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In what follows we use capital letters to denote sequences of integers, A + B 
to denote the sum of two sets of  integers formed elementwise, and A-q B to denote 
the complement of  the set B with respect to the set A. 

Let us for convenience call an arithmetic progression of k (distinct) terms 
a k-progression. 

I f  a set A contains no k-progression we say that A is k-free. 
The maximal number  of elements a k-free set A ~ [0, n) can have is denoted 

by Zk(n). Furthermore we set 

~k = i ~  ~(n) 
n~eo  n 

Actually we can replace lim on the right hand side by lim. For, given e > 0  
and n, we can find arbitrarily large m so that Zk(m)>=(Tk--*)m; in particular we 
may assume that qn<m<=(q + 1)n holds for a positive integer q. In other words 
there is a k-free set A c= [0, m) with cardinality IAI-->(~k-~)m. Now [0, m) can be 
split into (q + 1) subintervals of  length at most  n. One of these must contain at least 

{ q ~ )  [Al elements of A which clearlyform a k-free set. 

Hence 

~ ' [ ~ - + 1 }  q+lm q *k(n) = far--> (~k -~ )  -> ( ~ -  ~)-~- i -  n. 

Since e can be taken arbitrarily small and q arbitrarily large, we have 

whence 

< 1 
Clearly 7k = 1 - - ~ - ,  and 

*k(n) > = ~'k n ,  

7k = lim zk(n): 
n 

7a<_-Ta<_ - . . . .  I t  has been proved by F. BEHREND* 

that  either all 7k are zero, or 7k ~ 1 as k -~  ~o. 

* On sequences of integers containing no arithmetic progression, ~asopis Mat. Fis. Praha, 67 
(1938), pp. 235--239. 
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90 E. SZEMER~DI 

In 1953 ROTH* proved that  73 =0 .  In fact he proved more than that, namely 

n 

z a (n) << log log n " 

�9 Roth 's  p roof  uses estimates of  exponential sums. 
In this paper  we shall prove the following 

THEOREM. 
74=0,  i.e. r4(n)=o(n). 

The proof  is elementary. The problem of 7s, 76 . . . .  is left open. 
The proof  is indirect, so f rom now on we assume that 

74>0.  
For  convenience we write 

7 = ~ 4  �9 

We shall formulate in this section the two main lemmas and deduce the theorem 
from them. 

We write Q(b, c, d, e) for the system 

b - 2 c + d  = c - 2 d + e  = O, 

which means that  either b, c, d, e form an arithmetic progression, or they are 
identical. 

Throughout  the paper  n~(8) shall mean a number  (for example the smallest 
one) with the property that  for  n ->n4(e) a 4-free set A c=[0, n) cannot contain 
more than (7 +e)n elements. Occasionally we use the analogue meaning for na(a ) 
as well. 

Let B, C, D ~= [0, q). We regard B and C as fixed while D varies. We then define 

D* = {e; eE[0, q) and there are bEB, cEC, dED such that Q(b, c, d, e)}. 

With this notation we shall prove 

LEMMA (Ho, ..., H,).** There are absolute constants % > 0 ,  7 ' > 0 ,  k o and qo 
with the following property: I f  

q>-qo, 3[q, 

and i f  B, C are 4-free sets contained in [0, q), [BI-->(7-zo)q, [el->(7 -~o)q, then 
there are disjoint sets 

Ho, .... Hk, k<=ko, 

6 H K = [ l q ,  2 q ] ,  
K=O 

1 
IHo l -< - - f f7q ;  IH~l -> ~' q for K = l , 2 , . . . , k ,  

such that 

* On certain sets of integers. I; II, J. Lond. Math. Soc., 28 (1953), pp. 104--109; 29 (1953), 
pp. 20--26. 

** The full force of the hypothesis that (say) C is 4-free is not needed for the proof of this lemma: 
see the footnote on page 95. 
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ON SETS OF INTEGERS 91 

and such that if for some K#O 

G~HK,  

then 

]G[ => 21-- ~ IHK], 

The other main lemma is 
Ill  IO*l ~ I--~7 IH;I. 

