+ (i +1)d ¢ S}.
Then XNS=0and XUS C {a+di}|z~i‘8q. Therefore, | X|+ |S| < |S|+2, and | X| < 2. Note that

X is precisely the set of elements of the form z + d such that (z +d) ¢ S and z € S. O

Lemma 10 Letp > 7 and let S C Zyp, 3 < |S| < p — 5, be contained in an arithmetic progression
of length |S| + 1 and common difference d, (d,p) = 1. Then every arithmetic progression of length
|S| + 1 containing S has the common difference equal to d or p — d.
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Proof: Suppose that S is contained in an arithmetic progression of length |S| + 1 and common
difference d' # d,p — d. Applying the group isomorphism Z, — d~'Z,, we can assume that § is

contained in the arithmetic progression A := {a + z'}‘{i'o, as well as in the arithmetic progression A
of length |S| + 1 and common difference d (= D,(d~'d')). We have the following three cases:

1. 2<d< 4.
View Z,, as a circle on p elements and consider the process of looping around the circle and
removing the terms of A with respect to their order in A. Let j be the smallest integer such
that all the terms of A have been removed after j loops. Number of elements of A, removed
after j loops is at most Zg;& [‘SH%] Since S C A, we have |S] < Zg;ol [‘SHZ%] Number

of elements z, z € A and = ¢ A, removed after j loops is at least Eg;g Lzﬂgﬂj. Hence,

to finish the proof by contradiction, it suffices to show that if j is the smallest integer with
j—1r|S| 14 i—2 | p—(|S|+1)+i
8] < Y225 TEHET, then Y225 PS> 1.

(a) d=2.
|S] < |_|S|T+1'| does not hold and, thus, j > 2. Then L%J > 2.
(b) d=3.

|S| < |_|S|T+1-| + [@] only if | S| € {3,4}. Hence, either j =3, or j =2 and |S| € {3,4}.
If j = 3, then [2=U5ED | 122081 > 9 1f j = 2, then [2U5HY | > 2 since |S| < 4 and
p>T.

(c) d=4.
Ifj <2, then |S| < |'|S‘T+1'| + [@] Hence, |S| < 2, which contradicts |S| > 3. Therefore,
j > 3. Then [p_(“ZHl)J + [p_isu > 2, since p — |S| > 4.

2. 4<d< A
Exactly 1 element of A is not in S. Since Z, \ S has at least 5 elements, no element of
U:={a+|S|+1+i}}_, isin S. Since every element of U — d is in A, U — d contains at

least 3 elements of S. This contradicts Lemma 9, because there are 3 pairs (z,z + d), z € S,
r+d¢gS8S.

3. d>|Al
No element of V := {a+i+d}}_ is in S because a+d > a+|S|+1and a+d+3 <a+5+3 <
a + p. However, every element of V' —d is in A. Thus, at least 3 elements of V' are in S. This

contradicts Lemma 9, because there are 3 pairs of elements (z,z +d),z € S,z +d ¢ S.
O

Proof of Theorem 6: Assume that that there exist a,b,c,e € Zj,, with abc # 0 (mod p), and
a partition of Z, = RU B U G into 3 color classes (|R|,|B|,|G| > 4), containing no rainbow
solution of az + by + cz = e (mod p). Let R, B',G' be a permutation of R, B, G, and let o', ¥, ¢
be a permutation of a,b,c. Since a't'¢’ = abc Z 0 (mod p), |'R'| = |R'|,|V'B'| = |B'|,|d/G'| =
|G'|. If |a’R' + b'B'| > |d'R'| + |b'B'| + 1, then by the theorem of Cauchy and Davenport and
|R'| +|B'| +|G'| = p, |o’R'+ ¥'B' + ¢G'| > min{p, (|R'| + |B'| + 1) + |G'| — 1} = p. Hence, there
exists a rainbow solution of axz + by + ¢z = e (mod p), which is a contradiction. Therefore,

'R +VB'| < |[d'R'|+ |V'B'|+1=|R|+|B'| +1(< p — 3),
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BB+ G| < VB +|dG|+1=|B|+ |G| +1(< p—3),
o'R' + G| < |d'R'|+ |G| +1=|R'|+ |G'| + 1(< p - 3).

