
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DI-
MACS Implementation Challenge Edited by Michael H. Goldwasser, David S. Johnson,
Catherine C. McGeoch. Reviewed by Maulik A. Dave. This book reports on a the DIMACS
implementation where competitors really coded up different algorithms for the problems in-
dicated.

2. Genomic Perl: From Bioinformatics Basics to Working Code by Rex A. Dwyer.
Review by Raymond Wan. This book covers several topics in bioinformatics in the context
of the Perl language.

3. Graphs, Networks, and Algorithms by Dieter Jungnickel. Review by William Fahle.
This book starts from the basics but is fairly comprehensive.

4. Immunocomputing: Principles and Applications by Alexander O. Tarakanov, Victor
A. Skormin, Svetlana P. Sokolova. Reviewed by Wenzhong Zhao. This book considers the
bodies immune system as a computing agent.

5. Term Rewriting Systems by Terese. Reviewed by Frederic Loulergue. This book is meant
to be good for both teaching and doing research on Term Rewriting Systems.

Books I want Reviewed
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu
Reviews need to be in LaTeX, LaTeX2e, or Plaintext.

Books on Algorithms

1. Graphs, Algorithms, and Optimization by Kocay and Kreher.

2. Combinatorial Optimization: Packing and Covering by Cornuejols.

3. Algorithms: Design Techniques and Analysis by Alsuwaiyel.

4. Design and Analysis of Randomized Algorithms by Hromkovic.

5. Combinatorial and Computational Geometry (MSRI) edited by Goodman, Pach, and Welzl.

Books on Cryptography

1. Elliptic Curves: Number Theory and Cryptography by Larry Washington.

2. Coding for Data and Computer Communication by Salomon.
1 c© William Gasarch, 2005.

1



3. Crytography, Information Theory, and Error Correction: A Handbook for the 21st Century
By Bruen and Forcinito.

4. Handbook of Elliptic and Hyperelliptic Curve Cryptography by Cohen and Frey.

Books on Coding Theory

1. Error Correction Coding: Mathematical Methods and Algorithms by Moon.

2. Introduction to Coding Theory by van Lint.

3. Block Error-Correcting Codes: A Computational Primer by Xambo-Descamps.

Misc Books

1. Computer Viruses: from theory to application by Filiol.

2. Applied Combinatorics on Words by Lothaire.

3. Rippling: Meta-Level Guidance for Mathematical Reasoning by Bundy, Basin, Hutter, Ireland.

4. Domain Decomposition Methods– Algorithms and Theory by Toseli and Widlund.

5. Semantic Integration of Heterogenous Software Specifications by Martin Groβe-Rhode.

6. Handbook of Computational Methods of Integration by Kyther and Schaferkotter.

7. Theoretical and Experimental DNA Computatoin by Amos.

8. Polynomials by Prasolov

Review of
Data Structures, Near Neighbor Searches, and Methodology:

Fifth and Sixth DIMACS Implementation Challenges2

Series: DIMACS Series in Discrete Mathand TCS#59
Editors: Michael H. Goldwasser, David S. Johnson, Catherine C. McGeoch

Publisher: American Mathematical Society, 2002

Reviewer: Maulik A. Dave

1 Overview

This book is in the area of searching data structures, and algorithms. It also has a discussion on
experimental analysis of algorithms. The goal of DIMACS Implementation Challenges is projected
as to promote top quality experimental research on algorithms, and data structures. The fifth
challenge (1995-1996) was on dictionaries, and priority queues. The first part of the book is from
the works in the fifth challenge. The sixth challenge (1998) was on near neighbor searching. The
second part of the book is from the works in the sixth challenge. The third part of the book has
general discussion articles on algorithm experiments.

2 c© Maulik A Dave, 2005

2



2 Summary of Contents

The book is divided into three parts.

2.1 Part 1. Dictionaries and Priority Queues

This part starts with a work on tabu searching. For searching with combinatorial explosions,
local searching is guided by history sensitive schemes. The paper introduces, and formulates the
tabu searching in first two sections. The paper proposes to use dictionaries supporting the history
sensitive heuristics. The persistent red-black trees, in particular, is proposed. The asymptotic
analysis of the algorithm is discussed in details in the third section. The claim is that the proposed
scheme improves both time, and space efficiency in comparison to other similar schemes. The section
4 contains description, and results of three sets of experiments with the proposed scheme. The first
set of experiments consists of memory usage tests using random numeric keys. 27 dictionary trace
files are used. The corresponding graphs are presented. The second set of experiments consists
of memory usage tests for a reactive search application. The memory usage results for different
instances of the Maximum Clique problem are illustrated by graphs. The third set of experiments
consists of timing tests on the maximum clique problems. Comparative results on CPU times for
ephemeral and persistent version on maximum clique problems are presented. The section 5 briefly
concludes.