LEMMA BCDE. Let e 1E(0, 7) u and qo be given. Then there is a q>=qo and there 
are sets 

Bo, Co, 31 . . . . .  Du, E1 .. . . .  Eu~ [0, q), 

all 4-free, all with at least ( 7 -  el)q elements, such that Q(b, c, d, e) with b E Bo, 
cECo, dE Di, eE Ei is insolvable for all i= 1, ..., u, and such that for each xE[0, q) 
the set of all i' s for which x EEi holds is 4-free. 

We now prove the theorem using these two lemmas. 
Let Co, 7 and ko have the meaning of lemma (H o . . . . .  Hk). Put 

e~ = r a i n  e o ,  2 0  ' " 

and 
t--n4(el). 

Van der Waerden's Theorem* gives a number 

u = N(k o , t) 

such that in any partition of [0, u) into at most ko classes there is at least one class 
which contains a t-progresssion. 

We apply lemma BCDE with this el, and u, and with 

qo = 3n ~(el)- 

1 
From [D d --->(7-~l)q, ~- q-->n4(~l) we see that 

D~(~[3q, 2 q  I = ]D~[- D~O[O,I} -- D~A[2q ,  q] >= 

1 q ~ ( 7 - - 5 ~ 0 1 q .  => (y--e l )q--2(7+e,)  

We now define the sets HK by lemma (Ho . . . . .  Hk), using Bo, Co for B, C 
respectively. 

For each i E (0, u] there is a j =j(i) E (0, k] such that 

1 
]D, A nj[ ~ ~ 7 ]Hjl. 

* Beweis einer Baudetschen Vermutung,  N i e n n .  A r c h .  W i s k u n d e ,  15 (1927), pp. 212--216. 
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92 E. SZEMEREDI 

For otherwise we should get the contradiction 

1 ' 
( ? -  5~1) T q <- q' q = ~ IDi G Hsl < 

j = O  

,  [1111 1 [Ho[+I~s~= ~ 7 + ~  T q < -  (V-5a~)~-q 

1 
since e~ <= ~ ?. 

Attaching such a j(i) to each i, it gives a partition of the i's into k classes. 
Since u = N(ko, t) and k <= ko one of these classes contains a t-progression. In other 
words, there is a Jo and an arithmetic progression il . . . . .  it such that 

ID~ N//So I for i = i, ,  i t. 

From lemma (Ho . . . . .  Hk) we then have that 

I(DiNHso)* 1 => I-T7 IHfol 

where the * is taken with respect to B o and Co. With the trivial relatior~ 
(UN V)*c= U* N V* this implies that {'/ ID*NH*ol--> 1-?-~ IH*ol. 

Now D* N E~ = 0, for this is merely a restatement of the fact that the relations 
Q(b, c, d, e) with bE Bo, cE Co, dE Di, eE E~ are impossible. 

Hence 
IEiNH*oI+ID*NH*oI <= [H*o], 

so that 

for i = i l ,  ..., i t. 
Put 

IE~nH~ol < 1 

IHfol=~.q, [0, q ) - H * o = M .  

We notice that M is not empty, since otherwise the last inequality would imply 
that [Eil<_-�89 7 q, in contradiction with the fact that 

[Ei[ (7 ) q >  [ ? ' 2 ~ ' 1  >= -- 81 = q. 

Furthermore, lemma (H o . . . . .  Hk) shows that ~-->V'. Therefore 

1 1 

_ _> - - y + _ _ _ _ >  
[MI q - IH*o] - 1 - c~ 1 - c, 

] , ] , 
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O N  SETS OF I N T E G E R S  .93 

for i = i  I . . . . .  i t. Summing over these i's we see that 

t 

[E~ (~M[ >= (7+281)t iM 1. 
"C=I 

We conclude that there is at least one x C M which occurs in not less than 
(7 +251)t of the sets Ei.  By lemma BCDE those i~'s for which xCE~ form a 4-free 
set. They are contained 5n an arithmetic progression of t terms and by the choice 
of t =n~(el), there cannot be more than (7 +el) t numbers i~ for which xCE~. Thus 
we have reached a contradiction and the theorem is proved. 