Moreover, using the condition |R|,|B|,|G| > 4 and the theorem of Cauchy and Davenport, we
obtain
lo'R'+V'B'|>17,0B' + G| >7,|d R +dG'| > 7.

Hence, for every X,Y € {R,B,G},X #Y, and every z,y € {a,b,c},z # y, we can apply the theo-
rem of Hamidoune and Rgdseth on sets X and yY'; that is, x X and yY are contained in arithmetic
progressions with the same common difference and |X| 4+ 1 and |Y'| 4+ 1 elements respectively.

Set X is contained in an arithmetic progression of length |X| + 1 if and only if X is contained
in an arithmetic progression of length |X| + 1. Thus, R, B and G are contained in arithmetic
progressions of lengths |R|+ 1, |B| + 1 and |G|+ 1, respectively. Since every arithmetic progression
in Z, of common difference d is also an arithmetic progression of common difference p — d, Lemma
10 implies that there exist unique common differences dg, dg and dg (< §) for all arithmetic
progressions of lengths |R| + 1, |[B| + 1 and |G| + 1, containing R, B and G, respectively.

Let X,Y € {R,B,G},X # Y, and z,y € {a,b,c},z # y. Since zX and yY are contained
in arithmetic progressions with the same common difference and |X| + 1 and |Y| + 1 elements
respectively, ¥ 'zX and Y are contained in arithmetic progressions with the common difference
dy and |X|+ 1 and |Y| + 1 elements respectively. Hence, y lzdx = dy.

Similarly, yX and zY are contained in arithmetic progressions with the same common difference
and |X| + 1 and |Y| + 1 elements respectively. Thus, 2 'yX and Y are contained in arithmetic
progressions with the common difference dy and | X|+ 1 and |Y| + 1 elements respectively. Hence,
:v_lyd x = dy.

It follows that y~'zdx = z~'ydx, that is, |z| = |y|. Therefore, |a| = |b| = |¢| =: t and dr = dp =
dg =: d.

Dividing by ¢ and using the symmetry in the variables z,y, z, the equation ax +by+cz = e (mod p)
reduces to one of the following four equations: z+y —2 = —e, s +y—2=e, c+y+2 = —e,
z+y+ 2z = ein Z, The first two cases further reduce to the equation z +y = z (mod p), after
shifting Z, by —e and e, respectively. Next, we use the following result of Schonheim [28]:

Theorem (Schénheim) Let EUF UG be a partition of N, with no rainbow solutions of x +y = z.
Let G be the class containing the largest smallest element, denoted by m. Let E,F, be subsets of
E, F consisting of the elements smaller than m. Then for ¢ € N,

l.eecE—set+imeé

2. feF— f+imelF,

with exceptions occurring only for one of the classes £, F, and only at the multiples of some fized
nontrivial divisor of m.

Define the coloring ¢, : Z, — {1,2,3} such that the elements of R, B and G receive colors 1, 2
and 3, respectively. Consider the coloring ¢ : N — {1,2, 3} defined by ¢(z) = ¢,(z (mod p)), for all
z € N. Assume that G is the last color class appearing in the coloring of Z,, the smallest element
of which is denoted by m. Schonheim’s theorem (with R = E, B = F, G = G) implies that there
exists a divisor s of m < p, such that every element z with ¢(z) = 3 is a multiple of s. Then,
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either (p,s) =1 or s = p. If (p,s) = 1, then ¢(m + p) = 3. However, s does not divide m + p,
so ¢(m + p) # 3, and we have a contradiction. If s = p, then ¢(z) = 3 for z € N if and only
if z € {p,2p,3p...}. Then the coloring ¢, of Z, has only 1 element with color 3, namely 0. This
contradicts the condition |G| > 4.

