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ABSTRACT 

The van der Waerden number W(n) is the smallest integer so that if we divide the integers 
{1,2, .  . . , W(n)}  into two classes, then at least one of them contains an arithmetic 
progression of length n.  We prove in this paper that W(n) 2 2"/n" for all sufficiently large 
n. 

INTRODUCTION 

Denote by W(n) smallest integer so that if we divide the integers 
{1,2, . . . , W(n)} into two classes, then at least one of them contains an arith- 
metic progression of length n .  

It was proved by L. Lovisz [3] that the van der Waerden number W ( n ) z  
2"/8n. Berlekamp [2] proved that if p is a prime, then W ( p  + 1)  2 2 p .  p .  We 
improve on Lovisz's lower bound by showing that W(n) 2 2"/n" for all sufficiently 
large n. We also deal with the case of n-uniform almost disjoint hypergraphs. Let 
X be a finite set and A A ,  . . - A be subsets of X satisfying [Ail = n for every 
1 s  i 5 t and IAi f l  Ail I 1 (almost disjointness) for every pair (Ai, A j )  will i # j .  
It follows from the Lovasz' Local Lemma that if I ( i :  P E Ai}l 4 r 3 / n  for every 
P E X ,  then there exists a good two-coloring of X ,  which means that we can color 
the points of X with two colors-red and blue-so that none of the A i  will be 
monochromatic. 

Theorem 1 below improves on this result and the proof will be a good model 
for understanding the case of arithmetic progressions. 
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Theorem 1. Let ( X ,  { A l ,  . . . , A , } )  be an n-uniform almost disjoint hypergraph. 
Let E > 0 be arbitrary but fixed. Suppose that I { i: P E A j }  1 i 2"ln" for every 
P E X .  Then there exists a good two coloring of X provided n > no(&). 

Proof of Theorem 1.  
edges. We need the following technical Lemma: 

Let L = { A l ,  A , ,  . . . , A , }  and call the elements of L 

Lemma 1. 
can choose t sets R , ,  R,, . , . , R ,  with the following properties: 

I f  n is large enough and k is a constant depending only on E ,  then we 

(i) R j C A j  for all l l i s t  
(ii) ]R,l = k for all 1 5  i 5 t 

(iii) I{i: PE R , } l c  - .  2" - 2k forall P E x  
n p  n 

Remark. Before proving the existence of such sets R, we explain the role of the 
sets R,:  

Suppose that we have already colored the points of X, but we have been 
unlucky and there are some monochromatic A j's .  It is a natural idea to select one 
point from each monochromatic A ,  and then change the color of these points. But 
we have to be careful about the selections. It may happen that after this 
modification we get some new monochromatic sets A , .  Let us examine the 
following situation: 

Example 1. 

0 

Assume that { P }  = A ,  n A,  where A ,  is red and A,\A, is blue. If we change the 
color of P from red to blue then we kill A ,  but A, will become monochromatic. Of 
course we should select another point from A , .  All we have to do is to select one 
"nice" point from each monochromatic edge A , .  In order to simplify our job we 
restrict ourselves to R , ,  which means that we know from the beginning that our nice 
point from A ,  will be an element of R,. 
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Example 2. 

A< 

/ / \\ 

0 
90.A ee, 

Assume that A ,  is monochromatically red, and for every P E R , ,  there exists an Ai 
satisjjhg A n A,  = { P }  , and Ai\{ P} is blue. It would be impossible to find a nice 
point in that situation. In order to avoid situations like Example 2 ,  we will use a 
version of the Lovasz’ Local Lemma, viz., Lemma 2. 

Proof of Lemma 1. 
I.e., 

Let us denote d the maximum degree of the hypergraph, 

d = m a x l { i : P € A , } l .  
P E X  

We know from the hypothesis of Theorem 1 that d I 2”ln‘. 