In this section we shall prove lemma (Ho . . . .  ;H~). For  this we need three 
other lemmas. The first is almost obvious. We call it therefore 

THE SIMPLE LEMMA. Let A~=[0, n) be 4-fi'ee and IAI >-(7-5)n. Let MC=[0, n) 
have a complement that is the union of disjoint arithmetic progressions Po, ~ = 1 . . . . .  r 
each of  length ]P~[ >-n4(5"). Then we have 

[A NM[ ~ 7]MI-(e+5")n. 

PROOF. Each A 0 Pe as a 4-free subset of a progression fulfils 
t IA n~~ =(7 +5 )le~I. 

Hence we have the following inequalities: 

[ANM[ = I A I - Z I  ANPel  --> ( 7 - e ) n - ( v + 5 ' ) Z l P ~ [  = 
Q 0 

-- (7 - 5 ) n -  (7 § 5') (n - IM1) -- (7 + 59 !M] - (5 + 5')n -> 7 ]MI - (5 + e')n. 

LEMMA p(6, l). For any real 6 E (0, 1) and any natural number l there exists 
a number p(6, l) with the following property." I f  

u>=p(6,1), a~[O,u), Ial>=6u, 
,then G contains a set St of the form 

st = {y} + {0, x~} + . . .  + {0, x~} 

with natural numbers xl  . . . . .  xt. 

PROOF. The proof  goes by complete induction and uses the box principle. 
The case l =  1 is trivial, since it states only that there is a pair of elements of G. 

[ 1 ]  
A suitable choice of p(6, 1) is 1 +~ -  since this exceeds ~- so that the hypothesis 

concerning G shows that 
I~1 => 6u > 1 .  

Now take l_-> 2 and assume the case l -  1 has been already proved. We set 

q = p  , 

Any number u can be represented as 

u = kq+r ,  

l-- 11 . 

0 <= r<q.  
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94 ~. SZEMERt~DI 

We choose p(6, l) so that u_~p(6, l) implies that 

4 5 1)t_ , 
k >  5-~, ~ k > ( q -  . 

A possible choice is, for example 

p(6,1)=max[[l+~--~-]q, [1 + 2 ] q ~ ) .  

Let R be the number of those sets 

GK=GO[(K--1)q, Kq], K = I  . . . . .  k 

for which lUll ~ - q .  Then R _  -> k, otherwise " 

k 6 
6kq <= 6u <= Ial ~ q +  ~ '  IGK[ ~ (1 + R ) q + ( k - R ) - ~ q  = 

K = I  

=[1-- -~}Rq+[l+k-- f2}q<[1--~]~kq+[1+k-- -~}q= 

= f i k q - I ~ , l } q < 6 k q '  

By the introduction hypothesis, in each of the sets Gr a set of the type Sz_ 1 can be 
found. In each St-1 we have 1<=xl, ..., xt_l<=q-1. Thus there are not more 

6 1)z_ 1 than ( q -  1) 1-1 diffeient choices of xl . . . .  , xz. Since R>=~k > ( q -  there are 

two sets GK containing St_ 1 and Sj_ 1 formed with the same numbers xa, ..., xt but 
different y, y', say with y '  >y .  Then with xt =y" - y  we have 

G~ St-1 U St_ 1 = St-1 U(St_I + xt) = St. 

LEMMA ]G*[, There are absolute constants Co>0 and 7 ' > 0  and a function 
go(h) for 0 < 3  < 1 with the following property: 

I f  q>=qo(6), 81q, B, C~[0, q) are both 4-free, 

IB1 --> ( V - s o ) q ,  I C l -  -> ( ? - s o ) q ,  G ~ q, ~ q  IGI _-> , �9 

then 
]G*[ >= v" q. 

