TWO COMBINATORIAL THEOREMS ON
ARITHMETIC PROGRESSIONS

By Worreanag M. ScHMIDT

1. Introduction. According to a well-known theorem of van der Waerden [6]
there exists an m(k, 1) defined for integers & > 2, I > 3, such that if we split
the integers between I and m into k classes, at least one class contains an arith-
metic progression of ! distinct elements. We shall prove

TarEorREM 1. For some absolute constant ¢ > 0,
(1) mk, 1) > k' es Dt
For large [ this is an improvement of the estimate
(22) m(k, ) > [2( — D'
given by Erdés and Rado [2] and of the estimate
(2b) mk, 1) > Uk°'="

of Moser [4].

Throughout, P, @, - - - will denote arithmetic progressions of ! distinct integers
between 1 and m. Consider real numbers o between 0 and 1 written in
scale ¥ : « = 0, a0y --- . Write N(a; %k, I, m) for the number of
progressions P = {p,, -+, p,;} such that

ap!=ap’=oov =apl'
TaEOREM 2. Keep k, 1, ¢ > 0 fixed. Then for almost every «,
1-1

3) N(a; k, I, m) = mzm

+ O(m log*** m).

2. The idea of the proof of Theorem 1. There is a 1-1 correspondence
between divisions of 1, - - - , m into classes C, , - - - , C; and functions f(z) defined

on 1, --- , m whose values are integers between 1 and k. We write
flo) = j
for a set o of integers between 1 and m if f(x) = j for every x e 0. Put
P|f

if {(P) is defined, i.e., if f(p,) = --- = f(p;) for the elements p, , - -, p, of P.
In this terminology Theorem 1 means that for m < k'=°¢1°#®" there exists
some f such that P | f for no P.
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Let u be a fixed integer in the range 1 < u < I/2. We set

flPl =i

if there is a subset o of P of at least I — u elements having f(¢) = j. For integers
jinl £ j £ k define j + by

j+={j+1, if j<k
1, if j=r

We say f is of type F;(j = 1, --- , k) if there existsa Q and P, , +-+ , P,
1> r 2w+ 1, having P; # P, for ¢ & {, with the following properties.

(4a) flPd =3 1 <i<),
and the elements ¢, , +++ , ¢; of @ can be ordered in such a way that

(4b) g; e P; 1<iLn
(40) flg:) = i+ r+1<L:L).

It may happen that » = [, and in this case the last condition is to be omitted.
f is said to be of type F if it is of at least one of the types Fy, ---, Fy.

Lemma 1. If there exists an f not of type F, then there exists a function g such
that P | g for no P.

Proof. Write U for the set of P — s where f[P] is defined. With each P ¢ U
associate some z = z(P) ¢ P having f(z) = f[P]. Define the function ¢ by

g(x) = {i@) +if 2 = 2(P) foratleastone PeU,
(x) otherwise.

We claim that @ | g for no Q.

Otherwise, if @ | g, assume ¢g(@Q) = 1. f[@] = 1 would imply f(x(Q)) = 1,
9(xz(@) = 1 4+ =2, a contradiction. But if f[Q@] is not 1, then there are at
least w 4 1 integers x ¢ @ with f(z) = 1. Writex,, -+, z,(r > u -+ 1) for the
elements of @ having f(z) 5 1, ¥.,1,....y; for the elements of @ having f(y) = 1,
if such integers exist. Now each z; belongs to some P; with f[P;] = f(x.).
1 = g(z;) = f(x;) + implies f[P;] = f(x;) = k. Therefore f would be of type
F, , a contradiction.

To prove Theorem 1 it will be sufficient to show the existence of a function
f not of type F. We shall derive bounds for the number of functions of type F
and shall show in §5 that if » is the integral part of (I/log 1)} and if (1) holds,
then the number of such functions is smaller than k™, the total number of func-
tions f.