The next paper is on perfect hashing. Modifications of the FKS algorithm [1] by Fredman,
Komlos, and Szemerdi is proposed. The tests are run on an alpha based machine, an RS/6000
based machine, and an x86 based machine. The key sizes considered, are varying from 4 bytes to
36 bytes; most of them being 16/20 bytes. By graphical illustrations, the improvements over FKS
algorithm with respect to both space, and running time are shown. The comparison for different
representations for space arrays is reported separately. Apart from these, some more space time
trade off parameters are discussed, and their corresponding test results are reported. The paper
ends with comparison of FKS algorithm with hashing with linear probing, and an implementation
of associative arrays in Perl 5.

The last paper of the part is on heap-on-top (Hot) queues. The first two sections introduce the
concepts of priority queues, monotone priority queues, and hot queues. The third section describes
the multi level buckets theoretically. The complexity for operations, i.e., insertion, decrease-key, and
extract-min are presented. This is followed by theoretical description of hot queues in forth section.
The rest of the paper deals with experiments. The experiments compare six implementations of
monotone priority queues : k-ary heaps with k=4; 2- and 3-level buckets; and 2- and 3- level hot
queues; and a simple heap based algorithm. The machine used is Pentium Pro based running
solaris. The test suite includes three different families of graph based problems, sorting tests, and
nine families of event simulation. The timing results are presented using tables, and graphs.

2.2 Part 2. Near Neighbor Searching

This part starts with an experimental research paper in the area of data compression. Vector quan-
tization (VQ) is a data compression method, where the near neighbor searching plays an important
role. The first two sections introduce the VQ, and the associated codebook, and codewords. The
third section discusses in details the various algorithms of near neighbor search chosen for the
experiments. The algorithms are Orchard method, annulus method, double annulus method, k-d
tree search, and PCP tree search. The experiments are done on an alpha processor based machine
running linux operating system. The input consists of up to 7 images from an image database. The

3



results of the experiments are presented with two kinds of graphs, one plotting codebook size with
codewords searched, and other one plotting codebook size with execution times. After describing
experiments in section 4, an algorithm combining PCP, and k-d tree searches is discussed. The
summary in section 6 contains qualitative conclusions drawn from the experimental results.

The next paper is on evaluation of disk based data structures. The multimedia applications
use disk based data structures, where near neighbor searching plays an important role. After
introduction, the paper compares the main memory data structures with disk based data structures.
The R - tree, and its variants are discussed in details. The variants discussed are SS - tree, SR
- tree, and VAMSplit R - tree. The discussion includes the tree construction algorithms. The
experiments are done on machine with 360 MHz Ultrasparc II CPU, 512 MB main memory, and
solaris operating system. The inputs are from photo and video archives of NASA. The performances
for similarity in retrieval of images, and video scenes are presented by graphs. Graphs for R - tree
variants are plotted separately. Further, k - d tree is compared with R - tree variants in details.

The next paper is on clustered point sets. The problem being addressed is of constructing a
data structure for n points in d dimensions such that nearest data point for the query point can
be reported efficiently. In presence of clustered point sets, splitting methods play important roles.
The problem is discussed in details before discussing splitting methods. The splitting methods,
namely, sliding midpoint, and minimum ambiguity are explained. The experiments consist of k - d
tree implementations with these splitting methods. 4000 data points in dimension 20 with 12000
queries are used for the experiments. The distributions of data points studied are uniform, gaussian
clustered, orthogonal ellipsoid clustered, and ellipsoid clustered. The number of nodes visited are
plotted for each splitting method for various distributions. Further, construction times for trees
are also plotted.

The next paper is on using the extended general space filling curves heuristic (SC) for ap-
proximate nearest neighbor search. The paper first presents a survey of various algorithms for
near neighbor search. The survey includes tables showing complexities of various algorithms. The
discussion on SC contains formal definition of space filling curves, algorithms for transformation
functions, a small survey of applications of space filling curves, and explanation of theories of
proposed extension. The approximate nearest neighbor search is presented as an application of
SC. The data sets used in the experiments, have two kinds of distributions, namely, uniform, and
normal bimodal. Experiments are done by varying transformations, number of prototypes, and
number of dimensions. Apart from these variations, the sets of experiments also include real data
sets experiments, and constant precision experiments.

The last paper in this part is a research paper on nearest neighbor search for euclidean hy-
percube with uniform distributions. After a brief survey of related works, the proposed algorithm
is described. The analysis of the proposed algorithm is discussed in details. This is followed by
presentation of experimental results. The major achievement of the proposed algorithm is that
the search complexity is very nearly dimension invariant. Similar performance graph for k - d tree
shows that search complexity varies with dimensions.

2.3 Part 3. Experimental Analysis of Algorithms

The first article contains a general discussion on the role of experiments in the algorithms. The study
of algorithms is classified into two approaches : analytical, and empirical. The empirical approach
can play a complementary role for analytical approach. The article also contains a discussion on
what is a good or a bad empirical work.

The next paper proclaims experimental algorithmics as a discipline. After the introduction,

4



motivation for such a discipline is described. The modes of empirical assessment is classifies into
seven non exclusive categories. The assessment of competing algorithms, and assessment of heuris-
tics are described at length. The discussion also includes various other features of the discipline.
The experimental set up, the measurement parameters, the presentation of data, and the analysis
of the data are also discussed. Algorithms for constructing a minimum spanning tree is presented
an illustration.