REMARK. An analogous lemma can be similarly proved with ~ = 73 (instead of 
?=74)  on the assumption that 73 >0.  We then easily arrive at a contradiction, 
which proves Roth's theorem 73 =0.  For this purpose choose a q~3nz(e ). Next 
choose a 3-free set A ~  [0, 3q) with IAI =>37q and represent it as 

A = B U ( C + q )  U(D+2q) 
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ON SETS OF INTEGERS 95 

with B, C, D ~  [0, q); and finally set 

G = D f q  ~-q,  ~-q . 

One easily obtains the inequalities ]B I =>(7--2e)g, IC] =>(7-2~)q, ]GI =>(7-8s) q 

1 1 
If  we take e ~ ~- eo, e <=-j~ 7 and q large enough, we can apply the lemma with 6 = 1 ? 

and get 
]G*I->7'q>0 

which means that there is a triplet (b, c, d) with 

b - 2 c + d  = O. 

But (b, c + q, d +  2q) is then a 3-progression in A, a set that was supposed to be 
3-free. 

PROOF OF LEMMA IG*X. Se t  

1 2 
eo = 1007  , m = n , ( e o ) ,  

m 
and fix an l such that l ~ 2 4  - - ,  say 

? 

We shall prove the lemma with 
~2 

qo(6) = 3p(6, l) + 3m, 7 =  50.2 t" 

With these choices we have q >=p(6, l) and can therefore find a set of type 

St in G. We consider 
s,= {y}+ {o, x l } +  ... + {o, x,} 

for all i = 0 ,  1, ..., l; where we take So=  {y}. For each i we define 

L i =  2 c - s ;  cCCO ~ q , ~ - q  , sCSi . 

Since S i ~ ~ q, ~- q one has L ~  [0, q). 

1 
With [C 1_->(7-%)q and ~ q > m  = n~(eo) we obtain 

[Lo/ C ~-q, q => ( ? - 5 e o ) ~  = ~vq ,*  

1 
since 5eo< ~- 7- 

* The derivation of  this inequality is the only extent to which we use the hypothesis that C is 
4-free. 
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From the fact that ILt[<--q and LoC=L~C=... we infer that there is some i<=l 
such that 

[Z~l- IZ~-~] < q- 
: l " 

We decompose this L~-I into maximal progression (rood x~). We shall denote 
by L the  union of those of these progressions which have 3m or more elements, and 
by ~ the union of the remaining ones. From 

S~ = S~_~ U(S~_~ +x3 
one sees that 

Li = L~_ 1 U (L~_ 1 -  xi). 

Each maximal progression (mod xi) in L~_ 1 produces therefore one and only one 
new element in L,. Hence 

IL[ < 3m(lL~]- ]Li_~] ) < 3m q 

and 

ILl = [ Z ' - l l -  IEl --> lZ~ IEl --> t q ~ - 8 ~ q  

since by our choice of l we have l ~ 24m. 
7 

Now let us drop m elements from each end of each of the progressions (mod x~ 
composing E, and denote the remaining set by M. Since every progression in L 
has a length of at least 3rn we have 

1 
[MI => ~-ILl > ~ q. 

By construction [0, q ) - M  can be represented as the union of disjoint pro- 
gressions (rood x~) each of length at least m. Thus we can apply the Simple Lemma 
with e = d = eo and obtain 

72 y2 
1L~nBl ~ I~nBI ~ IMnBI ~ ~[M[--2eoq ~ ~ q--28oq ~ ~ q ,  

since eo has been chosen suitably. 
By definition, L~ A B is the set of those b in B which have a representation 

In S~ there are at most 2 ~ elements. Therefore at least one y contained in S~ 
has the property that the equation 

b - 2 c +  y = 0 
2 

has at least ~ solutions (b, r In another notation this means that 

I{Y}*t->~'q, 
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ON SETS OF INTEGERS 97 

where we have put  
]j2 

50 .2  Z 

The statement of lemma [G*[ is now immediate. From y E St ~ G we see that 

Ia*l->I{Y}*[ =>~'q. 

