
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review 10 books on ALGORITHMS.

1. How to Think about Algorihtms by Jeff Edmonds. Review by Kryiakos N. Sgarbas.
This algorithmic textbook uses a meta-algorithmic approach to reveal that all algorithms of
the same category work more or less the same way. The emphasis is more on how they work
and how to think about them than on formal details of analysis.

2. A Programmer’s Companion to Algorithm Analysis by Ernst Leiss. Review by Dean
Kelley. This is not a textbook on algorithms. Rather, it focuses on the process of converting an
algorithm to efficient, correctly behaving and stable code. In doing so, it necessarily examines
the considerable gulf between the abstract view of things when an algorithm is being designed
and analyzed and the hard reality of the environment in which it’s implementation executes.

3. Joint review of Algorithms by Johnonbaugh and Schaefer and Algorithms by Dasgupta,
Papadimitriou, and U. Vazirani. Joint review by Dean Kelley. This is a joint review of two
Algorithms textbooks. In many cases this course follows a mid-level data structures course
which covers up through trees. There have been several well written new books in recent years
aimed at this course (including the two reviewed here). Both of the reviewed books have at
their core material which has become standard for this course. Despite the commonality, the
books are quite different from each other and from Edmonds book.

4. Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms.
by Juraj Hromkovic. Review by Marious Mavronicolas. Randomized algorithms has matured
to the point where they have paradigms that can be written about in a textbook on the
subject. This is that book!

5. Theoretical Aspects of Local Search by Michiels, Aarts, and Korst. Review by Jakub
Mareček. Yes, there really are Theoretical aspects to local search, a field in which one usually
hears about heuristics. This book will tell you all about them and help close the gap between
theory and practice.

6. The Traveling Salesman Problem: A Computational Study by Applegate, Bixby,
Chvátal, and Cook. Review by W. Springer. This book describes methods to really solve
large TSP problems. This will give the reader a tour of much math and computer science of
interest.

7. Visibility Algorithms in the Plane by Ghosh. Review by Alice Dean. One of the most
famous theorems in computational geometry is the Art Gallery Theorem, and this theorem
also serves as an example of the focus of the book under review. Posed by Victor Klee in 1973,

1 c© William Gasarch, 2009.

1

it asks how many stationary guards are required to see all points in an art gallery represented
by a simple, n-sided polygon. The answer, given first by Chvátal [3] and later by Fisk [5],
using an elegant graph-theoretic proof, is that bn/3c guards are always sufficient and may be
necessary. Questions such as this one, of visibility within a polygon, are the subject of this
book.

8. A Course on the Web Graph by Anthony Bonato. Review by Elisa Schaeffer. Imagine
the following graph: the vertices are web pages and two vertices u and v are connected by a
(directed) edge (u, v) if there is a hyperlink from u to v. The computational challenge is due
to the amount of vertices. This book describes modeling and analyzing the Web graph and
summarizes many of the most important results published in the past decade of Web graph
studies.

9. Higher Arithmetic by Edwards. Review by Brittany Terese Fasy and David L. Millman.
This is a text in Number Theory with an algorithmic approach to the topic.

We are looking for reviewers of the following books
Books I want Reviewed

If you want a FREE copy of one of these books in exchange for a review, then email me at
gasarchcs.umd.edu

Reviews need to be in LaTeX, LaTeX2e, or Plaintext.
Books on Algorithms and Data Structures