3. Auxiliary lemmas on arithmetic progressions. Besides progressions
P, Q, - - - of l elements we have to study arithmetic progressions R of an arbitrary
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number z = z(R) > 2 of elements which are integers between 1 and m. Pro-
gressions R with z(R) = 2 are pairs of integers. Generally, 2(c) will denote the
number of elements of any set ¢ of integers. Write d(R) for the common differ-

encer, — r, = ry — r, = --- of the elements r; < r, < +++ < r,of R. The
letter T will be reserved for progressions T having
6y 1 < «T) < 21.

R; M R, is again an arithmetic progression unless z(R; N R,) < 1.

Lemma 2. Let R, , R, be progressions and put z; = z(R.), d; = d(R,),
d; = e,d(? = 1, 2) where d = g.c.d. (d,, d). Then

(6) Z(Rl f\Rz) < min (?l__e_._l + 1,22 e_ 1 + 1).
2 1

Proof. We may assume 2(R; N R,) > 2. Then R, M R, is a progression
having d(R, M Ry) = e;e,d = e, d(R,). Hence

2Ry N Ry < '?—‘—;i—l + 1.
2
Lemma 3. Let R, , R, , R; be arithmetic progressions having z; = z(R,) >
I(¢ = 1, 2, 3) and different d, , d,, , ds where d; = d(R,)(¢ = 1,2,3). Then
@) 2B, UR, UR;) > 21 — 5.

Proof. We may assume 2z, = 2, = 23 = [. Let 4, §, { be a permutation of the
integers 1, 2, 3. We define d;; = d,, , e;; , €;; , €, by

dij = dj; = g.cd. (d:, d)),
d; = e;; di; d; = e di;,
e, = max (e;; ,eii)‘

Lemma 2 implies 2(R; N R;) < (I — 1)/e, + 1. This gives

2R, VR, UR;) > 3l — l(—l— + 1 + —1—) — 3.
€1 (2 (2
Hence the lemma is true if

1,1 ,1
®) S toto <L

We may assume that (8) does not hold and that at least one of e, , e, , €3,
let’s say e; , equals 2. Then either ¢, > 3, ¢; > 3 or we may assume ¢, = 2.
But e; = ¢, = 2 implies ¢, = 4. Hence we have

either ¢, > 3, e > 3
(9) e; = 2 and

or e1=2, ez=4.
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We have either ¢, = 2 or ¢,; = 2, therefore either d, = 2d, or d, = 2d, . In
the first case of (9) we may assume d, = 2d, because we may change the roles
of R, , R, . In the second case we have d; = 2d, = 4d; or d; = 2d, = 4d, and
again we may assume d, = 2d, .

If R is a progression write R'(R®) for the set of z & R such that 2 < r(x > 7)
for every r ¢ R, . Write R° for the set of = e R such that r < z < ' for suitable
elements r, ' of R, . Then R is the disjoint union of R°, R', R* and R’ is an
arithmetic progression with d(R°) = d(R) unless 2(R*) < 1z = 0, 1, 2).

We may assume

r=2z2R, NRy) > 2, s =2z2R, NRs) > 2,

because otherwise R, \U R, or B, \U R; would have at least 2l — 1 elements.
We observe

(10) r< /241, s < lfe, + 1.
d, = 2d, implies R; = R, N R, . This gives
(11) 2(Ry) + 2R3 =1—r.

Now d(R; N\ R;) = ey3 d(R;) = e;3 d(R3). Hence
2R > e2(RiNR;) — 1 =e8—12>25— 1
unless e;3 = 1,d, | ds . Thus

(12) 2Ry +2R) <1—2+1
unless d;|d; .

