From: Off-Site Shelving <lib-offsite-shelving@mail.umd.edu>
To: <lsc@jhu.edu>
Date: 7/30/2007 8:56 AM
Subject: [Fwd: Request for a serial from HBK storage]

R02M04S24T05
31430039704731

-------- Original Message --------
Subject: Request for a serial from HBK storage
Date: Fri, 27 Jul 2007 14:48:15 -0400 (EDT)
From: ()
To: lib-offsite-shelving@umd.edu

Below is the result of your feedback form. It was submitted by () on Friday, July 27, 2007 at 14:48:14

Journal Title: journal of combinatorial theory series A
Article Title: Restricted Ramsey Configurations
Call Number: QA164 .J61
Volume: 19
Date: 1975
pages: 278-286
Name: William Gasarch
Email: gasarch@cs.umd.edu
Barcode: 1430011779398
home-phone: 301-890-5354
campus-phone: 301-405-2698
mailing-address: dept of computer science
av williams building
2. RESTRICTED VAN DER WAERDEN CONFIGURATIONS

In this section we prove a result on Van der Waerden's theorem analogous to the result of Nešetřil and Rödl. We recall the basic result:

Theorem 1 (restricted Van der Waerden configuration). For all k, c, there exists a k-set V such that A contains an arithmetic progression of length $k + 1$. If A is a k-set, then V is a k-set where k, c are understood.

Proof

By the Hales-Jewett theorem, there is a set V such that A contains a monochromatic arithmetic progression of length $k + 1$. Let V be a k-set and c be understood. Now let P be a prime, $k > 0$ and set $V = \{a_0, a_1, \ldots, a_k\}$. The coloring of A corresponds to a coloring of \mathbb{Z}_p for which there is a monochromatic arithmetic progression of length $k + 1$. For $x = a_i + p^j$ and $y = a_j + p^j$, we see that $x + y$ is congruent to $a_i + a_j + 2p^j$ modulo p. This completes the proof. ~ Q.E.D.

Notation

- $[n] = \{1, 2, \ldots, n\}$
- $[n]^k = \{A \subseteq [n] : |A| = k\}$
- $\mathcal{F} = \{F \subseteq [n]^k : \text{minimal such that } F \text{ is monochromatic}\}$

If G is a family of sets with \mathcal{F}-color number \mathcal{F} of \mathcal{F} is minimal such that G is monochromatic.

Supported

Supported in part by Office of Naval Research, N00014-97-1-0285.

Copyright © 1975 by Academic Press, Inc. All rights reserved.
Theorem 2 (induced Van der Waerden theorem). Let \(e_0, \ldots, e_{k-1} = 0 \) or 1. For all \(c \) there exists a set \(A \) so that if \(A \) is \(c \)-colored there is an arithmetic progression of integers \(\beta_0, \ldots, \beta_{k-1} \) such that \(\beta_i \not\in A \) iff \(e_i = 0 \) and \((\beta_i; e_i = 1) \) is monochromatic.

Essentially, we have in some color \(i \) an induced “pattern” given by \(e_0, \ldots, e_{k-1} \).

Proof. The theorem is trivial if none or one of the \(e_i = 1 \). Now let \(i_1 < \cdots < i_{t-1} \) be those indices with \(e_{i_j} = 1 \). Let \(S = \{i_1, \ldots, i_{t-1}\} \). Define \(f : S \to \{0, \ldots, t-1\} \) by \(f(i_j) = r \). By the Hales-Jewett theorem we find \(n \) so that every \(c \)-coloring of the \(n \)-dimensional cube \(t^n \) yields a monochromatic “special line.” Here “special line” is a set \(x_0, \ldots, x_{t-1} \), with \(x_i = (x_{i1}, \ldots, x_{it}) \) so that for all \(j \) either \(x_{i0} = x_{i1} = \cdots = x_{i,t-1} \) or \(x_{i0} = 0, x_{i1} = 1, \ldots, x_{i,t-1} = t-1 \). (For example, in \(3^n \), \(2^n \), \(1^n \), \(0^n \) is not a special line.) Now set

\[
A = \{a_0 + a_1 k + \cdots + a_{n-1} k^{n-1} : a_i \in S\}.
\]