The next paper is a guide to the experimental analysis of algorithms. The guide is based
on experience of the author over the course of more than a decade of experiments. The paper
contains a full scale discussion on ten principles governing the writing of experimental papers.
The principles include performing newsworthy experiments, connecting the paper to the literature,
using instance test beds supporting general conclusions, using efficient experimental designs, and
implementation; ensuring reproducibility, and comparability; reporting and presenting data; and
drawing conclusions. The appendix of the paper lists 35 pet peeves, 6 pitfalls, and 8 suggestions.

The part ends with a bibliography of algorithm experimentation spanning 5 pages.

3 Style

The book is a collection of research papers, evaluation papers, general discussion papers, and a
bibliography. The research papers typically devote half of the space for theoretical formulations, and
other half for experiments. The theoretical formulations contain explanation for data structures,
and algorithms in pseudo codes; apart from definitions, lemmas, and analysis of algorithms. The
description of experiments contain experimental set ups, experimental results, and analysis of the
results. The experimental results are presented by graphs, and tables. The discussion papers are
descriptive in nature.

4 Opinion

The book contains a useful research work in the area of searching data structures. A reader new
to the area of searching can easily understand the works. The k - d trees, some or other form,
are referred by almost all the papers from first two parts. The software practitioners dealing
with searching algorithms can find the book useful. The papers contain surveys of related works
beneficial for researchers, and practitioners working in the area. The bibliography at the end, has
a useful list of research works. The beginners in experimental algorithm designs can find the last
part of the book very useful.

5 References

[1] M. Fredman, J. Komlos, and E. Szemerdi. Storing a parse table with O(1) worst case access
time. Journal of ACM, 31(3); 538-544, july, 1984.

5



Review of Genomic Perl3

From Bioinformatics Basics to Working Code
Rex A. Dwyer

Publisher: Cambridge University Press, 2003
ISBN: 0-521-80177-X

Review by:
Raymond Wan (rwan@cs.mu.oz.au
University of Melbourne, Australia

1 Overview

Genomic Perl by Rex A. Dwyer covers several topics in bioinformatics in the context of the Perl
language. According to the preface, the book selects some topics in bioinformatics, and presents
them to the intended audience – a student in an “upper year level undergraduate or graduate level
course”.

Overall, I found the book interesting to read, but I believe it should be read with other resources
available for reference.

2 Summary of Contents

The book consists of 17 chapters and appendices. While certain chapters build on the work from
previous ones, each is self-contained and follows a fixed formula. The first half of a chapter provides
the background in biochemistry that is essential to the chapter. Then, a Perl program is built up
during the remainder of the chapter which addresses the problem, with difficult parts explained
in the text. Every chapter has one to around ten questions for the student, with no solutions
provided. The difficulty of the questions range from drawing a suffix tree for a word to extending the
functionality of the Perl program from that chapter. Every chapter concludes with a bibliography.
A brief summary of each chapter is as follows.

1. The Central Dogma. The book begins with an introduction to biochemistry, with emphasis
on DNA, RNA, proteins, and the relationships between them. A Perl program that outputs
the proteins that are encoded by a given DNA sequence is developed.

2. RNA Secondary Structure. An RNA molecule physically exists in three dimensional
space, but is described at various levels. The nucleotides of an RNA sequence are written
down as a sequence of characters at the lowest level. At the next level (also called its secondary
structure), the molecule folds so that pairs of nonadjacent nucleotides form hydrogen bonds.
Two programs examine how the sequence folds, while demonstrating recursion and dynamic
programming.

3. Comparing DNA Sequences. The alignment of pairs of DNA sequences in the presence
of errors is an example of approximate string-matching problems. A Perl program is given
which addresses global alignment using the Needleman-Wunsch algorithm, another example
of dynamic programming.

3Raymond Wan, c©2005

6



4. Predicting Species: Statistical Models. Probability, information theory, and entropy
form the basis for a simple program which predicts the probability a DNA strand came from
a particular species.

5. Substitution Matrices for Amino Acids. Substitution matrices extend the alignment
techniques of Chapter 3 for proteins which differ due to evolution. The design of a Perl
program which computes substitution matrices is shown.

6. Sequence Databases. Biological sequences are stored in public databases in several for-
mats. A program using Perl’s limited object-oriented facilities is developed which reads and
processes the GenBank data format.

7. Local Alignment and the BLAST Heuristic. Chapter 3 describes an algorithm for align-
ing two entire sequences. In contrast, “local alignment” refers to the alignment of substrings
of two sequences. The Smith-Waterman algorithm and BLAST heuristic are implemented in
Perl for this purpose.

8. Statistics of BLAST Database Searches. The previous chapter is extended by looking
at the statistics associated with aligning using the BLAST heuristic.

9. Multiple Sequence Alignment I. Another extension to Chapter 3 looks at the problem
of aligning more than two sequences at a time by first extending the Needleman-Wunsch
algorithm and then investigating incremental strategies, with a brief excursion into NP-
completeness.

