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1 Overview

The string 111111111111 looks “less random” then the string 100110001001.
Kolmogorov complexity makes this intuitive notion of randomness rigorous.
Once this is done, new questions arise and some old questions can be an-
swered. This book spends half of its time making these notions rigorous, and
the other half applying them. More precisely:

1. Chapters 1-4 carefully establish the rigorous definitions needed to study
randomness. If this were the only goal it would not need four chap-
ters; however, the authors also explore many issues that lead to the
definitions and that are consequences of the definitions.

2. Chapters 5-7 apply Kolmogorov complexity to computer science; chap-
ter 8 applies it to Physics. Most of the applications only use a small
part of what is in chapter 1-4. This is good— if a reader is only inter-
ested in applications they can read these chapters having just learned
a few things from chapters 1-4.

2 Summary of Contents

Chapter 1 contains motivation for the subject and a quick review of combi-
natorics, probability, and computability. The treatment is a good refresher
course, but is too mature for a first time learner.

Chapter 2 defines the complexity of a string and some notions of random-
ness. Informally, the complexity of a string x is the shortest description of
x. We give a formal definition that is equivalent to the one in the book.
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Definition 2.1 Let {φσ}σ∈Σ∗ be an APS (acceptable programming system,
i.e., (1) {φσ}σ∈Σ∗ contains exactly the partial recursive functions, and (2)
the ‘σ’ can be manipulated like code). Let f be universal for {φσ}σ∈Σ∗ (that
is, f(σ, τ) = φσ(τ). The complexity of x given y, relative to f is

Cf (x|y) = min{|σ| : f(σ, y) = x}.

Note that σ tells how to get from y to x since from σ and y one can produce
x. We also define Cf (x) = Cf (x|λ). Note that Cf (1

n) = log n + O(1) since
all you need to describe 1n is n.

Definition 2.2 Let c ∈ N and x ∈ Σ∗. x is c-incompressible with respect to
f if Cf (x) ≥ |x| − c. Intuitively we are saying that the shortest description
of x is x itself. This is a notion of randomness. A simple counting argument
shows that most strings are c-incompressible.

The above definitions seem to depend on the particular f chosen. The
next theorem shows that the definitions are actually robust.

Theorem 2.3 Let {φσ}σ∈Σ∗ be an APS and f be universal for it. Let
{ψσ}σ∈Σ∗ be an APS and g be universal for it. Then there exists a con-
stant c such that (∀x)[|Cf (x) − Cg(x)| ≤ c]. Hence the definition of Cf is
invariant up to an additive constant.

The approach in the book is to fix one f and use it to define C(x) = Cf (x).
Theorem 2.3 shows that results obtained in this way hold for any APS (up
to an additive constant). In Chapter 3 they will make a restriction on the
APS so that the function C has some nice properties, but this is the extend
to which the APS matters.

In Chapter 2 the authors discuss and prove many properties of C(x)
and incompressible strings. The most interesting nice property is that c-
incompressible strings correspond to another notion of random strings defined
by tests. The most interesting negative property is that there is no infinite
random string, that is, an infinite string where every prefix is incompressible.
Other bad properties of the definition are also noted.

Chapter 3 begins by listing several problems with the definition of C(x).
The goal of this chapter is to rectify these problems. For this the authors
drop their usual verbose style and get to the point:
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Looking at this list of deficiencies with the wisdom of hindsight it is not
too difficult to transcend a decade of strenuous investigation and alternative
proposals by proceeding immediately to what now seems a convenient version
of algorithmic complexity.

The solution is to make the programs in the APS prefix-free. That is,
if σ is a program then στ is not. This restriction of the APS rectifies all
the problems that arose. The rest of chapter 3 establishes this and other
properties of this definition of complexity. This new notion of complexity is
denoted K(x) instead of C(x).

Chapter 4 explores connections between Kolmogorov complexity and prob-
ability. Consider the following intuitive problem: getting 20 heads in a row
seems less likely than getting hthtththtthhhtttthht. If the coins are fair then
our intuition is incorrect. However, is there a probability distribution which
captures our intuition? We would like a distribution where less complex
strings have a lower probability of being observed. The Kolmogorov com-
plexity gives a precise measure of the complexity of a string. Let R : Σ∗ → Q
be defined by R(x) = 2−K(x) This is not a probability distribution, but it does
assign to every string some number < 1, and it does assign larger numbers
to more complex strings. (It cannot be made into a distribution by scaling,
however its restriction to strings of length n can.) In this chapter several the-
orems are proven about R(x). The main theorem is that R is closely related
to a universal semi-measure. This is particularly impressive since the defini-
tion and construction of universal semi-measures does not use Kolmogorov
complexity.

Chapter 5 applies Kolmogorov complexity to inference. Occam’s Razor
says (informally) that the least complex explanation of a phenomena is the
best. Since Kolmogorov complexity gives a precise measure of the complex-
ity of a string, Occam’s razor can be made rigorous. This chapter carries
this out for Bayesian inference and PAC learning. In most cases the learn-
ing procedure is not quite practical; however, some theorems of interest are
proven.

Chapter 6 applies Kolmogorov complexity to combinatorics, algorithms
analysis, formal language theory, and circuits (the application to circuits is
in the second edition but not the first). This is the most interesting chapter
for computer scientists who want to see applications. This chapter uses very
little Kolmogorov complexity theory: just the existence and abundance of
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incompressible strings. We describe some of these applications. There are
many more in both the text and the exercises.