We associate \(A \) with \(t^n \) by

\[
a_0 + \cdots + a_{n-1} k^{n-1} \leftrightarrow (f(a_0), \ldots, f(a_{n-1})).
\]

A \(c \)-coloring of \(A \) induces a \(c \)-coloring of \(t^n \) which contains a monochromatic special line \(x_0, \ldots, x_{t-1} \). These correspond to \(a_0, \ldots, a_{t-1} \in A \), \(a_n = \Sigma_{i=0}^{t-1} a_i k^i \), where for all \(j \) either \(a_{i_0} = \cdots = a_{i_{t-1}} \) or \(a_{i_0} = a_{i_{t-1}} \). Let \(T \) denote the set of coordinates \(j \) on which \(a_j \neq a_{j+k} \). We extend \(a_0, \ldots, a_{t-1} \) to the arithmetic progression \(\beta_0, \beta_1, \ldots, \beta_{k-1} \) so that \(\beta_m = \Sigma_{j=0}^{t-1} b_j k^j \) defined as follows. For \(j \in T \), \(b_{j_0} = b_{j_1} = \cdots = b_{j_{t-1}} = a_{j_0} \). For \(j \notin T \), \(b_{j_0} = m, 0 \leq m \leq k-1 \). The sequence \(\beta_0, \ldots, \beta_{k-1} \) is the desired arithmetic progression.

4. Ramsey Families

Definition. Let \(\mathcal{A} \) be a family of sets, \(\mathcal{U} \mathcal{A} = V \), \(c \geq 2 \). \(\mathcal{A} \) is called a \(c \)-Ramsey Family if given any \(c \)-coloring of \([V]^2 \) there exists \(A \in \mathcal{A} \) so that \([A]^2 \) is monochromatic. (We note that \(\mathcal{A} \) is \(c \)-Ramsey iff \(\chi([A]^2) \leq c \).) If \(K_n \to (K_c)^c \), then \(\mathcal{A} = [n]^c \) is a \(c \)-Ramsey Family. This example might seem to indicate that \(c \)-Ramsey Families have their elements clustered together. Our theorem, however, is in the opposite direction.

Theorem 3. For all \(k, c \) there exists a \(c \)-Ramsey Family \(\mathcal{A} \) such that all \(A \in \mathcal{A} \) have \(|A| = k \) and \(A, B \in \mathcal{A} \to |A \cap B| \leq 2 \).
denote the possible 2-colorings of \([n]^2\). For each \(i\) let \(D_i \subseteq [n]^2\) denote the family of \(k\)-sets \(S\) such that \([S]^2\) is monochromatic under \(C_i\). We know
\[
| D_i | \geq \binom{n}{k}, \quad 1 \leq i \leq \binom{r}{2}.
\]
For each \(i\),
\[
\Pr[D_i \cap \mathcal{A} = \emptyset] = (1 - p)^{|D_i|} \leq (1 - p)^{\binom{n}{k}},
\]
which is very small. We wish to find \(\mathcal{A}\) so that \(D_i \cap \mathcal{A} = \emptyset\) for all \(i\).

We actually find \(\mathcal{A}\) so that \(|D_i \cap \mathcal{A}|\) is "large" for all \(i\). (This stronger result will be necessary since (2) is weaker than desired.) For fixed \(i\), \(|D_i \cap \mathcal{A}|\) is a random variable with binomial distribution \(B(|D_i|, p)\). It is "smallest" where \(|D_i|\) is minimal. We calculate, for fixed \(i\),
\[
\Pr[|D_i \cap \mathcal{A}| < 5n^{1+2\varepsilon}] \leq \Pr[B\left(\binom{n}{k}, p\right) < 5n^{1+2\varepsilon}] \\
\leq \left(\frac{\binom{n}{k}}{5n^{1+2\varepsilon}}\right)^{\binom{n}{k} - 5n^{1+2\varepsilon}}.
\]
We make the gross approximations
\[
\left(\frac{\binom{n}{k}}{5n^{1+2\varepsilon}}\right) \approx (p^n)^{5n^{1+2\varepsilon}} = n^{3+2\varepsilon + o(1)},
\]
\[
(1 - p)^{\binom{n}{k} - 5n^{1+2\varepsilon}} \sim \exp\left[-p\binom{n}{k}\right] = \exp[-n^{3+2\varepsilon + o(1)}].
\]
So
\[
\Pr[|D_i \cap \mathcal{A}| \leq 5n^{1+2\varepsilon}] < \exp[-n^{2+2\varepsilon + o(1)}].
\]
Our next step makes clear why such "infinitesimal" probabilities were necessary.