10. Multiple Sequence Alignment II. The discussion that began in the previous chapter
continues by looking at how the efficiency of the algorithms for multiple sequence alignment
can be improved.

11. Phylogeny Reconstruction. Phylogenies are trees which depict the course of evolution
of several species. A Perl program is developed which creates a tree from a list of protein
sequences.

12. Protein Motifs and PROSITE. Protein motifs are short sequences, each with a known
biochemical function. PROSITE is a database of these motifs. Perl programs are implemented
which first process motifs in the PROSITE file format, and then build a suffix tree so that
all entries in the database can be efficiently compared with a sequence.

13. Fragment Assembly. Fragment assembly is an example of determining the shortest common
superstring. That is, given a list of substrings representing fragments of a DNA sequence,
what is the longest string that contains every substring in the list? A simplified version of
the PHRAP program for addressing this problem is created in this chapter.

14. Coding Sequence Prediction with Dicodons. Statistical methods can be employed for
finding new genes in a DNA sequence when a training set of known genes is available.

15. Satellite Identification. This chapter shows how identifying satellites, or tandem repeats
in DNA, can be done in Perl. Both DNA fingerprinting and the reconstructing of phylogenies
can benefit from these techniques.

7



16. Restriction Mapping. The restriction map of a DNA sequence is a list of locations where
a restriction enzyme is known to cut the sequence. Creating a restriction map is one way of
analysing a long sequence of DNA. Two techniques for achieving this in Perl are given, one
which assumes the data set to be perfect, and another which allows for imprecise data.

17. Rearranging Genomes: Gates and Hurdles. One DNA sequence may contain the same
genes as another, but in a different order. The number of steps required to transform the
first sequence to the second can be used to determine how they are related, with respect to
evolution.

18. Appendices. The appendices present a program for drawing the two dimensional RNA
secondary structure diagrams (Chapter 2), some ideas for reducing space usage during the
aligning of sequences, and a Perl solution to the disjoint sets problem.

3 Opinion

I approached this book with a few years of experience with Perl, and only limited knowledge of
biochemistry. There were several aspects about the book which I liked. First, the structure of each
chapter was simple and easy to follow. Second, most chapters are short and can cover the topic in
just over 10 pages. That is, rather than going into detail with only a few topics, someone reading
this book is given a taste of 17 topics. Third, while the bibliography of each chapter is short, only
the most relevant citations are given.

While the theme of this book is bioinformatics, readers of this column will be interested that
some time is spent on the underlying algorithms. Dynamic programming, recursion, recurrence
relations, NP-completeness, regular expressions, and suffix trees are sprinkled throughout the book.
The time and space complexity of algorithms are also occasionally given.

However, there are some parts of the book that did not appeal to me. Sometimes, the problem
descriptions are too brief, and I often found myself asking questions whose answers were not avail-
able, even though they were not crucial. For example, in the first chapter, several definitions form
the foundation of the introduction to biochemistry. But, due to the limited amount of space, a clear
picture of how DNA, RNA, and proteins relate to each other is difficult to form. While a complete
understanding of biochemistry is not needed to code a solution in Perl, the short background given
in each chapter may cause some readers to yearn for more. Likewise, if someone does not have
sufficient knowledge of Perl, then the latter half of each chapter may be hard to follow. The author
has decided to spread coverage of Perl syntax throughout the book, rather than dedicating an
introductory chapter or appendix to it. This choice almost forces readers to go through the book
in order. Finally, the absence of pseudocode makes it difficult to generalise the solution to other
languages. While Perl is used often by bioinformaticians, Perl source code is sometimes difficult to
read, and text which explain sections of a program can easily become repetitive and uneventful.

Most of these shortcomings, though, are expected in a book such as this. Both biochemistry and
computer science are vast fields which can only be fully understood by books dedicated to them.
In fact, bioinformatics is a difficult field to write for since it juggles several seemingly disjoint areas
including computer science, mathematics, and biochemistry. And, as the goal of this book is to
explain bioinformatics using Perl as a framework, the reliance on Perl is unavoidable.

Because of this, the reader may need several other resources in order to follow this book. While
Genomic Perl is suitable for an upper year level undergraduate course and above, a lecturer or
book is necessary to fill in any missing gaps. These gaps include biochemistry, mathematics, Perl,

8



and algorithms, depending on the individual. That is, reading this book in isolation may prove
difficult.

In conclusion, I am pleased to say that this book is a rare example of when one can judge a book
by its cover! The title “Genomic Perl: From Bioinformatics Basics to Working Code” summarises
the structure chosen by the author. Each chapter commences with only the rudimentary basics for
each topic, and concludes with working Perl code, which is also included in the accompanying CD
ROM. Excluding students, others with an adequate knowledge of bioinformatics may benefit from
this book since the accompanying Perl source code can be easily extended and deployed.