Therefore, we can assume that the equation az + by + cz = e (mod p) is of the form z +y+ 2z =e
(mod p). Since d = dgr = dp = dg, after applying the group isomorphism Z, — d~'Z,, we can
assume that R, B and G are contained in strings of |R|+1, |B|+1 and |G|+ 1 consecutive elements,
respectively. One of the following two cases occurs:

1. There exist at least two color classes, say R and B, that are not contained in strings of |R|
and |B| consecutive elements, respectively.
Then R = {a1 +i}/"? U {a1 + |R|} and B = {a1 + |R| — 1} U{as + |R| + i}}Z"". Then
R+ B ={2a1 + |R| + i}LZ'ﬂB‘fl, so that |R+ B| = |R| + |B| + 1. By the theorem of Cauchy
and Davenport, |R + B + G| = p, which implies that the equation z +y + z = e (mod p) has
a rainbow solution. Contradiction.

2. R, B and G are contained in the strings of |R|, | B| and |G| consecutive elements, respectively.
Then R = {i}{2,!, B = {i}{2.], G = {i}{1,), in which case R+ B + G = {i}j1fe2t® 3,
Clearly, if there is no rainbow solution to the equation z+y+2z = e (mod p), then a1+as+as =

e+1ore+2 (mod p).
a

5 Future directions

The problems and conjectures stated in the previous sections deal with the existence of rainbow
structures in the sets of integers, the path not previously taken in literature. Hence, there are many
more directions and generalization one might consider.

One natural direction is generalizing the problems above for rainbow solutions of any homogeneous
equation, imitating Rado’s theorem about the monochromatic analogue. We have already showed
an example of this in Theorem 6.

Search for a rainbow counterpart of the Hales-Jewett theorem, though an exciting possibility, led
us to some negative results. First, recall some notation from [14]. Define Cf*, the n-cube over ¢
elements by C' = {(z1,...,zp) 1 z; € {0,1,...,t—1}}. A geometric line in C}' is a set of (suitably
ordered) points Xg,...,X¢—1, Xij = (Zi,1,-.-,Zin) so that in each coordinate j, 1 < j < n, either
Toj = T1j = ... = Ty—1, Or Tsj = s for every 0 < s <, or z,; =n — s for every 0 < s <t. The
Hales-Jewett theorem states that for every ¢ and k, if n is sufficiently large, every k-coloring of C}'
contains a monochromatic geometric line. This motivates the following question: Is it true that for
every equinumerous ¢-coloring of C}* there exists a rainbow geometric line? The following coloring
show that the answer is negative even for small values of ¢ and n. A 3-coloring of C§ defined by
C; = {000,002,020, 200, 220,022, 202, 222,001}, C, = {011,021,101,201,111,221,010, 210,012},
and C3 = {100,110,120,121,211,102,112,122,212} (parentheses and commas being removed for
clarity), has no rainbow geometric lines.

Another generic direction we considered is increasing the number of colors and the length of a
rainbow AP.
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Proposition 3 For every n and k > 3, there ezists a k-coloring of [n] with no rainbow AP(k) and
with each color of size at least Lmj

Proof: First, we partition the set of k colors into three sets C7, Co, and C3 of sizes 1, lo, and I3,
respectively, where (l1,12,13) is defined as follows:

(41,1, —1) if k = 31
(,lo,l3) =4 (I+1,1+1,1—1) ifk=3+1
(142,1,1) if k=30 + 2

Notice that by the above definition, max(l1,ls,l3) = [(k+4)/3], and there are always i, j such that
|l — ;| = 2. Now, for i = 1,2,3, we color the numbers in N; := {z € [n| : z = 4 (mod 3)} with
colors in C;, so that for each two colors in C;, the number of times they are used differ by at most 1
(one can achieve this by coloring N; with the colors in C; cyclically). Thus, it is easy to verify that

each color is used at least L#J = LWJ number of times. Also, every arithmetic

s12,03)
progression A is either completely contained in one of N;’s, or satisfies |[ANN;| — [ANN;|| < 1
for every i,j € {1,2,3}. Thus, the existence of 4, j with |l; — ;| = 2 shows that there is no rainbow

AP(k) in this coloring. O

The above proposition can be thought of as a generalization of Proposition 1 for & > 3. One is
tempted to also generalize Theorem 1 and conjecture that any partition N =C; UCsU...UCy into
k color classes, with every color class having density greater than W, contains a rainbow
AP(k). However, it is easy to verify that the following equinumerous colorings of N do not contain
any rainbow AP(5), and hence the generalization of Radoi¢ié¢’s conjecture is not true for k = 5, 6.