\[
\Pr[\text{for some } i, |D_i \cap \mathcal{A}| \leq 5n^{1+2\varepsilon}] \leq \sum_{i=1}^{\binom{r}{2}} \Pr[|D_i \cap \mathcal{A}| \leq 5n^{1+2\varepsilon}] \\
\leq 2^{\binom{r}{2}} \exp[-n^{3+2\varepsilon + o(1)}] = o(1)
\]

For \(n\) sufficiently large,
\[
\Pr[|\mathcal{A} \cap D_i| > 5n^{1+2\varepsilon} \text{ for all } i] > 0.9.
\]
From (2),
\[
\Pr[I(\mathcal{A}) \leq 2n^{1+2\varepsilon}] > 0.5.
\]
We may, therefore, find a specific \(\mathcal{A}\) such that

(i) For any coloring \(C_i\) of \([n]^2\) there are at least \(5n^{1+2\varepsilon}\) monochromatic \(S \in \mathcal{A}\).

(ii) There are at most \(2n^{1+2\varepsilon}\) intersecting pairs in \(\mathcal{A}\).

Select a set \(\mathcal{A}_0 \subseteq [n]^2\) containing at least one member from each intersecting pair in \(\mathcal{A}\). Clearly we may find \(\mathcal{A}_0\) of cardinality \(\leq 2n^{1+2\varepsilon}\). Set \(\mathcal{A} = \mathcal{A}_0 - \mathcal{A}_1\). Then

(ii') \(\mathcal{A}\) has no intersecting pairs. (As all the pairs in \(\mathcal{A}_0\) have been "broken up").

(iii') For any coloring \(C_i\) of \([n]^2\) there is a monochromatic \(S \in \mathcal{A}\) such that there were \(5n^{1+2\varepsilon}\) such \(S\) and at most \(2n^{1+2\varepsilon}\) have been eliminated.

\(\mathcal{A}\) is the desired 2-Ramsey Family.

Q.E.D.

A strong result, analogous to [2], can also be shown by the same method. We say \(\{A_1, \ldots, A_t\}, A_i \subseteq [n]^2\) is a \(t\)-cycle if
\[
|\bigcup_{i=1}^t A_i| < k + (t - 1)(k - 2).
\]
(A 2-cycle is, in our notation, an intersecting pair.)

Theorem 4. For all \(k, \varepsilon, t\) if \(n\) is sufficiently large there exists a \(k\)-family \(\mathcal{A} \subseteq [n]^2\) which is \(\varepsilon\)-Ramsey but contains no \(s\)-cycles, \(2 \leq s \leq t\).

(We omit the proof, as it follows the lines of Theorem 5.)

The results of Neeteling and Rödl plus Theorem 4 lead us to pose the following

Question 1. For all \(k, \varepsilon, t\) does there exist for some \(n\) a graph \(H \subseteq [n]^2\) such that \(\{A : A \subseteq [n]^2, \{A, \mathcal{P} \cap H\}\) is \(\varepsilon\)-Ramsey with no \(s\)-cycles, \(s \leq t\)?

The most important case is \(\varepsilon = t = 2\). We may rephrase the question as follows.