We distinguish two cases.

a) e; = €5 . Then Ri M R, consists of at most z2(R})/ess + 1 elements, there-
fore (R;\JR)NR; of at most (I—7)/e;+2 elements. Now z(R,\JUR,)=2l—r
and the number of integers of R; belonging to neither B, nor R, is at
least I — s — (I — r)/e; — 2. Thus

2R JVR,UR) >38l—r—s—(l—1)/e, — 2
>3l— /e, — lfe; — (/2 + 1)1 — 1/e)) — 3
>3l —4—U1/2 4 1/2¢, + 1/e,)
> 2] — 4.

b) e; = e,; . This means d; > d; . We observe d, } ds because otherwise
dy, > d; > 2d, , which is impossible. Rj M R, has at most 2(R;)/e,s + 1; there-

fore (B3 \U R2) N R, at most (! — 2s)/e; + 3 elements. We obtain the lower
bound

Bl—r—s—(0—2)/e —3>2l+1/2 = lfe, — l/ex(1 — 2/e)) — 5
=2l — 54+ 1/2(1 — 2/e,))(1 — 2/ey)
> 2l — 5.
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A structure S will mean either a progression 7' having 2(T) > [ or the union
of two progressions T, , T, which have at least two common elements and satisfy
d(T,) # d(T,). A superstructure is the union of three progressions Ty , T3, T,
such that 2(Ty, N\ T,) > 2, 2((T, Y Tx) N T) > 2 and either d(T,), d(T%),
d(T,) are all different or T, , T3 have no common element.

€1, €z, + -+ will denote positive constants.

LemMma 4.

i) The number of progressions P does not exceed m®. The number of T’s is at
most m*l.

ii) The number of P containing a fixed integer x does not exceed ml.

iii) The number of progressions T or structures S containing fixed integers x #= y
8 at most 1°*.

iv) The number of superstructures is bounded by m’l>*.

Proof.

i) P = {p, < +-+ < p;} is determined by p, , p; which gives the bound m”.
The number of T with given z = 2(T) is again at most m°. Summing over z
from 7 to 2 — 1 we obtain the desired bound.

WIfP={p <-+ <p}andzeP,thenz = p, for somes. P is determined
by ¢ and p;, . This gives at most ml possibilities.

iii) For given z = 2(T), T = {¢; < -+ < t,} is determined by ¢ and j where
z =1t ,y = t; . This gives less than 2* choices. Summing over z from [ to
2] — 1 we obtain the bound 4/°,

For structures S consisting of a single T’ we obtain the same estimate. Now
let Sbe T, U Ty. Forgivenz; = 2(T,)(¢ = 1, 2), if

T1={t1<"'<tn}; Tz={31<"'<8,,},

write
bover =815 0% 3 boiteg = S, -
Now for x ¢ S, y € S there exist 7, , ¢, %5, 24 , J1 , J2 such that
biy = 8,5, i, = Siu b, =, L, =Y.

Since 8 is determined by ¢, , -+, %, j1 , j» and since each of 7, , +++ %4, §1 , Ja
is between 1 and 41, we obtain the bound (47)°. Summing over z, , 2, and adding
47 we obtain the bound I°°.

iv) The proof of iv) is similar and can be left to the reader.

Put

(13) PAQ

if d(P) = d(Q) and if P, @ have at least one common element. Now if U is a
set of progressions P, set U for the set of progressions R such that R is the union
of progressions P, , --- , P, of U where P, A P, -+, P,.; A P, . Wesay
R isbuilt of Py, -+- , P,. Write U* for the set of maximal progressions in U,
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that is, the set of R ¢ U where R’ ¢ U, R’ D R, d(R’) = d(R) implies R’ = R.
For example, let I be 4 and let U consist of P, = {1, 3, 5,7}, P, = {7,9, 11, 13},
P, = {11, 13, 15, 17}. Then U consists of P, , P,, P, , P, U P, , P, \U P, ,
P, U P, U P, while U* consists of P, \U P, \U P, only.