{ . . —
1 ifi=1,3 (mod 10) L ifi=1,3  (mod12)
= 2 ifi=24 (mod 12)
2 ifi1=2,5 (mod 10) hr=
. o : 3 ifi=5,7 (mod 12)
cs(i):=¢ 3 ifi=4,8 (mod 10) ce(1) := 1 4 ifi=6.8 (mod 12)
4 ifi=6,7 (mod 10) =9
5 ifi=9,0 (mod 10) 5 ifi=9,11  (mod 12)
o [ 6 ifi=10,0 (mod 12)

We still do not know whether there is a similar example when the number of colors is & = 4 or
k > 6. If the number of colors is infinite, the following proposition shows that one cannot guarantee
even the existence of a rainbow AP(3) with the assumption that each color has a positive density.

Proposition 4 There is an infinite coloring of N with each color having positive density such that
there is no rainbow AP(3).

Proof: For each z € N, let ¢(z) be the largest integer k such that z is divisible by 3*. It is easy
to see that the color k has density 2 x 37¥~! > 0 in this coloring. Also, if c(z) # c(y), it is not
difficult to see that c(2z — y) = ¢((z + y)/2) = max(c(z),c(y)). Therefore, if two elements of an
arithmetic progression are colored with two different colors, the third term must be colored with
one of those two colors. Thus, there is no rainbow AP(3) in c. 0

Yet another direction is limiting our attention to equinumerous colorings and letting the number
of colors be different from the desired length of a rainbow AP. Let T} denote the minimal number
t € N such that there is a rainbow AP(k) in every equinumerous t-coloring of [¢tn] for every n € N.
We have the following lower and upper bounds on T}.
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Proposition 5 For every k > 3, | £ J <Tp < M.

Proof: First, we prove the upper bound. Let m = a(k—1)+b, withk > 3,4 > 1,and 0 < b < k—1.
We note that there is bijective correspondence between the set of all AP(k)’s and the set of all
2-element sets {«a, 8} C [m], @ < B, with « =  (mod (k — 1)). It follows that the number of all
AP(k)’s in [m] is b(°%") + (k —b—1)(*4"). Thus,

tn(tn — 2(k — 1))

# of AP(k)’s in [tn] > 2(k — 1)

Note that for a t-regular coloring of [tn], in each of the ¢ colors there are (§) pairs that could be
the terms of at most (]2“) different AP(k)’s. Therefore, for any t-regular coloring of [tn] there are
at most t(g) (72’) AP(k)’s that are not rainbow. Therefore, T} is bounded by the smallest ¢ that

satisfies it 2k — 1)) )
n(tn — — n
>
20— 1) _t<2> (2) for all n,

which implies the upper bound.

As for the lower bound, we exhibit colorings ¢; and ¢y, showing that Thr,1 > k% +k and Ty, > k2.

Let a j-block Bj (j € N) be the sequence 12...512... j, where the left half and the right half of
the block are naturally defined.

The coloring c; gives the following color assignment to the elements of [2k2 + 2k] (bars denoting
endpoints of the blocks):

By || By |- || Br |BE | BS | | B

_|_
5],

Here, B = Bj — (j’gl) and B = B; + (;), where X + a denotes the set {z + a|z € X}, for a € Z,
X C Z. Note that ¢; uses each of the k2 + k colors exactly twice.
The coloring ¢ of [2k?] is defined similarly:

‘Bkil‘...‘Bj*‘...‘B;‘B;‘BHBJ‘...‘B;’

_|_
],

thus using each of the k? colors exactly twice.