Review of
Graphs, Networks, and Algorithms4

Second Edition
Author: Dieter Jungnickel

Springer-Verlag Berlin Heidelberg 2005
Review written by William Fahle

0.1 Overview

The field of graph theory with the accompanying important problems such as flow and matching
is maturing and growing. There is a need for a solid treatment of these subjects which is both
introductory and comprehensive. This book seems to fit that bill, beginning from the very basic
definitions of graph theory, quickly building a catalog of theorems, and ending with a complex suite
of algorithms on graphs and networks.

The early focus is mainly on graph theory, but the book includes discussions of flow,
matroids, matching and paths to complete a course in combinatorial optimization. Applications
are given for most of these subjects. At the end is a collection of NP-complete problems and an
extensive bibliography.

This text is suitable for graduate courses in combinatorics and graph theory, as well as for
independent study and research by students, mathematicians, and professionals. It is a welcome
addition to the library of choices of textbooks for these subjects.

0.2 Graph Theory

An introduction leads us quickly into the origins of graph theory and the characteristics which
distinguish it from other fields of mathematics. Rigorous mathematical definitions are given for
graphs, networks, paths, walks, and so on. From these grow an array of small theorems, each
proven from the definitions given. The history of Euler, Hamilton, and the birth of graph theory
are covered well. Chapter One ends with a few applications in event scheduling.

The next two chapters introduce some computer science and complexity theory for readers
without this background. However, most readers would do well to skip none of this section; many
of the definitions and early proofs set the stage for later work. The end of chapter four gets back
into the territory which will be less familiar to the average computer scientist, including Steiner
trees and arborescences.

4William Fahle, c©2005

9



0.3 Matroids

Next up are matroids and the greedy algorithm. This complex subject is tackled well, and
things begin to turn toward more computer-science related subjects, including linear programming
and complexity theory. Characterizations are given for matroids, and matroid duality is explained,
as well as using the greedy algorithm as an approximation algorithm for matroids.

0.4 Flow & Circulation

Ford and Fulkerson’s theorems are covered in detail, and the augmenting path algorithm is
described. As given, if one can find an augmenting path from the source to the sink in a network,
that path can be used to add to the flow; when one cannot find such a path there is no more flow to
be found. This result is similar to the min cut/ max flow theorem. Edmonds and Karp’s important
improvement for strictly polynomial time is discussed. In the Edmonds and Karp algorithm, the
augmenting path chosen is always the shortest one. Many graphical examples are given in this
section of the book to explain the complex phoenomena of flows and networks.

A brief treatment of colorings and Cayley graphs is followed by a more complete discussion
of circulations. Circulations are similar to flows, except that the sink has an equalizing flow back
to the source. This section includes information on Klein’s algorithm for optimal circulations,
potential functions and ε-optimality. Finally Goldberg and Tarjan’s minimum mean cycle canclling
algorithm is given as an example of a much simpler way to determine optimal circulations.

0.5 Network Simplex

For this second edition, a new chapter on the network simplex algorithms has been added. This
is an algorithm which adapts the regular simplex algorithm from linear programming to graph
theoretical problems. The important problem of minimum cost flow is shown to have a solution
with the network simplex method, and we also see other problems which translate easily to minimum
cost flow. The problem of network synthesis is treated next; given paramters, we seek a network
that matches those paramters.

0.6 Maximal Matchings

Good coverage is given of the bizzare and interesting algortihm by Edmonds for determining max-
imal matchings. This algorithm looks for what he terms blooms and trees to collapse a network
down to a matching. Then blooms are reexpanded back to work through each of them. The algo-
rithm is given in great detail with numerous examples and walkthoughs. Pseudo-code is also given.
Other problems examined include matroid matching, weighted matchings, the Chinese postman
problem, and the Hungarian algorithm.

0.7 NP-Complete problems

Up to this point, the problems treated are polynomial-solvable. In the final chapters, the
Traveling Salesman Problem and other NP-hard or NP-complete problems are discussed. As is
usually the case when discussing NP-complete problems, approximation algorithms and branch-
and-bound are discussed.

10



0.8 Conclusion

The appendices include a small catalog of NP-complete problems, a detailed list of solutions
to all the problems in the book, a list of special symbols used in the book, and hundreds of
references to the field. A fifteen-page index rounds out the book, which overall is a thourough and
excellent treatment of a field which is booming but thus-far short on textbooks. If there is one
thing missing from this book, it is a discussion of the problems in the field which are not yet known
to be polynomial solvable, but which are also not yet known to be NP-complete. Of course this
information is due to change over time, and so would become quickly dated.

Review of
Immunocomputing: Principles and Applications5

2003
Authors: Alexander O. Tarakanov, Victor A. Skormin, Svetlana P. Sokolova

Publisher: Springer-Verlag New York, Inc.

Reviewer: Wenzhong Zhao
Department of Computer Science

University of New Mexico
wzhao@cs.unm.edu

1 Overview

The natural immune system is a complex system with several mechanisms for defense against
pathogenic organisms. From the perspective of information-processing, the main purpose of the
immune system is to solve recognition and classification tasks, and categorize cells or molecules as
self or non-self. It learns through evolution to distinguish between foreign antigens (e.g., bacteria,
viruses) and the body’s own cells or molecules. The introduction argues that the immune system
is much better understood than the nervous system.

