
TWO COMBINATORIAL THEOREMS ON
ARITHMETIC PROGRESSIONS

BY WOLFGANG lI. SCttMIDT

1. Introduction. According to a well-known theorem of van der Waerden [6]
there exists an m(]c, l) defined for integers k _> 2, >_ 3, such that if we split
the integers between I and m into ]c classes, at least one class contains an arith-
metic progression of distinct elements. We shall prove

THEOREM 1. For some absolute constant c > O,

For large this is an improvement of the estimate

(2a) Z) [2(Z-

given by ErdSs and Rado [2] and of the estimate

(2b) m(k, l) /kCo

of Moser [4].
Throughout, P, Q, will denote arithmetic progressions of distinct integers

between 1 and m. Consider real numbers a between 0 and 1 written in
scale a O, aa .... Write N(a; k, l, m) for the number of
progressions P {p, p} such that

TEon 2. Keep It, l, e > 0 fixed. Then ]or almost every a,

1-l(3) N(.; n 2(/- 1) + O(m log+ m).

2. The idea of the proof of Theorem 1. There is a 1-1 correspondence
between divisions of 1, m into classes C1, Ck and functions ](x) defined
on 1, m whose values are integers between 1 and ]c. We write

f(er) j

for a set a of integers between 1 and m if ](x) for every x . Put

if ](P) is defined, i.e., if ](pl) ](p) for the elements p, p of P.
In this terminology Theorem 1 means that for m < ]c -c( lo ) there exists
some ] such that P ] for no P.
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Let u be a fixed integer in the range 1 <_ u < l/2. We set

if there is a subset of P of at least u elements having ]() . For integers
in 1 _< _<_ define -t- by

if j=.

We say ] is o] type Fi(j 1, l) if there exists a Q and P1 P,,
>_ r >_ u 1, having P P for i t, with the following properties.

(4a) ][P,] j (1

_
i

_
r),

and the elements ql, qz of Q can be ordered in such a way that

(45) q, P, (1 _.< i _< r)

(4c) ](q,) j+ (r + 1

_
i

_
1).

It may happen that r l, and in this case the last condition is to be omitted.
/ is said to be of type F if it is of at least one of the types F F.
LEMM 1. I] there exists an ] not of type F, then there exists a function g such

that P g ]or no P.

Prool. Write U for the set of P s where ][P] is defined. With each P U
associate some x x(P) P having ](x) lIP]. Define the function g by

f(x) + if x x(P) for at least one PU,g(x)
!
(J(x) otherwise.

We claim that Q g for no Q.
Otherwise, if Q g, assume g(Q) 1. ][Q] 1 would imply f(x(Q)) 1,

g(x(Q)) 1 + =2, a contradiction. But if ][Q] is not 1, then there are at
least u -t- 1 integers x e Q with ](x) 1. Write x, ..., x(r >_ u - 1) for the
elements of Q having ](x) 1, y./.....yz for the elements of Q having ](y) 1,
if such integers exist. Now each x belongs to some P with I[P] /(x).
1 g(x) ](x) - implies/[P,] ](x) It. Therefore ] would be of type
F, a contradiction.
To prove Theorem 1 it will be sufficient to show the existence of a function

if not of type F. We shall derive bounds for the number of functions of type F
and shall show in 5 that if u is the integral part of (//log l) and if (1) holds,
0hen the number of such functions is smaller than ]’, the total number of func-
tions 1.

3. Auxiliary lemmas on arithmetic progressions. Besides progressions
P, Q, of elements we have to study arithmetic progressions R of an arbitrary
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number z z(R) _> 2 of elements which are integers between 1 and m. Pro-
gressions R with z(R) 2 are pairs of integers. Generally, z(z) will denote the
number of elements of any set z of integers. Write d(R) for the.common differ-
ence r2 rl r3 r2 of the elements rl < r2 <: ,< r of R. The
letter T w.ill be reserved for progressions T having

(5) <_ z(T) <
R1 . R is again an arithmetic progression unless z(R (’ R) <_ 1.