Firsf Step. 
maximum multiplicity is less or equal to [d ln]  + 1: 

We want to choose one point P, from each A ,, in such a way that the 

If we have an arbitrary set of representatives Q = { P, ,  P,, . . . , P,} where P, E A ,  
for every 1 I i 5 t ,  we define the multiplicity of a point P E X by: 

and the maximum multiplicity by: 
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Let us denote Yo = { P E X: deg, P = M( Q)} and for j 2 1 Y, = Y,-l U {PE X :  
there is an A i  E L with the property that P E A i  and Pi E q-,}. It is trivial that 
Y,C Yl C Y 2 . . .  Y k C . . .  . Let Y =  U;=, Yk. Since X has a finite number of 
elements, there is a number k such that Yk = Y .  It follows from the construction 
of the sets Yi that 

{ P E X :  there is an A i  E L with the property that P E A i  and Pi E Y }  C Y 

Let minn M( Q) = M,,  where Q runs over all sets of representatives. Let Q, be a 
set with M( Q,) = M ,  such that the number of points of multiplicity M ,  is 
minimal. We claim: 

M ,  - 1 5 degQo P P M ,  for every P E Y . (1.2) 

The proof of (1.2) is indirect: Suppose that there exists a point P E Y with 
degQo P 5 M ,  - 2. Let us denote 

S = min j .  
P E  Y, 

It follows from the construction of the sets Y, that we can find a point T E Y, 
edges A '1, A12 * . . Ars E L which satisfy the following properties: 

T =  PI ,  and T E Yo 

A,, f l  AIJt l  = PI,+1 and P,,+* E Y, for every i l j  I S - 1 

and P E A,s 
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We can modify Q,: Instead of the point T we rather choose the point At l  r l  A12 
from the edge All,  instead of the point A, f l  A,,+, we rather choose the point 

n At,+* for every 1 5 j  I S - 2 ,  and instead of the point A,s-l f l  Als  we rather 
choose the point P from the edge Als.  

Then we get a modified set of represen atives where the new degree of T is 
do - 1, the new degree of P is increasing by 1 and the degree of Pi and of all the 
other points remained the same. So it is easy to see that we get a "more optimal 
set," which is a contradiction. This proves (1.2). 

Let us consider the following cardinality: V =  I{i: Ai C Y}l. It follows from the 
definition of degree d of the hypergraph that V 5 d . I Y1 ln.  On the other hand, 
we know that U { A , :  where i satisfy Pi E Y} C Y. So it follows from (1.2) that 
V 2 IYI(M, - 1). So we have proved that M(Q, )  5 [ d / n ]  + 1 which means that 
Q, satisfies (1.1). 

Let B, = Ai\P, for every 1 5  i I t. We know that lBil = n - 1, IB, fl Bjl 5 1 and 
I{i: P E B i }  1 5 d for every P E X. It completes the first step. 

General Step. Use the procedure described in the first step to the sets 
B,, B,,  . . . , B,. We take k steps. Because of the almost disjointness, if n > k + 1 
then after j step we get t different almost disjoint sets with cardinality n - j. At 
the end, we get the sets D,, D,. - - D,, IDi[ = n - k for every 1 5  i 5 t .  Let 
Ri = .A i\Di. 

By the repeated use of inequalities (1.1) and by the assumption d 5 2"/nE we 
have 
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If n is large enough, 

2" 2k 
J ( i : P E R , } J s - ; . -  n n  

and Lemma 1 follows. 

The LOVBSZ' Local Lemma (see Spencer [4]). Let 3 be a simple graph on the 
vertex set V ( % )  = {1,2, . . . , n }  and let an event TI  be associated with each vertex i. 
Suppose that there are real numbers x1 , x,, . . . , x,, 0 < x, < 1 such that 

( a )  every T ,  is independent of the set of all Ti's for which j is not adjacent to i. 
( b )  P ( T , ) 5 ( l - x L )  n x, i = 1 , 2  , . . . ,  n .  Then P(~l.F,....-Fn)>O. 

Lemma 2 (See Beck [l]). Let X be afinite set and B,, B, . * * B, be not necessarily 
distinct subsets of X .  Assume that 1 B, 1 2 n for all i. For every B, let there be given a 
2-coloring: f,: Bz+ {red, blue}. If C, p E B ,  [1 - ( l / r ~ ) ] - ' ~ ~ '  .2-IBf' 5 l / n  for every 
p E X then there exists a 2-coloring f :  X- ,  {red, blue} such that for every i 

{,.I1 

f IB, #.t . 
Proof of Lemma 2. Following Beck [l], color the points of X with red and blue 
at random, independently of each other with probability 4 .  Let T,  denote the 
event that f I B ,  = f,. Then P( T , )  = 2-let1 as there are 21Bc1 ways to color B, and one 
of these comes into consideration. Observe that if B l l ,  B 1 2 .  . . BLk are disjoint from 
B,, then T, is independent of T l 1 .  - TI,.  So if we form $2 such that { i ,  j }  iff B, n 
B, # 0, then this graph and the associated events satisfy condition (a) of Lovasz' 
Local Lemma. 