As a highly parallel and distributed adaptive system with memory, recognition, learning, and
decision-making capabilities, the biological immune system provides a remarkable information-
processing model in the computational field. This emerging field is sometimes referred to as Im-
munocomputing (IC) or Artificial Immune Systems (AIS). Although it is so new (it was “officially”
established in 1999 when Dasgupta published the first book in this area.), immunocomputing, with
a strong relationship to other biology-inspired computing models, such as Artificial Neural Net-
works (ANN), Cellular Automata (CA) and Evolutionary Computation (EC), is establishing its
uniqueness and effectiveness as a natural-computing media for solving computationally intense,
complex problems.

“Immunocomputing: Principles and Applications”, the book under review, introduces immuno-
computing as a new computing approach that bridges between immunology and computer engi-
neering. This new approach applies the principles of information processing by natural proteins
and immune networks to the field of computation. It demonstrates how mathematical bases and
immunology together form the new immunocomputing paradigm. It also integrates key aspects of
pattern recognition, language representation and knowledge-based reasoning.

5Wenzhong Zhao, c©2005

11



There are very few books with topics specific to immunocomputing and its applications on the
market. This is a rare kind of book that explores the possibility of a computational approach that
replicates the principles of the information processing in the immune system. The authors try to
make the book accessible to audience with different backgrounds. Following the introduction to
the key mechanisms of biomolecular computing, they cover, in considerable detail, the necessary
mathematical bases for the major building components in the IC technology, including formal
proteins, interaction between formal proteins, and formal immune networks.

2 Summary of Contents

The book consists of seven chapters, and a conclusion section. In addition, it features an extensive
bibliography and glossary of symbols at the end.

In Chapter 1, Introduction, the authors try to convince readers that immunocomputing is
a potential model for high performance computing. This chapter provides a sketch of the key
biomolecular mechanisms of information processing. It introduces, from the computing viewpoint,
natural proteins, which are the main components of the immune system as well as the mechanisms
of protein behavior such as protein folding or self-assembly, in addition to covering molecular
recognition, and the immune system.

Chapter 2, The Mathematical Basis of Immunocomputing, describes a rigorous mathematical
model for immunocomputing. It introduces the notion of formal protein (FP), which abstracts the
biophysical principle of free energy dependence from the spatial conformation of a protein. Based
on the three dimensional geometry, the spatial conformation of a natural protein is determined by
three fixed valence angles and two torsion angles between neighboring atoms. The mechanics of
self-assembly, such as binding energy, the allosteric effect and networks of binding are also discussed.

The authors introduce the two models of immune cells: formal B-cells, and formal T-cells.
These cells can either proliferate or die depending on whether they bind with an FP. They also
develop a mathematical model for a formal immune network. (FIN) which is a network of bindings
between FPs (such as receptors of B-cells, receptors of T-cells, and free FPs). The authors give a
brief review of other related topics such as quaternion algebra and singular value decomposition.

Modern molecular biology has discovered that proteins utilize remarkably elegant, precise, and
reliable mechanisms to recognize their own or foreign molecules or cells. These mechanisms are
parallel and distributed, and will play a key role in immune and intellectual processes. Chapter
3, Pattern Recognition, develops an approach to pattern recognition by immunocomputing using
the recognition between formal proteins. The main feature of this approach is that it considers an
arbitrary pattern as a way of setting a binding energy.

A formal protein is represented as an n-peptide with n links, each of which can be represented
by a special kind of quaternion. Recognition between two FPs is then defined as their binding. Two
FPs recognize each other if they interact with a binding energy less than or equal to the particular
threshold. The lower the binding energy, the better the recognition. The extreme values of the
binding energy are used as criteria for finding a solution to a pattern recognition problem.

The authors also define the notion of specificity of recognition as the sum of squares of deviations
of the binding energies over FPs. They show that folding a vector to a matrix does not decrease
the specificity. Instead, the specificity either increases or remains the same. Finally, they describes

12



how the task of pattern recognition can be solved by immunocomputing through supervised and
unsupervised learning.

Chapters 4, Language Representation and Knowledge Based Reasoning, provides a theoretical
framework for language representation and knowledge-based reasoning with immunocomputing.
The authors try to solve these problems using the representation and recognition of self and non-
self in the natural immune system.

This approach considers a chain of linguistic symbols (i.e., a word) as an FP. An admissible
word in the language is defined as a word for which the free energy of the corresponding FP
does not exceed a particular threshold. Admissible subwords are considered as subpeptides or
secondary structures of an FP. The authors show that the eigenvalues and eigenvectors of matrices
over linguistic symbols have the potential for useful applications of immunocomputing in language
representation.

The linguistic relations are described as interactions between FPs. Knowledge-based reasoning
(e.g., an attributive context free grammar) is equivalent to a set of T-cells described by certain
rules, with antigene corresponding to the axiom of the grammar, and so on. This approach can
simulate grammars for solving inference problems.