LEMMA 2. Let RI R be progressions and put z z(R), d
d eid(i 1, 2) where d g.c.d. (d d2). Then

(6) z(R R)< min |"---------[-1 --1.
\ e2 el /

d(Ri),

Pro@ We may assume z(R R) >_ 2. Then R R2 is a progression
having d(R R) ele2d e d(R). Hence

LEMlVI. 3. Let R R R3 be arithmetic progressions having z z(R)
l(i 1, 2, 3) and different d d d where d d(R)(i 1, 2, 3). Then

(7) z(R %)R R) >_ 21- 5.

Pro@ We may assume z z z 1. Let i, j, be a permutation of the
integers 1, 2, 3. We define d d. e e. e by

d d g.c.d. (di, d.),

d e d, d e d
max (e

Lemma 2 implies z(R, R) <_ (l 1)/e, -l- 1. This gives

z(R, kY R kY R) >_ 3l- " e- 3.

Hence the.lemm is true if
1 q_l q_l <1(8) e- e- e-

We may assume that (8) does not hold and that at least one of e e. e:
let’s say ea equals 2. Then either el >_ 3, e >_ 3 or we may assume el 2.
But. ea e 2 implies e 4. Hence we have

Ieither e >_ 3, e >_ 3

(9) ea 2 and /
[or e 2, e, 4.
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We have either e, 2 or e 2, therefore either d 2d or d 2d, In
the first case of (9) we may assume d 2d, because we may change the roles
of R, R. In the second case we have d 2d 4d or d 2d 4d, and
again we may assume d. 2d,

If R is a progression write R’(R) for the set of x e R such that x < r(x > r)
for every r R,. Write R for the set of x e R such that r _< x _< r for suitable
elements r, r’ of R, Then R is the disjoint union of R, R, R and R is an
arithmetic progression with d(R) d(R) unless z(R) <_. 1(i 0, 1, 2).
We may assume

r z(R R) >_ 2, s z(R R) >_ 2,

because otherwise R R or R, R would have at least 21 1 elements.
We observe

(10) r <: l/2 + 1, s <_ 1/e + 1.

d 2d implies R ’= R ,Q R. This gives

(11) z(R) + z(R) r.

:Now d(R R) e, d(R) e d(R). Hence

z(R) >_ e,z(R, R)- 1 e,s- 1 >_ 2s- 1

unlesse 1, d Ida. Thus

(2) z(R) + z(R) <_ -2s +
unless d, ld
We distinguish two cases.
a) e e. Then R R consists of at most z(R.)/e 1 elements, there-

fore (R2R2)R of at most (1-r)/eW2 elements. Now z(R,R)=21-r
and the number of integers of R belonging to neither R nor R is at
least/- s- (1-r)/e 2. Thus

z(R, W R2 W R) >_ 3l r s (1- r)/e, 2

>__ 3l- lie, 1/e- (1/2+ 1)(1 l/e,) 3

>_ 3l- 4- 1(1/2 + 1/2e + ]/e)
> 2/-4.

b) e e2. This means d > d We observe d ’ d because otherwise
d > d >_ 2d, which is impossible. R R has at most z(R)/e, -t- 1; there-
fore .J R) R at most (l 2s)/e -t- 3 elements. We obtain the lower
bound

31 r s (l 2s)/e, 3 >_ 21 -{- 1/2 1/e l/e(1 2/e,) 5

21- 5-t- //2(1 2/e)(1 2/e)
> 2/-- 5.
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A structure S will mean either a progression T having z(T) > or the union
of two progressions T, T which have at least two common elements and satisfy
d(T1) d(T). A superstructure is the union of three progressions T1 T, T3
such that z(T1 T2) >_ 2, z((T1 T) T3) _> 2 and either d(T1), d(T2),
d(T) are all different or T1 T3 have no common element.
c ,c., will denote positive constants.