1. Let r(k) be the kth Ramsey number. Let n = k2
k
2 ( 1

e
√
2
− o(1)). Using

the probabilistic method one can show r(k) ≥ n. An alternative proof

is to (1) take an incompressible string of length
(
n
2

)
, (2) use it as the

adjacency matrix for a graph G on n vertices, and (3) show that G
cannot have a large k-clique or k-independent set since otherwise the
string that formed G would have a short description. In this application
we obtain an alternative proof of a known theorem. This can be carried
out for other probabilistic proofs as well.

2. There are two popular methods for heapsort: William’s and Floyd’s.
It was conjectured many years ago that William’s had average running
time 2n log n−O(n) and that Floyd’s had average running time n log n−
O(n). A proof of this (due to Ian Munroe) is given in the book. The
basic idea is to take a permutation p of {1, . . . , n} such that C(p|n) ≥
n log n − 2n, and analysis what the algorithms does on p. Since most
permutations have this property, what happens on p is the average
case. An alternative analysis was discovered at roughly the same time
as the Kolmogorov proof; however, the Kolmogorov proof is simpler.

3. Let L = {x#y : x is a substring of y}. It is known that a 6-head 2-
way DFA can recognize L. The question arises as to how much this
can be scaled down. Using Kolmogorov theory one can show that L
cannot be recognized by a 2-head 1-way DFA (in the text), a 3-head
1-way DFA (as a hard exercise), or a k-head 1-way DFA with some
restrictions. (The unrestricted k-head case is open.) The only proof
known for these results uses Kolmogorov complexity.

4. H̊astad’s switching lemma says that if you place a random restriction
of the variables of a circuit you will, with high probability, be able to
switch the bottom two levels. An alternative proof is given where an
incompressible string is used rather than a random restriction. This
proof seems easier (to me) than the original, but this is a matter of
taste.

Chapter 7 is on resource bounded Kolmogorov complexity. Intuitively,
Ct,s(x) is the shortest program that prints out x in time t(|x|) and space
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s(|x|). This chapter proves theorems of interest about Ct,s and then uses
Ct,s to prove theorems in complexity theory. We list some of the theorems.

1. Let f, t, s be functions, n ∈ N, and C[f, t, s] = {x : |x| = n ∧ Ct,s(x) ≤
f(n)}. If f(n) is small (e.g.,

√
n) then this is the set of strings of low

resource bounded Kolmogorov complexity. The questions arises as to
whether there is some tradeoff with the parameters. A very general
theorem is proven which says that f is quite important. One of the
corollaries is that, for large n, C[

√
n+log log n, cn,∞]−C[

√
n,∞,∞] ̸=

∅].

2. A ∈ BPP (bounded probabilistic polynomial time) if there exists a coin-
flipping poly-bounded Turing machine M(−;−) (the first argument is
the input, the second is the sequence of coin flips) such that

x ∈ A⇒ Prob(M(x;σ) = 1) ≥ 2−|x|;

x /∈ A⇒ Prob(M(x;σ) = 0) ≥ 2−|x|.

If x ∈ Σ∗ and σ is an incompressible string (of the appropriate length)
then M(x;σ) = A(x), otherwise σ is compressible. Hence if one had
access to a the function C then one could easily compute A. This is
not helpful since C is not recursive. However, using resource bounded
Kolmogorov complexity and several other ideas, Sipser (1983 STOC,
but also presented in this book) proved that BPP ⊆ Σp

2∩Πp
2. An easier

proof was later found by Lautemann (IPL 1983, Vol 17); however, the
ideas behind Sipser’s proof may be useful for reasoning about other
probabilistic classes.

3. Let A ⊆ Σ∗ and x ∈ Σ∗. Even if A is hard (e.g., NP-complete)
there might be some instances x that are individually easy. This seems
difficult to define because one can always take a program for A and
hard-code x and A(x) into it, thus resulting in code for A that is fast
on x. But such a machine would need size at least Ct.s(x) if you want
the machine to run in time t and space s, on x.

Fix time and space bounds t and s. The instance complexity of x
(relative to A, t and s) is the size of the least complex program (using
Ct,s as your measure of complexity) that is consistent with A (it may
be undefined on some points), defined on x, and takes time t and space
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s one on all inputs. Several theorems about this notion are proven.
(There has been work on instance complexity within recursion theory.
This is an exercise on page 501. It is new with the second edition.)

Chapter 8 applies Kolmogorov complexity to Physics. A computation
is thought to lose energy; however, if it is reversible then (theoretically) no
energy is lost. Hence this chapter spends some pages on reversible compu-
tation. In thermodynamics one speaks of the information within a system.
Since Kolmogorov complexity gives a rigorous definition of information, con-
nections are made.

3 Style

This book is rather verbose. One can read many pages before getting to the
desired information. The book is aware of this and has a special font (also
indented) to say “you can skip this part.” Most of these verbose sections are
interesting and a pleasant read; however, when looking for a particular item,
it can bog you down.

There are many exercises of interest. The book uses the Knuth numbering
system to designate the hardness of problems.

4 Opinion

This is a great book. The literature on Kolmogorov complexity is scattered
and some of it is in Russian or otherwise hard to access. This book puts it
all in one place in a readable, enjoyable style. This is the second edition and
the authors have added many new results that have been proven between the
first book (in 1993) and this one.
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