Lemma 5. Suppose 8 = T, \J T, is a structure where Ty and T, are built of
Py, .-, P,and P, -, P}, respectively. Then

(149 2(8) 2 1+ by + hy — 2.
Proof. Clearly, z; = 2(T;) 2 14 h; — 1(Z = 1, 2). Lemma 2 yields
2T,NT) < (@—1)/24+1=(+1)/2
Thus
AT, VU T) > 2+ (2 — 1)/2

Sl+mh+ 0+ h)/2 -2
21+ b+ h — 2.

We used &, < [, an inequality which follows from 2(T) < 2l

4. Bounds for the number of certain functions. Denote the set of P having
flPl=34by U, = UG =1, -, k). fisof type @, if there is an R in U,
having 2(R) >2l. fissaid to be of type H; if there is a superstructure T,\JT,\UT,
whose progressions T, , T, , Ts belong to U,;(j = 1, - , k).

Write e,(a) for k°.

LemMA 6. The number | G, | of f of type G;(j = 1, -+ , k) is less than
(15) me,(m — 21 + czu log 1).

Proof. Assume j = 1. Suppose R is in U, , 2(R) > 21 and R is built of
P,---,P,,P;eU,. Wemayassume P,, -, P, are ordered in such a way
that their smallest elements p, -+ | p'” satisfy p® < p® < .-+ < p™.
There is a smallest p such that p™® + (I — 1) d < p*?, where d = d(R).
Then p + (- 1Dd <p?” <pP +@ —1)dandR' =P, U --- U P,
isan R’ ¢ U having 2] < 2(R") < 31 — 1. Hence we may assume

(16) 21 < #[R) <3l —1.

There are at most m” progressions P, . Because of (16), there are not more
than [ possibilities for P, once P, is given. On P, , P, there are (I — u)-tuples
o1 , o, of integers such that f(¢,) = f(s,) = 1. There are Ci_, < I* choices for
o, and for o, . There are m — 2] 4 2u integersin 1 < « < m outside 7, , oy ,
and this implies that there exist exactly e.(m — 2l — 2u) functions f having
fle; Y o,) = 1. Altogether, we obtain

| Gy | < m’lP(m — 21 + 2u) < mPe(m — 21 + czu log ).
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Lemma 7. The number | H, | of f of type H;(j = 1, -+ , k) satisfies
) | H; | < me(m — 21 + cqu log I).

Proof. We assume j = 1. Lemma 4 implies that the number of super-
structures T, \J T, \U T; is at most m?I**.

Nowany Te U, isbuiltof P, , - - - , P, of U; where we may assume the smallest
elements p‘* of P; satisfy P’ < .-+ < p’. Eithert = 1 and T = P, or
t>1,T = P, U P, , because p’ < p* + (I — 1) d, since 2(T) < 2l for
every T. Hence there exists a 2u~tuple 7 in T such that f(z) = 1 for « not in 7.

There exist such sets 7, , 72, 7sin Ty, Ty, T3 . For each 7; we have at most
(21)* choices in T; . Now if ¢ is the set of integers in the superstructure which
are not in 7, , 72, 73 , then f(¢) = 1 and z(¢) > 2] — 5 — 6u according to Lemma
3 and the definition of superstructures. There are altogether at most m?1°*(21)*
ways to choose o, and the number of f having f(¢) = 1 does not exceed
ex(m — 21 4+ 6u + 5). This proves the lemma.

Now let f be of type F; but not of type G, or H; . There will be progressions
Q, P,, -+, P, associated with f satisfying (4a), (4¢b) and (4c). There could
be several sets of progressions @, P, , --- with these properties; we pick just
one such set. Write ¥V for the set of progressions P, , --- , P, . Since f is not
of type G, , 2(R) < 2l for every R ¢ V*. Denote the elements of V*
by T,, -+, T,. Write W for the set of structures S which either

a) areof type S =T, U T;, or

b) of type S = T;, 2(T;) > I, and there exists no T'; 5% T'; such that T, U T,
is a structure. Write X for the set of P in V which are not part of any structure
of W. Denote the elements of W by S, , :-- , S, , the elements of X
by @i, -+-, Q-

LeEmMA 8.

i) If TeVandif Se W andeither S=T,, TET;,or S = T, IT;, T £ T;,
TET;,thenz(SNT) <1

ii) Fach P ¢ V 4s either part of exactly one S; or P = @Q, for one Q; .

iil) @Q; = Q; implies 2(Q; N Q;) < 1. 8; &= 8; implies 2(S; N ;) < 2.