Question 1'. For all \(k\) there is a graph \(H\) such that \(H \rightarrow (K_k)^3\) and yet \(H\) does not contain two complete subgraphs on \(k\) vertices with more than two points in common?
5. VAN DER WAERDEN FAMILIES

Let \(k \leq n \) be positive integers. We define

\[
S = S_{kn} = \{ A \in [n]^k : A \text{ an arithmetic progression} \}.
\]

Van der Waerden's theorem may be phrased as follows. For all \(k, c \) if \(n \) is sufficiently large the hypergraph \(S_{kn} \) has chromatic number \(> c \). Let \(\mathcal{A} \subseteq S_n \). We say \(\mathcal{A} \) is a \(c \)-Van der Waerden family of arithmetic progressions if the hypergraph \(\mathcal{A} \) has chromatic number \(> c \). From Van der Waerden's theorem for all \(k, c \) there exist such \(\mathcal{A} \), namely one may take \(\mathcal{A} = S_{kn} \) for \(n \) sufficiently large.

DEFINITION. A set \(\{ A_1, \ldots, A_t \} \subseteq S_{kn} \) is called a \(t \)-cycle if

\[
\bigcup_{i=1}^{t} A_i \subseteq k + (t-1)(k-1).
\]

(This is different from the definition in Section 4. Here we deal with vertex colorings whereas in Section 4 we were interested in edge colorings.)

THEOREM 5. For all \(k, c, t \) there exists \(n \) and a family \(\mathcal{A} \subseteq S_{kn} \) such that \(\mathcal{A} \) is \(c \)-Van der Waerden and yet \(\mathcal{A} \) contains no \(s \)-cycles for \(s \leq t \).

We only indicate the proof as it follows the lines of Theorem 3. We let \(n \) be "sufficiently large" and \(\mathcal{A} \) be a random subset of \(S_{kn} \) where each \(A \in S_{kn} \) is in \(\mathcal{A} \) with probability \(p = n^{-1+c} \). Here \(c \) is independent of \(n \), \(0 < c < 1/10 \). By a simple counting argument \(S_{kn} \) has \(Cn^t \) \(t \)-cycles. (The \(C \)'s are constants, not necessarily equal, independent of \(n \).) The expected number of \(t \)-cycles in \(\mathcal{A} \) is at most \((Cn^t) p^t = Cn^{t+o(n)} \). The \(s \)-cycles, \(s < t \), are also few in expected number.

Let \(n \) be the "Van der Waerden number" such that any \(c \)-coloring of \([n]\) yields a monochromatic arithmetic progression of length \(k \). The family \(S_{kn} \) of all \(k \)-element arithmetic progressions contains \(C_3 n^2 \) sets. Color \([n]\) arbitrarily with \(c \) colors and let \(\mathcal{E} \) be the family of monochromatic \(A \in S_{kn} \). Every arithmetic progression of length \(m \) contains at least one \(A \in \mathcal{E} \); an \(A \in \mathcal{E} \) may be extended to an arithmetic progression of length \(m \) in at most \(C \) ways; hence \(| \mathcal{E} | \geq C_3 n^2 \). For the \(c^2 \) possible colorings of \([n]\) let \(D_i \) be the set of monochromatic arithmetic progressions in the \(i \)th coloring. The random variable \(| D_i \cap \mathcal{A} | \) has the binomial distribution \(B(| D_i |, p) \) so (after some calculation)

\[
\text{Prob}[| D_i \cap \mathcal{A} | < n] < \exp[-n^{1+c-o(n)}].
\]

As there are "only" \(c^n \) colorings, with probability \(1 - o(1) \),

\[
| D_i \cap \mathcal{A} | \geq n
\]

for all colorings. Since the expected number of small cycles in \(\mathcal{A} \) is \(o(n) \), with probability \(1 - o(1) \), \(\mathcal{A} \) has \(< n \) small cycles. We select \(\mathcal{A}_o \) satisfying these two properties then delete an \(A \in \mathcal{A}_o \) out of each small cycle, leaving a family \(\mathcal{A}_o^* \) with the desired properties. This completes the sketch of Theorem 5.