LEMMA 4.
i) The number o] progressions P does not exceed m2. The number of T’s is at

most m21.
ii) The number o] P containing a fixed integer x does not exceed ml.
iii) The number o] progressions T or structures S containing fixed integers x y

is a most .
iv) The number o] superstructures is bounded by ml.
Proo].
i) P {pl <: < p} is determined by pl p which gives the bound m.

The number of T with given z z(T) is again at most m. Summing over z
from to 2l 1 we obtain the desired bound.

ii) If P {pl <: <: p} and x P, then x p, for some i. P is determined
by i and p/. This gives at most ml possibilities.

iii) For given z z(T), T {tl < < t,} is determined by i and j where
x t y t This gives less than z choices. Summing over z from to
2l 1 we obtain the bound 4l.
For structures S consisting of a single T we obtain the same estimate. Now

let S be T1 T. For given z z(T)(i 1, 2), if

T1 {tl < < t,.}, T {sl < <
write

low for x S, y S there exist il, i, i, i, jl, j. such tha

Since S is determined by il, i,, ]1, and since each of il, Q, ], i
is between 1 and 41, we obtain the bound (4/). Summing over zl, z and adding
4l we obtain the bound ’.

iv) The proof of iv) is similar and can be left to the reader.
Put

(13) P/k Q

if d(P) d(Q) and if P, Q have at least one common element. Now if U is a
set of progressions P, set for the set of progressions R such that R is the union
of progressions P, P, of U where P1 / P=, P,-1 /k P We say
R is built o] P, P,. Write U* for the set of maximal progressions in U,
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that is, the set of R 0 where R’ u , R’ R, d(R’) d(R) implies R’ R.
For example, let be 4 and let U consist of P1 1, 3, 5, 7}, P2 {7, 9, 11, 13},
P3 Ill, 13, 15, 17}. Then consistsofP1,P.,P.,P1 L) P2,PP3,
P J P2 Pa while U* consists of P ) P2 P3 only.

LEMMA 5. Suppose S T .) T is a structure where T and T are built of
PI Ph, and P P, respectively. Then

(14) z(S) >_. l+ h - h2- 2.

Proo]. Clearly, z z(T) >_ - h 1(i 1, 2). Lemma 2 yields

z(T1 T2) <_ (z2 1)/2 - 1 (z - 1)/2.

Thus

z(T T2) >_ z - (z 1)/2

>_. - h - (1 - h)/2 2

>_ 1-h Wh2-2.
We used h _< l, an inequality which follows from z(T) <: 21.

4. Bounds for the number of certain functions. Denote the set of P having
/[P] j by Ui Ui(])(j 1, k).
having z(R) >_ 21. ] is said to be o] type Hi if there is a superstructure TITT3
whose progressions T, T., T3 belong to

Write e(a) for k".

LEMMX 6. The number G, of ] of type Gi(j 1, k) is less than

(15) m2e(m 2l - cu log 1).

Proo]. Assumej 1. Suppose R is in z(R) >_ 21andR is built of
P, P,, P U. We may assume P, P are ordered in such a way
that their smallest elements p(1), ..., p()satisfy p(1) p() < p().
There is a smallest p() such that p() W (l 1) d < p(), where d d(R)
Then p() + (1- 1)d < p() _< p() + (2/- 1)d and R’ P k.) P
is an R’ ] having 21 _< z(R’) _< 3l 1. Hence we may assume

(16) 2l <_ z(R) <_ 31- 1.