Moreover, we shall prove that condition (b) is satisfied as well. Indeed, let 
1 - x, = [l - (l /n)]-lBCl.  2-IBt1 then 

(l-x,) n x l q l - x , )  n n X , L ( l - X , )  n (1- c ( 1 - X I ) )  
{ I ,  11'9 P E B ,  I P'B, P E E ,  I P E E ,  

since 
-14 1 .2-IB,I < - - .  

I P'B, 2 ( 1 - x , ) =  1 P E E ,  c (1-L)  n n 

Thus we have 

so that (b) is satisfied. 
By the application of LOV~SZ' Local Lemma we obtain P(T,  * . . . T,) > 0, i.e., 

there exists a good 2-coloration. This proves Lemma 2. rn 
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Remark. In other words, if we have a "few" prohibited color configurations, 
then there exists a 2-coloring which contains no prohibited configurations. It is 
important that the sets B ,  . . . B,r are not necessarily different. This means that we 
may prohibit more then just one coloring on the same subset B .  In the following, 
we will describe the prohibited color-configurations. 

We recall that L = { A , ,  . . . , A , }  and k is a constant depending only on E .  

Let k = [ 5 / ~ ] .  

Definition. Configuration of Type 1. 

C 

0 
Let B be the following subset: B = ( U  :=, A;,) U C where the edges C ,  
A, , ,  . . . A is . . . A are elements of L satisfying 

A I s n C = Q ,  and Q , E R I s  forevery 1 S S r m .  

Here Q , ,  Q2 . . . Q, are mutually distinct points. Assume that the set U ;=, A;,$ is 
red, and the set C\ U y- A I s  is blue. Then we call the subset B with this coloring 
configuration of type 1. 

For example, if P E R,  in Example 1, then this is a configuration of type 1 with 
m = 1. We cannot avoid these configurations even with the help of Lemma 2 since 
the configuration has 2n - 1 points and there are too many configurations which 
contain a fixed point P. 

We want to prohibit the configurations of type 1 at least in the case when rn is 
large. We distinguish two cases. 
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Definition. We call a configuration of type 1 as a prohibited configuration of type 
1.a if 

Let (f,, B l ) 7  ( f2, B2)  - - (fi, B,) be all the prohibited configurations of type 1.a. 
We call 

the contribution with respect to P E X of the configurations of type 1.a in Lemma 
2. 

Lemma 3. 
0(1 In2) f o r  every P E X .  

The contribution of the prohibited configurations of type 1.a is 

Proof of Lemma 3. Fix a permutation of X .  Fix m. 

Suppose that P E C. There are 52"ln" choices to C since d 5 2"In". Then we 
prescribe the m points of C: ( Z )  possibilities. We have a permutation of the 
points of X ,  so we have an order to the m points-Q, Q2 - . * Q, also. At first we 
will prescribe the edge Ail  adjacent to Q,, thenAi2 adjacent to Q2,  and so on. We 
call the edge Ail and also the indices S "almost determined" if there exists j < S 
with A i ,  n Ais# 0 .  Suppose that there are exactly z different "almost determined" 
indices.' There are ( 7 ) possibilities to fix this z element index set. We select the 
sets A , .  one-by-one. 

If the indices S is not "almost determined," then there are only 2"ln" .2k/n 
choices to A i  because of the property Qs E Ris and the property (iii) of Lemma 
1. 

If S is "almost determined" then there are 5 n 2  possibilities to Ais: Before we 
determine Ais we already know which point is Qi and we know that one of the 
elements of Ais is in the set U j<s  Ai.. Using the fact that two points determine 
A i q  we get the previous inequality. 

' 
If A ,  is "almost determined" then 

almost disjoint property. It follows: 

JBI 2 n - m + 

I A i > U y L : A i ) 2 n - S + 1  because of the 

( m  - z>n + z [  S] . 
Summarizing the previous calculations, we have at most 

configurations, each contain at least n - m + (rn - z ) n  + z * [n /2]  points. So it 
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follows that the contribution of that case 

We know that m 1 m ,  and 0 I z I m .  It is easy to see that in each case the 
contribution = O(l/n4). Recall that m and z were fixed. Summing up all these 
cases we get that the contribution of the configurations of type l .a= O(l /n2)  
under the assumption P E C. 