After building a strong mathematical and theoretical framework for the new computing tech-
nology, the authors start to describe applications of the immunocomputing approach. Chapter 5,
Modeling of Natural and Technical Systems, develops an immunocomputing approach to modeling
natural and technical systems, including native proteins, computer networks, and virtual clothing.
The authors demonstrate how these systems are formalized as special kinds of FPs and FINs.

In the case of modeling natural proteins, the spatial structure of a natural protein is represented
with its secondary structures, namely α-helix, β-sheet, and β-turn. They establish an analytical
model of the parameters of secondary structures of proteins as a special case of FP. They also argue
that the spatial configuration and physiological properties of proteins are determined by amino acid
sequence.

The authors also discuss how different events (i.e., for multicast protocols) in computer networks
can be synchronized with an IC model, and how protein folding can be applied in virtual reality,
such as folding or draping of cloth.

Further possible applications are discussed in detail in Chapter 6, Applications. These real-life
applications include detection of dangerous situations in near-earth space, evaluation of complex
ecological and medical indicators, surveillance of the plague in central Asia, and development of
intelligent security systems.

Chapter 7, Immunocomputing System: Architecture and Implementation, discusses the concept
of an immunocomputer. It describes a possible means of constructing immunocomputers utilizing
the principles of information processing by natural proteins and immune networks. It suggests a
hardware implementation of formal immune networks in a special immunochip, which would be used
as the core of an immunocomputer. Finally, they describe a software emulator of the immunochip,
as well as biochip technology which brings together computer chips with biomedical assays and
laser-based detectors.

The last section, Conclusion, completes the book by offering a summary of the main features
and innovations associated with the IC approach. The authors also discuss the reality of the IC
approach, admitting that it is still in its early stage, and that several gaps need to be clarified and

13



resolved.

3 Opinion

This book introduces an immunocomputing (IC) approach, whose computing strategies are based
upon the principles of information processing by natural proteins and the immune system. It bridges
between immunology and computer science, and demonstrates how mathematics and immunology
together form a new immunocomputing paradigm.

The book achieves its goal of being a thorough introduction to immunocomputing, although
some readers might be uncomfortable with its intense mathematical formalizations of ideas. The
book succeeds in establishing a rigorous mathematical basis for immunocomputing with recent find-
ings in immunology and biochip development. It also integrates key aspects of pattern recognition,
language representation, and knowledge-based reasoning.

This book is recommended for experts in computer science, artificial intelligence and biomolecu-
lar computing, immunologists, and students interested in immunocomputing. The authors include
enough detail to make it self-contained, yet it is still accessible to readers with different back-
grounds. However, some previous training in both linear algebra and three dimensional geometry
would definitely be helpful.

Acknowledgments

The author thanks Chad Lundgren and Michael Singleton for proofreading. The author was
supported by NIH Grant Number 1P20RR18754 from the Institutional Development Award (IDeA)
Program of the National Center for Research Resources.

Review of Term Rewriting Systems6

by Terese
Cambridge University Press, 2003, 884 pages

ISBN: 0-521-39115-6

Reviewer: Frederic Loulergue
Laboratory of Algorithms, Complexity and Logic

University Paris Val de Marne
Creteil, France

1 Overview

TeReSe was the name of a Term Rewriting Seminar held by the authors at Vrije Universiteit in
Amsterdam from 1988 to 2000. These twelve authors (including the three editors, Mark Bezem,
Jan Willem Klop and Roel de Vrijer) have taken that name as the writers of this book.

Rewriting systems describe step-wise transformations of objects. In Term Rewriting Systems
(TRS), an object, a term, is replaced by another one, accordingly to rules of the system. Computa-

6Frederic Loulergue, c©2005

14



tions are step-wise transformations of objects. Thus TRS are a foundational theory of computing.
TRS have applications in many areas such as functional programming or automatic theorem prov-
ing.

This monograph is intended to be “useful for research purposes, but also for teaching purposes”.
Thus this book starts at an elementary level to provide a foundation for the rest of the text. Usually
TRS are understood as first-order TRS. The presented work covers also higher-order TRS and
other advanced topics. Much of the advanced material appears here for the first time in book
form. In almost 900 pages, it gives an extensive presentation of the field of term rewriting systems.
Background knowledge from set theory and logic are reviewed in the appendix.

2 Summary of Contents

The first four chapters provide the basic notions for the rest of the book. It starts (chapter 0) with
motivating examples. Then Abstract Reduction Systems (ARS) are presented (chapter 1). Such
systems are simply a set and a set of relations on this set. This notion allows to define aspects
of rewriting independently of the objects which are rewritten. The key concepts confluence and
termination are introduced. An ARS is confluent if for all element a such as it can be rewritten
(in zero or several steps) to an element b and be rewritten to an element c, then there exists an
element d which can be obtained in rewriting b and in rewriting c. An ARS is terminating when
for all element a, every rewriting sequence starting from a is finite. If we think about computations
rather than rewritings, it means that in a confluent and terminating system we cannot have two
different results if we launch two times a computation on the same data and that we cannot have
infinite computations.