Proof.

i) Assume 2(S N T) > 2. If 8 = T, , then d(T) = d(T;) would imply that
T U T; e Vand T; would not be maximal, while d(T) = d(T,) would imply
that T'\U T'; were a structure, and 7'; would not be in W, because of the condition
inb). If 8 =T, \JT,;, then our argument is similar. T, \U T; \U T cannot be
a superstructure because f is not of type H, . Hence d(T;), d(T';), d(T) must not
all be different, and if d(T;) =d(T), let’s say, then 2(T;N\T)>1. Butd(T,)=d(T)
together with T'; N T 5= 0 implies that T'; \U T'isin V and that T'; is not maximal
in V, which gives a contradiction.

ii) Suppose P is a part of S; as well as of S; . There is a unique T ¢ V* having
P C T, d(P) = d(T). The only conceivable way for T < S;, T < S; would
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bethat S; =T\UT;,8; =T\UT,. Then T; would have at least 2 integers
in common with S; , a contradiction to i).

iii) 2(Q; M Q;) = 2 would imply that @, \J Q; is a structure if d(Q.) = d(Q,);
it would imply @; \J @; e Vit d(Q;) = d(Q;). And z(S; N\ S;) > 3 implies
2(T' N 8;) > 2 for some T of S, , which contradicts i) again.

We call f of type F{¥(z = 1, 2, 3) if f is of type F, and not of type G, or H,
and if

1V: g, the number of elements of X, is at least u.

F®:q < uand s = 1, where s is the number of elements of W.

F®.s > 2.

Similarly we define F;* for j

= 2, -+ , k. Naturally, f can be of several types
for several systems @, Py, +-- , P,

LemMa 9. We have

(18i) | FIP | < m* e (m — lu 4+ csu® log 1),
P (2)

(18ii) | Py ‘} < mPe(m — 21 + cou log 1)

(18ii) | F:® |

for the numbers | F{” | of functions of type F{®.

Proof.

i) Take u of the progressions of X, let'ssay @,, -+, @, . According to (4b),
there exist different elements ¢, , -+ , ¢, of @ belonging to @, , -+ , @, , re-
spectively. There are less than m® ways to choose @, at most I* ways to choose
1, , ¢, and for given ¢; there are not more than ml ways to find a Q; having
g: £ Q; . Altogether, there are at most m***I* ways to pick Q, @, , -++ , Q. .

On each Q;(¢ = 1, -+ - , u) there is an (I — w)-tuple o; where f(¢;) = 1. There
are fewer than I" ways of picking ¢; , fewer than I** ways to pick oy , *+- , 0, .
u
2
two of the sets o, , - -+ , 0, . Hence there exist at most e,(m — lu 4 «”) functions
f having f(oy) = -+ = f(s,) = 1. We obtain

[ FP | € m** 1" e (m — W + 4°) < m*%e(m — lu + csu’ log 1).

iil) Let S be the only structure of W. According to Lemma 5 we have
2(8) > 1 4+ h — 2 if 8 is built of progressions P, , -+, P, of V. According to
(4b) there are elements z, , - -+ , z, belonging to P, N Q, -+-, P, M Q, respec-
tively.

The argument at the beginning of the proof of Lemma 7 shows that any
T ¢ V is the union of at most 2 progressions P ¢ V, therefore S is union of at
most 4 progressions P ¢ V, and there is a subset o of S of max (2(S) — 4u, 0)
elements such that f(s) = 1.