Next suppose that P#C. In this case, first fix the edge adjacent to P: r2"ln" 
possibilities and call this edge A,,. Then prescribe C: I k  * 2"/n" possibilities. Then 
from the same calculation and the same argument as before we get that the 
contribution of this case (with fixed z and m): 

If z and m are not fixed, we get O(l /n2)  as before. Thus we proved Lemma 3. 
B 

Definition. 
color of the set U 
Then we call B with this coloring, prohibited configuration of type 1.b. 

Let B be a configuration of type 1 .  with m = [ n / 2 ] .  Assume that the 
Ais is arbitrary. Ais is red, and the coloring of 0 U 

Lemma 4. 
O ( l / n 2 ) .  

The contribution of the prohibited configurations of type 1.b are 

Proof. Repeating the argument of Lemma 3 we obtain that the contribution 

if we fix z .  
In cases z 2 2 we have that the contributions ~ ~ ( 8 n ~ ) ~ / 2 ' " / ~ ]  = O( 1 / n 3 ) .  
In cases z 5 2 we have that the contributions 1 ( 2 / n E / 2 ) " / 2  = 0(1 / n 3 )  which 

proves Lemma 4. 

Remark. It is evident that if there is no prohibited configuration of type l .b,  
then there is no configurations of type 1. with m 2 n / 2  also. 

Now we change the role of the blue and red colors and prohibit the reversed 
cases where U 

We call a point P "bad" if there is a configuration of type 1 .  in which P is one 
of points Qi .  We call the point P nice otherwise. We call an edge "almost 
monochromatic" if there exists a configuration of type 1 .  in which the edge is in 
the position of C. 

It is easy to see that in the Example 2, the set A j  is almost blue and every 
points in Ri are bad. We want to avoid the situation in which there exist a 
monoc,hromatic edge A i  and every points P E Ri are bad. 

Ais is blue and 0 U YZl Ais is red. 
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Definition. Configuration of Type 2. 

/- 
4 

‘ t i  , 

c 

- \- 

A is a monochromatic red edge which has only bad points in its subset R. More 
formal: Let the sets A ,  C ,  . * C, and A , , ,  1s i 5 k ,  i s j 5 m, be elements of L. A 
is red and the edges A , , ,  are not necessarily different red edges. Suppose further 
that the edges C,,  C,, . . . , C,  are almost disjoint blue edges, and the edges 
A ,  A L , l ,  . . . , A I ,  m, , C, form a configuration of type 1 with m = m, + 1 for every 
l z i s k .  

We know that R = { Q1 . - . Q k } .  Suppose that A f l  C, = Q, for every 1 5 i I k .  
Then the set (U:=k(Cr l J 7 ~ ~  A , , , ) )  U A with this 2 coloring is called a configura- 
tion of type 2. 

Definition. 
2 if 0 5 mi 5 m, - 2 for every 1 5  i 5 k .  

A configuration of type 2 is called a prohibited configuration of type 

Remark. Since we have already prohibited the configurations of type 1 with 
m 2 m,, there is no need to deal with configuration of type 2 with mi 2 m, - 1 for 
some i. 

Lemma 5. The contribution of the prohibited configurations of type 2 are 
O(l /n2) .  

The calculation is similar to the case of configuration of type 1. Now we do not 
have to waste our time with the “almost determined” edges, but we have a little 
trouble, because the edges are not necessarily different. For this reason we 
introduce the following notation : 

Letmi=I{j :  l s j s m i , y ( i ’ ,  j ’ )  suchthat i ’ < i  and A , , , = A i , , j , } l  
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Calculation. Because of the almost disjoint property, every configuration has 

k 

Fix the numbers rn; , rn; . . rnj . All we have to do is to count all the possibilities, 
to count the number of all such configurations which contain a fix point P. We will 
calculate only the case P E A because the other cases are very similar and lead to 
the same resuit apart from constant factor. 

By using the same counting approach as in Lemma 3 we get the following 
upper bound: 

s= 1 

Using (1.3) we get that the contribution of this case 

Now let the numbers mi,  ml,. . . mi be arbitrary. We get the upper bound: 

Proof of Lemma 5 is complete. 

Now we change the role of the blue and red colors and prohibit the reversed 
prohibited configurations of type 2. 