There are at most m progressions P Because of (16), there are not more
than possibilities for P, once P is given. On P, Pt there are (l u)-tuples, of integers such that/(a) =/(a) 1. There are C_, _< choices for
a and for a, There are m 2l - 2u integers in 1

_
x _< m outside a, a-

and this implies that there exist exactly e(m 21 2u) functions ] having
]( %) a,) 1. Altogether, we obtain

G <_ m21le(m 2l T 2u) _< me(m- 21 + c3u log 1).
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LEMMA 7. The number H of f of type Hi(i 1, k) satisfies

(17) [Hi <- me,(m 2l + c4u log l).

Proof. We assume j 1. Lemma 4 implies that the number of super-
structures T1 k.) T. t.) T3 is at most ml’.
Now any T i is built of P,, ..., P, of U,. where we may assume the smallest

elements p() of P satisfy p(1) <: <: p(,). Either 1 and T P1 or
> 1, T P1 ) P, because p(*) _< p(1) -t- (l 1) d, since z(T) < 2l for

every T. Hence there exists a 2u-tuple r in T such that ](x) 1 for x not in r.

There exist such sets r,, r, ra in T,, T., Ta. For each r we have at most
(2/) choices in T,. Now if a is the set of integers in the superstructure which
are not in r,, ru, r., then ](a) 1 and z(a) >_ 21 5 6u according to Lemma
3 and the definition of superstructures. There are altogether at most ml’(21)
ways to choose a, and the number of ] having f(a) 1 does not exceed
e,(m 2l - 6u - 5). This proves the lemma.
Now let ] be of type F, but not of type G, or H. There will be progressions

Q, P P associated with ] satisfying (4a), (4b) and (4c). There could
be several sets of progressions Q, P, with these properties; we pick just
one such set. Write V for the set of progressions P,, P. Since ] is not
of type GI z(R) < 2l for every R , V*. Denote the elements of V*
by T, T,. Write W for the set of structures S which either

a) are of types TTi,or
b) of type S T, z(T) > l, and there exists no T T such that T, k.) T

is a structure. Write X for the set of P in V which are not part of any structure
of W. Denote the elements of W by S S. the elements of X
byQ, ...,Q.

L 8.
i) I1 T ,. and i] S ,. W and either S T, T= T, or S T T T = T,

T = T then z S T) <_ 1.
ii) Each P V is either part of exactly one S or P Q, ]or one Q
iii) Q Qi implies z(Q, Qi) <_ 1. S, Si implies z(S, S) <_ 2.

Proo].
i) Assume z(S ( T) >__ 2. If S T, then d(T) d(T) would imply that

T T, , ? and T would not be maximal, while d(T) . d(T,) would imply
that T k_) T were a structure, and T would not be in W, because of the condition
in b). If S T, k.) Ti, then our argument is similar. T k_) T; k_) T cannot be
a superstructure because is not of type H. Hence d(T), d(Ti), d(T) must not
all be different, and if d(T,) =d(T), let’s say, then z(T,T) >_ 1. But d(T,) =d(T)
together with T (% T 0 implies that T T is in and that T is not maximal
in if, which gives a contradiction.

ii) Suppose P is a part of S as well as of S;. There is a unique T e V* having
P

___
T, d(P) d(T). The only conceivable way for T

_
S, T S would
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be that S T k2 T, Si T ) T, Then T. would have at least 2 integers
in common with S, a contradiction to i).

iii) z(Q, (% Q) >_ 2 would imply that Q, k) Q; is a structure if d(Q) d(Q,);
it would imply Q L) Q if d(Q) d(Q). And z(S S.) 3 implies
z(T S.) >_ 2 for some T of S, which contradicts i) again.
We call ] of type F) (i 1, 2, 3) if ] is of type F1 and not of type G1 or H1

and if
F)’ q, the number of elements of X, is at least u.
F2)" q < u and s 1, where s is the number of elements of W.
F3)" s >_ 2.

Similarly we define F) for 2, k. Naturally, ] can be of several types
for several systems Q, P1, P
LEMMA 9.

( 8i)

(18ii)

(18iii)

We have

F(’) <- m+e(m lu -k cu log l),

F) i <_ me(m 2 + cu log l)

the numbers F’ ol Iunctions o] type F).