Chapter 2 presents the notions attached to first-order term rewriting systems: terms, occur-
rences, contexts, substitutions, matching and examples. The chapter ends with the important
notions of overlapping and critical pairs. Consider for example the following TRS where F,G

denotes function symbols, a, b constants and x variable:

F (G(x)) → x (1)

G(a) → b (2)

The term F (G(a)) could be rewritten to a by the first rule but it could also be rewritten to F (b)
by the second rule. This phenomenon is called overlap. The critical pair in this case is 〈F (b), a〉. A
critical pair is convergent if its two component can be rewritten to a common element. In a TRS
if a critical pair is not convergent then the TRS is not confluent. The converse does not hold but
we have weak confluence. Weak confluence and termination ensure confluence.

Chapter 3 is about several examples of TRS and other formats of rewriting. These chapters
contains many exercises which help the reader to understand the many concepts introduced. In
chapter 1, these exercises are placed at the end of the chapter but for the two next chapters they
are included thorough the text. The solutions are not given in the book but some of them are given
on the web site devoted to the book: http://www.cs.vu.nl/ terese/.

After this introduction, central concerns of TRS are exposed. One of them is orthogonality
(chapter 4). We saw that overlap can make a TRS non confluent. Non-left-linearity of rules (the left-
hand side contains several occurrences of the same variable) is also responsible for non-confluence.

15



Thus it is interesting to study the confluence of orthogonal systems which have no overlap between
any rules and whose rules are all left-linear. Indeed orthogonal systems are confluent and this is
shown using several methods.

Orthogonal systems are confluent and we can wonder if the confluence of a TRS can be decided
in general. Chapter 5 is about decidability of confluence and termination of TRS. In general
these properties are undecidable. For some classes of TRS some properties are decidable (for
example normalization is decidable for recursive program schemes). In a second part of this chapter
another approach is stressed: are confluence and termination preserved when two TRS having
these properties are composed ? Confluence is preserved, it is said to be a modular property, but
termination is not modular in general but it is modular for orthogonal TRS only.

Termination is undecidable. But techniques for proving termination of many TRS used in
practice exist (chapter 6). There are three kinds of methods:

• Semantical methods. Roughly speaking, TRS are given a semantics which has a well-founded
order and it is shown that for every term t if t is rewritten to s then the interpretation of t

is strictly greater than the interpretation of s. In a well-founded order there are no infinite
chain, so there cannot be infinite rewriting sequences.

• Syntactical methods unlike previous methods can be automated but they can be apply only
to restricted classes of TRS.

• Transformational methods to transform TRS outside the previous classes into TRS of these
classes in order to be able to apply a syntactical method.

An equational specification could be seen as a TRS without orientation of the rules. Chapter
7 presents Knuth-Bendix completion which constructs a TRS from an equational specification, the
TRS solving the same equations than the original specification. The proof of the algorithm is given.
E-unification (solving equations modulo an equational theory E) is also discussed.

All the previous chapters were on first-order TRS. λ-calculus and its properties are presented
(chapter 10) as an introduction to higher-order term rewriting systems. Two main formalisms
are presented and compared: Higher-order Rewriting Systems (HRS) and Combinatory Reduction
Systems (CRS). Higher-order rewriting systems allows to deal with bound variables. For example
we often have bound variables in mathematics:∫

(f(x) + g(x))dx =
∫

f(x)dx +
∫

g(x)dx (3)

CRS have their origin in the study of extensions of the λ-calculus whereas HRS have their origin in
the study of higher-order logic. It is shown that orthogonal HRS are confluent. Related formalisms
are outlined.

The last chapter (chapter 15) has not a theoretical content: it is a review of more than 25
existing languages and systems related to TRS. The main features and the application areas of
each system are given together with a link to web resources.

The other chapters not described previously contain very advanced material: Equivalence of
reductions (almost a small monograph by itself, 170 pages!), Strategies, Infinitary rewriting, Term
graph rewriting and Advanced ARS theory.

16



3 Opinion

The content of the book in huge, including both basic material and recent work from the research
literature much of it of the authors and their collaborators. This support the author’s intention
that the book serve both as a textbook and a reference book.

Coverage is quite dense so as a textbook it is suited for use with an instructor and well prepared
students. The broad variety of topics allows to find material suitable for a variety of audience. For
example the four first chapters could be used as an introductory undergraduate course. Maybe [1, 2]
are less frightening for (under)graduate students. The book is largely self contained but a prior
experience of the material presented in the appendix is preferable. The exercises vary in difficulty
but are not graded. Some solutions are given on-line, but for a very small subset of exercises (only
for chapter 1 and 14).

As a reference book it was of course not possible to cover all the topics of term rewriting
research, but the book presents all the basic material and many very advanced topics. There are
also a detailed bibliography and three index: for notations, for authors and for subjects.

My recommendation is that anyone interested in rewriting needs this book.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New
York, 1998.

[2] Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–117.
Oxford University Press, Oxford, 1992.

17