Now if X consists of @, , -++ , @, , there are integers v, , - -+ , ¥, , let's say,
belonging to @, N @, -+, Q, M Q. Let p be the set of elements of Q which are

By Lemma 8iii) there are not more than < 4 integers belonging to at least
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neitherz,, -+ ,&ynory;, -+ ,y,. Everyzephasf(z) = 1 4+ =2 according to
(4c). This implies 2(c M p) = 0, therefore 2(S M p) < 4u. Let 7 be the set of
elements of p which do not belong to S. Then f(r) = 2and 2(+) > | — h — 5u.
The advantage of 7 over p is that 7 is determined by @, Sand y,, +-- , ¥, , and
we do not need to know z, , -+, x, .

As can be shown by the methods used to prove Lemma 4, there are at most
m®l° ways to pick a Q and an S having 2(Q N\ S) > 2. & can be between 1 and 1.
There are at most (47)** ways to choose the set ¢ in S and then at most I* ways
to choose , since 7 is determined by @, S and %, , -++ , ¥, . The number of
functions f having f(¢) = 1 and f(r) = 2 equals

em —20) —z(»)) <em—1l—h+2+4u—~14+h+ 5u)
= ¢,(m — 21 + Yu + 2).
Hence
| F® | < m’ I e (m — 21 4+ 9u + 2) < mle(m — 21 + cqu log ).

iii) Let S, , S. be structures of W. There are at most m*°* ways to pick Q
and structures S, , S, such that 2(Q N S;) > 2(¢ = 1,2). On S;z = 1, 2)
there is a set o; of at least 2(S;) — 4u elements where f(z) = 1. ¢, can be chosen
in at most (41)* ways. Lemma 8iii) implies z(c; N o,) < 2, therefore
2(o1 \J o2) 2 2(8,) + 2(8:) — 8u — 2 > 2] — 8u — 2. The number of f having
f(e1 U ¢3) = 1is not larger than e,(m — 21 4+ 8u + 2). Combining our esti-
mates we obtain the desired result.

5. Proof of Theorem 1. Using LLemma 9 we find

k
24 =22 (|G |+ |Hi |+ | F® |+ | F® ) < mPe(m — 21 + cou log 1),

k
2B =2 > | F® | < m*e(m — lu + cou® log 1)
im1

u+2
< Ic"‘{me,,(—-l u—_'?f—z + ¢you log l)}

< k™{me(—1 + 2U/u + eou log 1) }***.

Choosing u to be the integral part of (I/log I)* and assuming m < e,JI — ¢({log ?]
for a large enough constant ¢, we easily find A < k™, B < k™. Since the number
of functions f of type F is at most (4 + B)/2, the Theorem follows.

6. Proof of the metrical theorem. The integers k& and [ will be considered
fixed in this section. Many of the expressions defined will depend on %k and !
although this will not always be clear from the notation. For instance, we write
M (m) for the number of progressions of ] different terms all of which are integers
inl <z<m
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LeMMma 10.

m2

(19) M(m) = 20 =1 + O(m).

Proof. For any integer din1 < d < (m — 1)/(I — 1) the number of pro-
gressions P between 1 and m with d(P) = d equalsm — (I — 1) d. We obtain

M) = S m = A=) )

where 7 is the integral part of (m — 1)/(I — 1). (The sum is empty if » = 0.)
This gives
2
=1 — - - _m
Instead of N(«; k, I, m) we shall write simply N(a; m). Put M(©0) = 0,
N(a; 0) = 0, L(e; m) = N(a, m) — k'~'M (m) and
M(m, , m) = M(my) — M(my)
(20) N(a; my , my) = N(a; my) — Nla;my) (0 < my < my).