Proo].
i) Take u of the progressions of X, let’s say Q, Q. According to (4b),

there exist different elements q q of Q belonging to Q Q re-
spectively. There are less than m ways to choose Q, at most ways to choose
q, q and for given q there are not more than ml ways to find a Q having
q Q Altogether, there are at most m/l ways to pick Q, Q1 Q
On each Q(i 1, u) there is an (1 u)-tuple where ]() 1. There

are fewer than ways of picking , fewer than "’ ways to pick ,.
By Lemma 8iii)there are not more than ()

_
u integers belonging to at; least,

two of the sets a, . Hence there exist at most e(m lu -k u) functions
] having 1() 1() 1. We obtain

() mU+2,. <_ l"’+"e(m lu -}- u) <_ m"+e(m lu + cu log /)

ii) Let S be the only structure of W. According to Lemma 5 we have
z(S) >_ -t- h 2 if S is built of progressions P, P of V. According to
(4b) there are elements x, xa belonging to P ( Q, P Q, respec-
tively.
The argument at the beginning of the proof of Lemma 7 shows that any

T V is the union of at most 2 progressions P V, therefore S is union of at
most 4 progressions P V, and there is a subset of S of max (z(S) 4u, O)
elemenis such tha ]() 1.

:Now if X consists of Q Q, there are integers y y, let’s say,
belonging to Q Q, Q Q. Let p be the set of elements of Q which are
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neither xl, xh nor y, yq. Every z p has f(z) 1 -t- =2 according to
(4c). This implies z( p) 0, therefore z(S ( p) 4u. Let r be the set of
elements of p which do not belong to S. Then ](r) 2 and z(r) _> h 5u.
The advantage of r over p is that r is determined by Q, S and yl, yq, and
we do not need to know x, x.
As can be shown by the methods used to prove Lemma 4, there are at most

m2lc" ways to pick a Q and an S having z(Q l S) >_ 2. h can be between 1 and 1.
There are at most (4/)4 ways to choose the set in S and then at most ways
to choose r, since r is determined by Q, S and yl y The number of
functions ] having ]() 1 and/(r) 2 equals

e(m z(o-) z(r)) _e(m- l- h + 2 + 4u + h + 5u)

e(m- 21 + 9u + 2).

Hence

F) <- ml//"+"e(m 21 + 9u + 2) _< m2e(m 21 + cu log 1).

iii) Let S S be structures of W. There are at most m21" ways to pick Q
and structures S, S such that z(Q S) >_ 2(i 1, 2). On S(i 1, 2)
there is a set of at least z(S) 4u elements where f(x) 1. , can be chosen
in at most (4/)4 ways. Lemm 8iii) implies z(a t% r2) __. 2, therefore
z(o’. k.) o-) >_ z(S) + z(S2) 8u 2 _> 21 8u 2. The number of ] having
]( L) a) 1 is not larger than e,(m 21 + 8u + 2). Combining our esti-
mates we obtain the desired result.

5. Proof of Theorem 1. Using Lemma 9 we find

2A 2

_
(] G, + [H + [F) + [F) [) _< me(m 21 + C9’ log 1),

i---1

B Z F1) - mU+2e,(m lu 27 Caou log l)

<_ k me -1--- + co log_
lc’{ me(--1 + 21/u + CoU log l)}./2.

Choosing u to be the integral part of (//log l) and assuming m < e:[1 c(l log/)1/2]
for a large enough.constant c, we easily find A <:/c, B < lc’. Since the number
of functions ] of type F is at most (A B)/2, the Theorem follows.

6. Proof of the metrical theorem. The integers/c and will be considered
fixed in this section. Many of the expressions defined will depend on/ and
although this will not always be clear from the notation. For instance, we write
M(m) for the number of progressions of different terms all of which are integers
inl_x_m.
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LEMMA 10.