First Coloring. We are using Lemma 2 to the prohibited configurations. It 
follows from Lemma 3, Lemma 4, Lemma 5 that we can use the Lemma 2. We 
get a two coloring. It follows from the previous remarks that there is no 
configuration of type 2 at all. This means that in every monochromatic edge A i  
there is a nice point, which is an element of Ri. 

Second Coloring. 
Then change the color of the set 

If A i  is monochromatic then select one nice point Pi E Ri. 

z= u P , .  
1 A ,  

We claim that after this second coloring we get a good 2-coloring of X .  The proof 
is indirect: Suppose that C is monochromatically blue, then we killed it: it cannot 
remain blue after the second coloring. If C was not blue and turned to blue, then 
it follows from the construction of the second coloring that C was almost blue 
after the first coloring: 

monochromatic 
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We know that the subset 2 n C = { Q,,  . . . , Q,} were turned from red to blue. 
But in that case Q,, Q 2 .  - Q, are bad points, and we get a contradiction with the 
construction of the second coloring. Of course the same argument shows the lack 
of the monochromatically red edges. Q.E.D. 

Remark. You may be suspicious that we kill the monochromatic edges and take 
care of the properly 2-colored edges. But is it possible that in the second coloring 
we turn a red edge of blue? Notice that in that case the monochromatically red 
edges would be described as an almost blue also; and this is an ordinary case of 
which we have already taken care in the proof. 

Theorem 2. The van der Waerden number W(n)  2 2"ln" for arbitrary n 2 no(&). 
In the case of the arithmetic progressions X will be the set of the natural numbers 

in the interval [l, 2 7 n E ] .  The edges will be arithmetic progressions of length n. It is 
easy to see that we have 52"ln" edges which contain a fixed point P. There are 
dificulties with the property of being almost disjoint since the arithmetic progres- 
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sions do not satisfy it. At  any rate it is a rare situation that two arithmetic 
progressions have more than one common point, and we will see later that it is 
possible to imitate the previous proof. The almost disjoint hypergraph is a natural 
model for us and this is the reason why we deal with it before the arithmetic 
progressions. In order to overcome the dificulties we have to define some new 
“prohibited configurations.” 

Definition. 
we call B prohibited configuration of type 3. 

Let B be a red arithmetic progression of length [n  + log’ n ] .  Then 

Lemma 6. The contributions of this configuration are O( 1 ln2).  

Calculation. The number of the configuration which contains a fixed point P, 
52”ln“. The distribution: 

- [ n  + ~ o g * n ]  2“ 

Definition. We call an arithmetic progression of length t a generalized edge if 

n 5 t < [ n  + log2 n]  

We say that two generalized edges interfere with each other i f  they have a common 
point and they have the same difference. If two generalized edges do not interfere 
with each other, we call those “substantially different.” 

Definition. Suppose that A and A ,  are two substantially different generalized 
edges and they have more than one common point. Let the color of A ,  U A,  be 
red. We call the subset A ,  U A ,  with this coloring prohibited configuration of type 
4. 

Lemma 7. The contribution of this configuration is O( 1 ln’). 

Calculation. It is easy to see that the inequality ) A ,  U A,[ 5 [3/2n] follows from 
the assumption of being substantially different. On the other hand, the number of 
the configurations which contain a fixed point P 

2” 
5 log2 n - ( n  + log2 n14 . - n“ ‘ 

So it follows that the contribution 

Now we define the subsets Ri. Suppose that Ai an arbitrary generalized edge. 
This means that A j  = { a l ,  . . . , a,} ,  where a ,  < a2 < * * < a, and n I t < [n + 
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log' n ] .  Let 

Ri = {a[n,21+jll  sj I k } ,  where k constant depending only on E 

It is easy to see that the sets Ri satisfy the following condition: 

2" log2 n .  k 
n n I{i: P E  Ri}l  5 7 . for every P E X 

Definition. 
1. 

We call two generalized edges A A almost disjoint if I A n A I 5 

Definition. Suppose that the sets A,  Al l  * . - A ,  are substantially different edges 
and A n A ,  E Ri for every 1 j 5 m and m =" [ 5 / ~ ] .  Let the color of the set 
( Uy=l A , )  d A bk red. We call the configuration with this coloring configuration 
of type 5: We say that a color configuration of type 5 is a prohibited configuration 
of type 5 ,  if the sets A ,  A,,,  . . . , A, are painvise almost disjoint. 

m 

Lemma 8. The contribution of thh configuration is O(l /n2) .  