Next, we show that [2k% + 2k], colored by c1, does not contain a rainbow AP(2k + 1). The key
observation is that a rainbow AP with common difference d cannot contain elements from opposite

halves of any block B;, where d divides j. Fix a longest rainbow AP A and let d denote its common
difference. If d > k, then the length of A is < 2k. If d < k, then A is one of the following three

types:
1. Ais contained in |B7|Bg ... |B; |B7| B |Bf ... |Bf, | Bf|.

Then A does not intersect the left half of B, nor the right half of B(‘j". Hence, the length of
A is at most 2d < 2k.

2. Ais contained in | By, 11| BGaya 1| |Bra| ov in |Bo| Biga |- | B ayal> where (i +1)a <
k.
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Assume that the first case occurs. Then A does not intersect the left half of B(j 41

right half of B/, Hence, the length of A is at most é(jd—k 2(jd+1)+2(jd+2)+... +2(jd+
d—1)+ (jd+d) <2(j +1)d < 2k.

)a 10T the

, Where jd + = < k.

- - : + |+ +
Bjiyas| - [Bya| or in [ By By |- | Bfse

Assume that the first case occurs. Then A does not intersect the right half of Bj_d. Hence,
the length of A is at most 5(jd +2(jd + 1) +2(jd + 2) +... + 2(jd + z — 1) + 2(jd + z)) <
L(id+2jd(d — 1) + d(z — 1)) < 2(jd + z) < 2k.

3. A is contained in ‘Bjd—}-m

Similarly, one shows that [2k?], colored by cy, does not contain a rainbow AP(2k). |

Note that Proposition 5 gives 3 < T3 < 6, while Conjecture 1 claims that T3 = 3.
Conjecture 3 For all k > 3, T}, = O(k?).

Proposition 5 also provides a proof of the following “canonical version” of van der Waerden’s
theorem on arithmetic progressions, due to Erdés and Graham [8].

Theorem 7 For every positive integer k > 3, there ezists a positive integer n(k) such that every
coloring of the first n > n(k) positive integers contains either a monochromatic AP(k) or a rainbow
AP(k).

Proof: By Szemerédi’s Theorem [33], for every ¢ > 0 there exists a positive integer s(k,d) such
that for all n > s(k,§) every subset C' C [n] with |C| > dn contains an AP(k). Fix § = k(kQT)Q
and let n > s(k,d0). Suppose there exists a coloring of [n] = C; U Cy U ... U C, containing no
monochromatic or rainbow AP(k). Since a color class C; does not contain a monochromatic AP(k),
then |C;| < én. In the proof of Proposition 5, it was shown that the number of AP(k)’s is at least
n(nZ(I?(_kl) 1))
most ('2“) 1 (|g"|) non-rainbow AP(k)’s. Since 0 < |C;| < én and ) ,_, |Ci| = n, the inequality

kY (6n

k\(on
(’5) S (‘(’;”) < (g) Zzli‘i (‘52") = —(2)§2). However, the inequality ”(”Qz,fﬁkl‘)l)) < (2)§2) does not

hold for our choice of é. O

. Since every non-rainbow AP(k) contains a pair of terms of the same color, there are at

It is easy to show that the maximal number of rainbow AP(3)’s over all equinumerous 3-colorings
of [3n] is |3n?/2], this being achieved for the unique 3-coloring with color classes R = {n|n = 0
(mod 3)}, B={n|n =1 (mod 3)} and G = {n|n =2 (mod 3)}. It seems very difficult to charac-
terize those equinumerous 3-colorings (in general, k-colorings) that minimize the number of rainbow
AP(3)’s. Letting fx(n) denote the minimal number of rainbow AP(k)’s, over all equinumerous k-
colorings of [kn], we pose the following conjecture.

Conjecture 4 f3(n) = Q(n).

If we define gi(n) as the minimal number of rainbow AP(k)’s, over all equinumerous k-colorings of
Zgn, then a straightforward counting argument shows that g3(n) > n, when n is odd.

Finally, the further generalization of Vosper’s theorem, due to Serra and Zémor [30], may lead to
a generalization of Theorem 6 for more than 3 color classes.
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