(19) M(m) 2(/- 1) + O(m).

ProoJ. For any integer d in 1 _< d _< (m 1)/(l 1) the number of pro-
gressions P between 1 and m with d(P) d equals m (l 1) d. We obtain

M(m) (m (1- 1) d)

where r is the integral part of (m 1)/(l 1). (The sum is empty if r 0.)
This gives

mM 1/2r(2m- (r + 1)(/- 1)) 2(/- 1) + O(m).

Instead of N(a; k, l, m) we shall write simply N(; m). Put M(0) 0,
N(a; O) O, L(a; m) N(a, m) ]l-*M(m) and

M(m m.) M(m2) M(m)

(20) N(a; ml m) N(a; m) N(a; ml) (0 <_ ml < m).

L(a; ml m2) L(a; m) L(a; ml)
LEMMA 11.

(21) fo L(a; m m.) da O(M(m m.)).

lext,

a for a fixed pro-

N(a; ml m.) do k-M(m m).

fo N(a; m, m)da
P,mx<<_m
Q,mx<ql_m

t(P, Q)

where the sum is over progressions P, Q whose largest element is in ml < x _< ms
and where #(P, Q) is the measure of the set of a’s having al a and
al a. Note that #(P, Q) ](1-) unless z(P ( Q) >_ 2. On the
other hand, the number of pairs P, Q of the desired type having z(P (% Q) >_ 2
is O(M(m ms)) and we trivially have (P, Q) _< 1 for such pairs. Hence

N2(; m m2) d l(-)M2(m m2) + O(M(ml m2)),

and (21) follows.
Theorem 2 is now a result of Lemma 10 and the following result in probability

theory, which in the terminology of ttalmos [3] can be stated as follows.

LWMMA 12. Let L(a; m), m O, 1, 2, be a sequence o] real-valued measur-

Proo]. The measure of the set of a’s where
gression p, p is/c1- l. This gives



TWO COMBINATORIAL THEOREMS 139

able ]unctions on a probability space (X, S, t). Let M(m), m O, 1,
sequence of constants satisfying M(m 1) >_ M(m),

bea

(22) M(2m) O(M(m))
and

(23) M(m) > m /or large m, where Co > 0 is a constant.

Define M(ml m) and L(a; m m2) by (20) and assume that

(24) f L2(a; ml m) dt(a) O(M(ml m)).

Let e > O. Then

L(c; m) O(M(m) log+’M(m))
almost everywhere.

Remarks. This lemma was the underlying idea of proofs in [1] and [5], al-
though further complications there may have obscured this. Using ideas of [5],
particularly Lemma 1, one could remove the conditions (22) and (23). In our
application (22) and (23) are satisfied.

Proo]. Write L. for the set of intervals (u, v] of the type 0

_
u t2 < v

(t + 1)2 < 2’ for non-negative integers r, t. Using (24) we obtain

f L2(a; u, v) dry(a) O(sM(28))
(u,].L,

since the intervals of L. with given r cover 0 _< x < 2 at most once and therefore
give a contribution not exceeding 0(M(28)). Define $8 s 1, 2, to be
the subset of X where

(26) L2(a; u, v) < s+’M(28).

The measure of S. is 1 O(s--). Let So be the set of elements a which are in
S, whenever s > So(a). So has measure 1 because s-1- is convergent.

Let a be an element of So. Assume m>_2’("). Choose s so that 2’-1gm2’.
The interval (0, m] is the union of at most s intervals of L,, therefore

(27) L(a; m) ’ L(a; u, v)

where the sum is over at most s intervals (u, ] of Lo
Cauchy’s inequality we obtain

Using (26), (27) and

L(a; m) <_ s+’M(2’).
This, together with (22) and (23) gives

L(a; m) O(si+’M1/2(2"))
O(Mt(2’) logt/’M(2’))
O(Mi(m) log+’M(m)).
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