Calculation. 
the almost disjoint assumption we have the following upper bound: 

Using the same counting approach as in Lemma 3, using (2.1) and 

Remark. Because of the contributed configuration of type 4, we do not have to 
deal with configurations of type 5 which do not satisfy the almost disjoint 
property. 

Definition. Suppose that the sets C, A * A, are substantially different 
generalized edges and (CI = n. Suppose that the set Cn(Uy=n=, A j )  = 
{PI, P2, . . . , P,} and the points Pj E R j  for every 1 5 j 5 m. Let the color of the 
set U:=] A j  be red and the color of the set C\Uy='=, Aj  blue. We call this 
configuration, configuration of type 6. 

Lemma 9. 
4 and 5 ,  then any configuration of type 6 satisfies the following conditions: 

If a two coloration does not contain prohibited configurations of types 

(i) The sets A , ,  . . . , A, are pairwise almost disjoint. 

for every 
5 

(ii) J A ~  n CJ 5 [ -1 1 s j  5 m . 
& 

Proof. 
{Pi , .  . * Pi,} where t 2 [ 5 / & ] .  Then the sets Ai l ,  A i 2 - .  . 

(i) is trivial. (ii) Suppose that ( A j  n C (  I [ 5 / ~ ]  + 1. Then (Aj\Pj)  n C = 
and A j  form a 

prohibited configuration of type 5. The contradiction proves Lemma 9. 
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Definition. 
if the sets C, A ,  * * - A ,  satisfy the property (i), (ii) of Lemma 9 and 

We call a configuration of type 6 prohibited configuration of type 6.a, 

Definition. A configuration is prohibited configuration of type 6. b,  if the subset 
is a configuration of type 6 which satisfy (i), (ii) and m = [n /2]  the set Uy=l A j  is 
red, the coloring of the set c\Uy=, A j  is arbitrary. 

Lemma 10. The contribution of type 6.a and type 6. b are 0(1 /n2) .  The proof of 
the Lemma goes along exactly the same lines as the proof of Lemma 3, using the 
assumption ( i ) ,  ( i i )  of the Lemma 9. 

Definition. We call an arithmetic progression of length n almost blue edge if 
there exists a configuration of type 6 in which our arithmetic progression agrees 
with C. Suppose that A is an arithmetic progression of length t ,  A = {a , ,  . . . , a,} 
where n I t and the sets: {a,+j 11 5 j  5 n }  are almost blue edges for every 
0 I i I t - n. In that case A is called almost blue generalized arithmetic progres- 
sion. If n 5 t < [ n  + log2 n]  then we call the set A almost blue generalized edge. 

Remark. Suppose that the sets A ,  A ,  are not substantially different arithmetic 
progressions of length r n  and A ,  C A .  Then if A is almost blue then A is almost 
blue also. Now suppose that a two coloring does not contain prohibited configura- 
tions of types 4, 5 ,  6.a, 6b. Then we know that every almost blue arithmetic 
progression of length n has 1 [ 5 / ~ ]  red points. So if A is a generalized almost blue 
arithmetic progression of length [ n  + log2 n ] ,  then A has 5 2  - [ 5 / ~ ]  red points, 
because A = A U A 2 ,  where A and A are almost blue arithmetic progressions 
of length n. 

Definition. Suppose that A is an arithmetic progression of length [ n  + log2 n ]  
and A has 5 2  [5 /el red points. In that case A is called prohibited configuration 
of type 7. 

Lemma 11. The contribution of type 7 is O(l /n2) .  

Calculation. Using Lemma 6, we have the following upper bound: 

Definition. Let the sets A ,  and A ,  be two substantially different generalized 
edges which have more than one common point. Suppose that A ,  have 5 2  - [ 5 / ~ ]  
red points and A ,  have 1 2 -  [ 5 / ~ ]  red points. In that case the set A ,  U A ,  with 
that coloring is called prohibited configuration of type 8. 

Lemma 12. The contribution of type 8 is O( 1 /n2) .  
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Calculation. Using Lemma 7 we have the following upper bound 

Remark. We know from the previous remark and Lemmas 10 and 11, that we do 
not have to deal with such two colorings, which contain almost blue arithmetic 
progressions of length r [ n  + log2 n] or contain two substantially different almost 
blue generalized edges, which have more than one common points. 