L(a; my , my) = L(a; my) — L(a; my)

Lemma 11.
1
@1) f L¥e; my , ma) da = O(M(my , my)).
0
Proof. The measure of the set of o's where @,, = :-- = a,, for a fixed pro-

gression p; , -+, p, is k'~ ", This gives

1
f N my , ms) da = K" M(my , my).
0
Next,
1
fo Niaym, ,m)da = 2, ulP,Q)

P,mi<p;<m,
Q,m1<q;Sma

where the sum is over progressions P, @ whose largest element isin m; <z < m,
and where u(P, Q) is the measure of the set of a's having o, = -+ = o, and
og, = +++ = ag, . Note that u(P, Q) = k*“~" unless 2(P N Q) > 2. On the
other hand, the number of pairs P,  of the desired type having 2(P M Q) > 2
is O(M(m, , m,)) and we trivially have u(P, @) < 1 for such pairs. Hence

1
f N¥a; my , ms) da = RO M(my , ms) + OM(my , my),
0

and (21) follows.
Theorem 2 is now a result of Lemma 10 and the following result in probability
theory, which in the terminology of Halmos [3] can be stated as follows.

Lemma 12. Let L(a;m), m = 0, 1, 2, -+ be a sequence of real-valued measur-
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able functions on a probability space (X, S, u). Let M(m), m = 0,1, --- be a
sequence of constants satisfying M(m + 1) > M(m),

(22) M@2m) = 0(M(m))
and
(23) M(m) > m* for large m, where ¢, > 0 1s a constant.
Define M (my , ms) and L(a; m, , ms) by (20) and assume that
(24) [ T my , m) dute) = 0@ (m, , ma)).
Let € > 0. Then
(25) L(a; m) = O(M*(m) log*" M (m))

almost everywhere.

Remarks. This lemma was the underlying idea of proofs in [1] and [5], al-
though further complications there may have obscured this. Using ideas of [5],
particularly Lemma 1, one could remove the conditions (22) and (23). In our
application (22) and (23) are satisfied.

Proof. Write L, for the set of intervals (u, v] of the type 0 < 4 = 2" < v =
(t + 1)2" < 2° for non-negative integers r, {. Using (24) we obtain

3 [ leu, dute) = 06

since the intervals of L, with given r cover 0 < x < 2° at most once and therefore
give a contribution not exceeding O(M (2°)). Define S, ,s = 1,2, --- to be
the subset of X where

(26) > LAaju,v) < $TM2Y).

(u,vleLs

The measure of S, is 1 — O(s™*7%). Let S, be the set of elements « which are in
S, whenever s > so(a). S, has measure 1 because Y s'™ is convergent.

Let a be an element of S,. Assume m>2‘®", Choose s so that 2° "' <m<2°.
The interval (0, m] is the union of at most s intervals of L, , therefore

@7) Lie; m) = 27 Lla; u, )

where the sum is over at most s intervals (u, v] of L, . Using (26), (27) and
Cauchy’s inequality we obtain

L¥a; m) < s**°M(2°).
This, together with (22) and (23) gives
L(a; m) = O(si**M*2%)
= O(M*(2") log*"M(2")
= O(M*(m) log***M(m)).



1

3
4

[

=2

40 WOLFGANG M. SCHMIDT

REFERENCES

. J. W. 8. CassgLs, Some metrical theorems in Diophantine approzimation. III, Proceedings

of the Cambridge Philosophical Society, vol. 46(1950), pp. 219-225.

. P. Erpos AND R. Rapb, Combinatorial theorems on classifications of subsets of a given. set,
Proceedings of the London Mathematical Society (3), vol. 2(1952), pp. 417-439.

. P. R. Haumos, Measure Theory, New York, 1950.

. L. MoSER, On a theorem of van der Waerden, Canadian Mathematical Bulletin, vol. 3(1960),
pp. 23-25.

. W. M. ScumipT, A metrical theorem in Diophantine approzimation, Canadian Journal of
Mathematics, vol. 12(1960), pp. 619-631.

. B. L. vAN pER WAERDEN, Beweis einer Baudet'schen Vermutung, Nieuw Archief voor
Wiskunde, vol. 15(1925-28), pp. 212-216.

UniversIiTY OF COLORADO