The juxtaposition of Theorems 1 and 5 and Question 1 leads us to pose the following

Question 2. For all \(k, c, t \) does there exist for some \(n \) a set \(V \subseteq [n] \) such that

\[
\{ A : A \subseteq V, | A | = k, A \text{ an arithmetic progression} \}
\]

is \(c \)-Van der Waerden with no \(s \)-cycles, \(s < t \)?

Theorem 6. Question 2 is true for \(t = 2 \). That is, given \(k, c \) there is a set \(V \) which when \(c \)-colored yields a monochromatic arithmetic progression of length \(k \) and for which furthermore, if \(A, B \subseteq V \) are arithmetic progressions of length \(k \) then \(| A \cap B | \leq 1 \).

Sketch of Proof. As in Theorem 1 we find, by the Hales-Jewett theorem, an \(n \) such that if the \(n \)-dimensional cube \(k^n \) is \(c \)-colored there must be a monochromatic line. Now let \(p \) be prime, \(p > 2k \), and set

\[
V = \{ a_0 + a_1 p + \cdots + a_{n-1} p^{n-1} : 0 < a_i < k \}.
\]

\(V \) is the desired set. We associate \(V = \sum_{i=0}^{n-1} a_i p^i \) with vector \(v = (a_0, \ldots, a_{n-1}) \). A \(c \)-coloring of \(V \) yields a monotonic range \(v_0, \ldots, v_{k-1} \) which corresponds to a monochromatic arithmetic progression \(v_0, \ldots, v_{k-1} \). Hence \(V \) is \(c \)-Ramsey. To show that \(V \) has no \(2 \)-cycles we note that \(v_0, v_1, v_{k-1} \) form an arithmetic progression iff the corresponding vectors \(v_0, v_1, v_{k-1} \) form an arithmetic progression. However, in the \(c \)-cube \(k^n \) any two lines clearly intersect at most one point.

We note that Theorem 5.2 does not appear to easily extend to the case \(t = 3 \). The cube \(k^n \) does indeed have \(3 \)-cycles, e.g.,

\[
((0, k); 0 \leq i \leq k - 1), \quad ((i, k - 1); 0 \leq i \leq k - 1), \quad ((i, i); 0 \leq i \leq k - 1).
\]
Hadamard Matrices from Relative Difference Sets

EDWARD SPENCE

Department of Mathematics, University of Glasgow,
Glasgow G11 8QW, Scotland

Communicated by the Managing Editors
Received January 27, 1975

I. INTRODUCTION

A Hadamard matrix H is a square matrix of order n with entries ± 1 and which satisfies $HH^T = nI$, where H^T is the transpose of H and I is the identity matrix. It is easily shown that for H to exist n must be 1, 2, or a multiple of 4 [2]. The converse problem of constructing Hadamard matrices of all possible orders is much more difficult. Many authors have made contributions in an effort to find a solution, the results being many and varied (a list of all the constructions known in 1972 is contained in [5]). It is the purpose of this paper to add yet another class of Hadamard matrices to the ever growing list. More precisely, we prove the following results.

(i) Let n and $n - 2$ both be prime powers. If $n \equiv 1 \pmod{4}$ there exists a Hadamard matrix of order $4n$, while if $n \equiv 3 \pmod{4}$ there exists a Hadamard matrix of order $8n$.

(ii) Let m be an odd prime power for which there exists an integer $t \geq 0$ such that $(m - (2^{t+1} + 1))/2^{t+1}$ is an odd prime power. Then there exists a Hadamard matrix of order $4m$.

The following new orders (≤ 4000) of Hadamard matrices are obtained: 292 (recently obtained in [3]), 356, 404, 436, 596, 772, 964, 1016, 1028, 1108, 1208, 1266, 1396, 1412, 1556, 1588, 1604, 1636, 1732, 1796, 1828, 1844, 2116, 2164, 2228, 2264, 2276, 2564, 2692, 2836, 3076, 3284, 3524, 3704, 3716.

The main tools used in the construction of these matrices are a particular class of relative difference sets, as defined by Elliott and Buiston [1], and a method of Whiteman using supplementary difference sets.