Definition of Type 9. Suppose that subset A is a generalized red edge and 
suppose that the sets C,, C, . . . C[,,,] are substantially different almost blue 
generalized edges. It follows that for every 1 5 i I [5 / E ]  there exist mi generalized 
red edges A i , 2 .  . . Ai,m, satisfying 

Ci n R ,  # 4 for every 1 5  j I mi 

and 

C i n R # c $ .  

(It does not interest us whether these mi sets . Ai,m, are substantially 
different or not). We call UYLE’ (C, Uy21 Aj , i )  U A with the 2-coloring configura- 
tion of type 9. Since we have already prohibited a great deal of configurations we 
can suppose that 

(i) Cj  has I 2 .  [ 5 / ~ ]  red points for every 1 5  i 5 [5 / E ]  , 
(ii) mi 5 2 + [5 / E ]  for every 1 5 i 5 [5 / E ]  , 

(iii) 1 Ci n Cj I I 1 for every pair i z j , 
(iv) IA,,, IJ Ai , , , , [  < [ n  + log2 n ]  for every pair Ai , , ,  A i , , j ,  which interfere with 

n Aj, , j , l  5 1 for every pair which does not interfere with each other. 
each other, 

(v) 

Definition. 
prohibited configuration of type 9. 

Lemma 13. The contribution of type 9 is 0(1 /n2) .  The calculation is very similar 
to the case of type 2. Now we can use the properties i ,  ii, iii, iv ,  and v instead of the 
almost disjoint property. We get that the contribution of type 9 

If a configuration of type 9 satisfies the property i-v then we call it 

Now we prohibit all the configurations in the reversed cases. 

First Coloring. 
configurations of types 3, 4, 5, 6a, 6b, 7, 8, 9. 

Using Lemma 2 we get a coloring which contains no prohibited 

Definition. We call a point P “bad” blue point, if P is blue and there exists an 
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almost red generalized edge which contains it. We call a point bad red point, if P 
red and there exists an almost blue generalized edge which contains it. We call P 
nice otherwise. 

Suppose that A is monochromatic red edge. We recall that [RI = k and k 
constant. Let k = 2 -  [5/812 + 1. We know that every almost blue generalized edge 
has 1 2  * [5 /&]  red points. So it follows from the lack of configuration of type 9 that 
at least one of the points of R is nice. 

We say that two monochromatic arithmetic progressions of length n are in 
relation to each other if they interfere with each other. It follows from type 3: 
then this relation is an equivalence relation. 

Second Coloring. We select representatives from every equivalence class. We 
get arithmetic progressions of length n-Ai,, . . . , Ais. Then we select nice points 
Pi,, . . . , Pi, satisfying Pi.€ R,. Then we change the color of Z = U 4=1 Pi.. We 
claim that after the secdnd coloring we get a good 2-coloring of X: 

Let A be one of the representatives. We can suppose that A is red. We know 
that after the second coloring, A has at least one blue point P. On the other hand, 
it follows from type 5: then A has at most [ 5 / ~ ]  blue points after the second 
coloring. 

Suppose then A ,  is equivalence with A. We know from type 3 that 

IA U Ail < [n +log2 n] 

We recall that if A = {ul, . . . , u,}, then R = {a,n/21+1, u , ~ / ~ ] + ~ ,  . . . , u , ~ / ~ , + ~ } .  
Trivially, P E A j  and it is easy to see that A j  is properly two colored after the 
second coloring/ 

Suppose that A i  is an arbitrary edge which contains P and interferes with A. It 
is easy to see that A i  has at least one blue point and at least [n/2] - k - [ 5 / ~ ]  - 1 
red points which means that A i  is also properly two colored after the second 
coloring. 

Finally, suppose that the edge C satisfy the condition: Either P g C  or A does 
not interfere with C ,  for every selected representative A. Suppose that we were 
unlucky and C is monochromatic after the second coloring. We can suppose that 
C is blue. Let 2 n C = {Q, ,  . . . , Q,}. It follows from the construction of the 
second coloring that after the first coloring there exist substantially different edges 
A ,  * * - A, which do not interfere with C and satisfy: Q, E R, n C for every 
11 i I I, Ui,l A i  is red, and c \ U f = l  A i  is blue. It is easy to see that C is almost 
blue edges and Qi are “bad” points for every 1 s  i s I. It is a contradiction to the 
construction of the second coloring, where we did not change the color of the 

1 

“bad” points, and this contradiction proves our claim and Theorem 2. 0 
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