PROOF OF LEMMA (H0 . . . . .  Hk). We first fix some number h such that 1 - < ?', 

for example 
log 7' 

1 2 ) 1 
We now start from some G0~  ~-q, ~-q with [Go[-->]~7q and put  go = [G*[. 

Next we define by recursion for i = 1, ..., h 

{~ ' , }  =m,nO* r~ = , G c G~- I ,  IGI --> ~ - [ a ~ - i  , g~ 
-~- G 6 r l  

and fixe one Gi in Fi for which IG*[ : g ~ .  
From G~ E F~ we see that 

IGI > ~ I a  I > > > = ~- i-1 . . . . .  o = [ 2 )  1 2  ' 

1 (~h+l 
[G~I ~ [ ~ J  q, 

Thus, if we take 6 = ~ -  and qo = qo(6) we can apply lemma [G*I for all q ->qo 

and obtain 
gi=IG*l >-- ?' q, for i = 1 , 2  . . . . .  h. 

Since clearly go ~- q there is a j <= h such that 

otherwise we should have the contradiction 

?'q~=gh< 1-- go<-- 1--~ q<?'q .  
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98 E. SZEMERI~DI 

Set with this j H = G s_ ~. From the meaning of gs and gs- ~ it follows that if 

G~H, and IGI~ 2 ]HI, then GCFj and therefore 

= gJ -- gJ- 

Moreover we have 

[HI = ]Gs-I[ => ~ - [ ~ J  q. 

At first we apply this process to G o = ~- q, ~ q and call the set H obtained H 1 . 

Then we take Go = ~-q, ~-q 7 H, and if this set contains at least 7q elements 

we obtain a se t / /2  from it. Next we take Go = 3 q' 3- q q (H~ U Hz) to get a set 

Hs,  and so on. As soon as we are left with 

[ lq ,  2q}-I(H1UH2(3...OHk) <~2q  

we stop the procedure and call this remaining set Ho. 
Since the sets HK are obviously disjoint and 

IHKI_-> [ j q for K = l , 2 , . . . , k  

this occurs certainly after a finite number of steps. To be precise, we see that 

k<=..~ {~_1 [72_/h+lq}-1=2[2/h+l.  

By constructionHoUH1U...UHk= q ,~q  and if GC=HK, IG[=~IH~I then 

Io*l for  all 2, ..., This is precisely the statement of lemma 

(Ho,  . . . ,  H~). 

PROOFOFLl~MMABCDE. Letustakenandqtobeintegersso that nq>=6n4(3 } 

and let A be a 4-free set contained in [0, 4nq) which satisfies 

I AI --> 74nq. 
Then we can decompose A into 

A = B (J (C+nq) U (D +2nq) (5 (E+  3nq) 

with B, C, D, E ~  [0, nq) and (in an obvious notation) 

B = U ( B + x q )  with B~=C[0, q), 
x < n  
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similarly for C, D, E. For their respective cardinalities we get easily the estimates 

1BI, ICI, Iol,  
That  A is 4-free is reflected in the fact that Q(b, c, d, e) has no solutions with 
bEB, cEC, d~D, eEE. More precisely: If Q(x,y, z, w) holds, then Q(b, c,d,e) 
is insolvable with b C B~, c E Cy, d ~ D~, e C Ew. Moreover all of the sets B~, C r, D,, Ew 
are 4-free. 

Let us call a set B etc. c= [0, q) full if  ]B[ _-> (~-/31)q, and poor otherwise. 
Clearly lemma BCDE will be proved if we can show that there are u quadruples 

(b, c, d, e) such that all Bb'S are equal, all Cc's are equal, all Bb's , Co's, Dd'S, Ee's 
are full, and the e's form an arithmetic progression. 

We shall use all the ideas from the proof  of lemma [G*[ but not only these; 
moreover the technique will be more involved. 

We can easily provide a set ~3 with positive density (about 2-q) such that all 
Bb for b ~ ~3 are equal and full. Similarly we find a dense set E with all Ce for c E 
equal and full. We have then a set of type Se in ~ through which we 'project' ~3 onto 
the levels of D and E. The points e defined by Q(b, s, ~ ,  e) are plentiful and are 
arranged into long progressions. Hence it can be shown that almost all E~ with these 
e's are full. The same could be done for the sets De with d from Q(b, s, d, ~)  but 
unfortunately not in the necessary simultaneous way, since the relation between 
the e's and the d's is not unique and this relationship weakens the larger I is taken. 

The idea which overcomes this difficulty is to use not only one set ~, but a 
large number of them, go, g i  . . . . .  ~r-~ generated from one of them by shifting 
go = go + ~, such that C~ = C~,, if c and c' belong to the same set EQ. This again 
introduces long progressions on the levels of D and E, which can be exploited 
independently of the former ones. As a result we get u quadruples of the required 
type for at least one ~ with b E ~3 and all C E go, and so all B b as well as C~ coincide. 

We shall use the following simple counting argument a couple of  times: If  
n 

~a~  >=(~-ea)n and a ~ ( 7  +/32)for all x, then the number R of terms a~ which 
a~=l 

satisfy a~<=(y-eO is 

R<= /32 q- e3 
/31 

PROOF. 
(7--e3)n<=(7-e~)R+(7+~2)(n--R), (el +e2)R<=(e2 +e3)n. 

We list now the parameters used in the proof, in the order of their dependence. 
The reader may check them as they occur. 

e, u and qo are supposed to be given, 

e 1 
/ 3 2 -  1 6 U '  

q = max (qo, n4(e2)), 

/32 

/33 - 150.2q '  

m = m a x  (2u, n4(e3)), 

l = 75m- 2 q, 

e 4 -  600.2q+2 z, 

r = rt4(e4) , 

/3 = sufficiently small 

n = sufficiently large, 6r]n. 
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100 B. SZEMERI~DI 

We can safely dispense with specifying e and n since there is no feedback to 
the other parameters. A small ~ only demands a large n. 

By an already repeatedly used argument we get 

~ ' lBx]  = BA[O, lnq I > ( V - e ) ~  
X < - -  

6 

Z [C l : c n [ 7 '  7 ) - - >  (V-e) nq6 
n 11 ~-~y<~- 

~t and take >=n~(~z), so that provided only that n is large enough. We set ez = ~ ,  q 

we then have for all x, y, z, w, 

[B I, It, I, IDA, IE [ <= (Y+ez)q. 
n 

By the above counting argument the number of poor Bx, O~=x<~ - and the 

number of poor Cy, --<-6 - y < - 3  is each at most 1 -~+  6-<=8-'--6 if~ is small 

enough. Consequently more than half of the Bx are full. 
There are only 2 q subsets of (0, q), so there is a full B(o) = (0, q) such that  

Bb=B(o ) for b E ~  0, , with 1~t=>12.2  q. 

We next look at C, and assuming that rln we consider the r-tuples 

n n 
(Cm,, C,,,+1 . . . . .  Cmr+r-1), ~ <= m < 3r" 

Since not more than 1 of the Cj are poor, not more than 1 of the r-tuples contain 

more than 1 poor sets. There are only 2 qr different r-tuples, so we find 

C(o), .... C(r- x), 

~ c  n 
not more than ~- of them being poor, and = 6 ' 

Cc+~=C(e) for cE~  and oE[O,r), 

so that 

t /  

[El > 12r.2 ~r i 

By lemma p(3,/) we see that E contains a subset of type 

S, = {y} + {0, xi} + . . .  + {0, x,}. 
With the sets 

s ,= (y} + (o, xl} +... +{0, x3 
we form 

L~= {35-2b;  sE Si, bE~}.  
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Then we have 

t i  C r l  = >" 
= , , o = 12.2q ' 

Li = Li-  1 U (Li- 1 + 3xi)" 

For a suitable i<=l we have 
r/ 

IZ, l-[r,_~[ -<_ 7 "  

We decompose L~_, into maximal progression (mod 3x3, collect those progressions 
which are longer than 3m into L, and the remaining ones into 7,; as in the proof 
of lemma IG*] we get 

3mn 
ILl <= 3m(IZ, l--lZ,- ,l) <= 

l ' 

]~l {.11 3m) n 
]L'I-> IL~  ~ 272q l " n ~ 2 5 . 2 q .  

(Here we have taken l ~72m. 2q). Dropping the first m and the last m elements of 
each of the progressions collected into L, we obtain a set we shall call g. Then 

1 . n 

lel ~ T IEI > 75.2q 

and [0, n)7 g is the union of disjoint progressions (rood 3xi), none of which contains 
fewer than m elements. 

If  we start from &+OC=g+O instead of &, O<=o<r we get ~ + 3 0  instead 
of E. Thus the complement of ~ + 3 0  too is composed of disjoint progressions, 
each of length not less than m. 

We now show that if m is large enough then almost all E~ with e E C (or # + 30) 
are full. In particular we show that the following conditions are sufficient: 

The set 

~2 
m => n,(g3) , where % = 150.2q " 

M = U [eq, (e + 1)q) 
e E g  

has the property of the set M in the Simple Lemma. (The progressions have the 
modulus 3qxf and are each of length at least m; d =g3). Therefore 

Z [Eel = [EAM} >=vIM l --(g+%)qn = Yqlel--(e+~a)qn -> 
e E g  

>=eqIe1-2%qn =>(y - 150"2%a)ql•/ = (~ -e2)qle  1. 

Since lee[ =<(~ +e2)q for all e, the 'counting argument' applies, showing that 
the number of poor Ee, e < E is at most 

2g z 1 
e, [#l = g h - l g l  �9 
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1 
More generally, for each O = 0  . . . . .  r - 1  there are a t  most 8uu 18[ poor  sets 

Ee+ 30, e E & 
Each e E g by construction occurs in at least one quadruple (b, s, d, e) with 

b E ~3 and s E Sl. To each e E 8 we attach one such quadruple making the d, as well 
as the b and the s, a function of  e, d =  q~(e). Let 

N = {~o(e); eEg}. 

Since S1 has at most 21 elements any particular d in D can arise as a value qo(e) at 
most 2 ~ times. 

We consider the quadruples 

(b, s +  O, ~o(e)+ 20, e +30),  eES,  oE[O, r). 

We want now to show that for at least one 0 

Cs+0 is full (independent of e since Cs+o= C(~)), 
and 

almost all Do(e ) + 20 are full (counted with multiplicity). 

We do this by considering all the O together. The basic tool is again the Simple 
Lemma. Before applying it, however, we have to remove the multiplicities with 
which the Cg(e)+ 0 occur. There are two sources of multiplicity: the m~pping 
~o(e) =d ,  and the forming of the sum d +  ~. We deal first with the case when ~o is 
one to one, where only one of these sources is present. 

Set 

/ ' } ~'  -- d ;dE~,  Z [Da+2.ol <- (7-~2)qr �9 

0 = 0  

We construct a subset N"  c=N, with the property that consecutive elements have 
a difference of at least 4r, but 

1 , 
lY l  --> ~ 19 I. 

For this purpose we may go from left to right retaining for our set ~ "  the first 
element not ruled out by the restriction upon the differences. Since we exclude 
at most 4 r -  1 elements for each one which we keep we obtain the stated inequality. 

Now, each element in 

~ "  = ~ "  + {0, 2, 4 . . . . .  2(r - 1)} 

is uniquely represented. Therefore we have 

r - J -  

I U Dxl = Z Z IDa+2el <= (7-ez)rq [@"l. 
x E ~  ~' d E ~ " ~ = 0  

By construction the complement of ~ "  consists of progressions (mod 2), each 
of length at least r. (No difficulty arises when considering elements to the left of 
the first and to the right of the last elements in N " ,  respectively, since N + 2~ 

c_ 6- n, n . Therefore the left hand side can be estimated by the Simple Lemma. 
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We take 

M =  U [xq , ( x+ l )q )~  r = n 4 ( 5 4 ) ,  e4 <- ~2z 
~ ~ 600 .2  ~ 

and obtain 
I Y Dx] = IDAMI  >= yq l~" l - - (~+~4)qn  = 
xE ~" 

-~ rqr 1@"1 - (~ + 54)qn = > yqr ]~"1 - z54qn. 

Putting these estimates together gives 

r e r l Y l  <= 254n, [~'1 <- 4r[Yi  <= 85~n .  

Next we have the estimate 

r--1 r--1 

( * )  Z Z IDd+2~l~ Z Z [Dd+2ol -> 

--> ( l~ l - [~ ' l ) (~ -~2) rq  -> (:'-~2)[ l~l-854nlrq'e2 ) 
n 

In the present special case we have [~]=18]->75.2~ " We therefore get the 

further inequality 

[ / Z Z [Dd+20] ~ ( 7 - - 8 2 )  1-8"75 "2q• rql~[  >= 
a ~ e = o  e2) 

-~ (y - 52) (1-  ez)rq [@1 >- (~ - 2e2)rq 1@[. 

By the 'counting argument '  we infer that  not more than 3 e 2 r l D ] = . 3 r  [8[ 
51 IOU 

sets Da+2o , taken with their multiplicity, are poor. For  at most  one half of  the O's 
3 

[E[ poor  sets Dd+2o. can we have more than 

1 
I f  we drop these numbers 0, of  which there at most  ~ r, and also those 0 for 

C(.o) is poor,  there being no more than 1 r of  them, some of the numbers e w h i c h  

remain. So far we have proved: 
3 

There is a number  oE[0, r) such that Cs+o=C(o) is full, at most ~u 18] of  

1 
the sets D~(o+2o , e E 8  are poor, and at most  8uu lel of the sets E~+3o are poor. 

1 
Hence for at most  2u-u ]81 elements eEC we have either E~+so or D~(~)+: o poor. 

1 
We call these e E 8 'bad' .  The density of  the bad elements in g is at most  

Now recall that  ~ is composed of disjoint arithmetic progressions of length at least m. 
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W e c a n  take m =>2u. If one of every u consecutive elements of such a progression 
were a bad one, the density of bad elements in any particular progression in g 
would be at least 

2 2 
3u - 1 3u 

and so therefore would be the density of bad elements in the whole of g. Since we 
have disproved this there exists an arithmetic progression of at least u good elements 
in g, q.e.d. 

Rather little has to be changed in the general case when the elements d E ~  
are taken with the multiplicities of d =  cp(e) not necessarily all equal to one. 

S e t  
@i = {d; d =  cp(e) for exactly i elements e E g} ,  

Each N~ can be treated in exactly the same way that N was until we reach the formula 
( ~ ) .  However, in order to make the formula useful this time we must take a smaller 
e4 (and therefore a larger r): 

~2 

/3'$ -- 600.2 q+2t ' r = n4(e4). 

We have then 

,._1 [ I .~ '  ~ '  ]Dd+2~l => (7-e2)  [Nil - S e 4 n  rq. 
dE~io=O ~2 J 

Multiplying by i and summing gives 

~ '  ID~(e)+2el => (7-ez)  Ig[ =8/34n i rq e 
eEg 0=0  /32 

The counting argument again shows that there is an o E [0, r) such that for at most 
3 

8u Ig[ elements e Eg the sets Do(e)+2 o are full, and the proof is finished as above. 

We have now completed the proof of lemma B C D E  and with it the proof of 
the theorem. 

The author wishes to express his thanks to E. WIRSING and P. D. T. A. EU~OT% 
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