1. Algorithms and Data Structures: The Basic Toolbox by Mehlorn and Sanders.

2. The Algorithms Design Manual by Skiena.

3. Algorithms on Strings by Crochemore, Hancart, and Lecroq.

4. Algorithms for Statistical Signal Processing by Proakis, Rader, Ling, Nikias, Moonen, Proudler.

5. Nonlinear Integer Programming by Li and Sun.

6. Binary Quadratic Forms: An Algorithmic Approach by Buchmann and Vollmer.

7. Time Dependent Scheduling by Gawiejnowicz.

8. The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching
by Adjeroh, Bell, Mukherjee.

9. Parallel Algorithms by Casanova, Legrand, and Robert.

10. Mathematics for the Analysis of Algorithms by Greene and Knuth.

Books on Cryptography, Coding Theory

1. Introduction to Modern Cryptography by Katz and Lindell.

2. Concurrent Zero-Knowledge by Alon Rosen.

3. Introduction to cryptography: Principles and Applications by Delfs and Knebl.

2

4. Primality Testing and Integer Factorization in Public-Key Cryptography by Yan

5. Secure Key Establishment by Choo.

6. Codes: An Introduction to Information Communication and Cryptography

7. Algebraic Function Fields and Codes by Stichtenoth.

8. Coding for Data and Computer Communications by David Salomon.

9. Block Error-Correcting Codes: A Computational Primer by Xambo-Descamps.

Books on Theory of Computation

1. A Conscise Introduction to Languages and Machines by Parkes

2. The Calculus of Computation: Decision Procedures with Applications to Verification by
Bradley and Manna.

3. The Annotated Turing: A Guided Tour through Alan Turing’s Historic Paper on Computabil-
ity and the Turing Machine by Perzold.

4. Computability of the Julia Sets by Braverman and Yampolsky.

Combinatorics

1. �Combinatorics and Graph Theory by Harris, Hirst, and Mossinghoff.

2. Analytic Combinatorics by Flajolet and Sedgewick.

3. Combinatorics the Rota Way by Kung, Rota, and Yan.

4. A Course in Enumeration by Aigner.

5. Random Graphs by Bollobas.

Misc Books

1. Difference Equations: From Rabbits to Chaos by Cull, Flahive, and Robson.

2. Mathematical Tools for Data Mining by Simovici and Djeraba.

3. The Modern Algebra of Information Retrieval by Dominich.

4. A Concise introduction to Data Compression by Salomon.

5. Proofs and Other Dilemmas: Mathematics and Philosophy Edited by Gold and Simons.

3

Review of2

How to Think about Algorithms
by Jeff Edmonds

Cambridge University Press, 2008
xiv+450 pages, ISBN: 9780521849319 (Hardback, £55.00, $99.00),

9780521614108 (Paperback, £19.99, $36.99)

Review by
Kyriakos N. Sgarbas (sgarbas@upatras.gr)

Electrical & Computer Engineering Department, University of Patras, Greece

1 Overview

This is a book on algorithms. Or rather a book on applied abstract thinking about algorithms.
The algorithms are grouped into three broad categories (iterative, recursive, and algorithms for
optimization problems) and each category is presented in a separate part of the book. The book
does not focus into the formal aspects of each algorithm. Instead, it aims to explain how one
thinks in order to devise such an algorithm, why the algorithm works, and how it relates to other
algorithms of the same category. It uses a meta-algorithmic approach to reveal that all algorithms
of the same category work more or less the same way. Of course, pseudocode, asymptotic notations,
proofs of correctness, are all there, but they are used to explain rather than formally define each
algorithm. The language used is simple and approachable and the author prefers to use words to
explain how things work instead of overloading the text with mathematical formulas. The layout
of the book is quite original (for an algorithm book); in some places it even contains pictures
(obviously of the author’s family) remotely relevant to some notion mentioned in the page, but
giving a nice artistic touch nonetheless.

2 Summary of Contents

Just after the Table of Contents the book starts with a 2.5-page Preface where its goals are explained
and a 2-page Introduction with some non-formal definitions concerning computational problems,
algorithms, abstract data types, correctness, running time and meta-algorithms. After that it is
organized in 5 parts and 28 chapters (each with its own set of exercises), as follows:

Part I “Iterative Algorithms and Loop Invariants” discusses problems that can be solved using
iterative algorithms and analyzes such algorithms using loop invariants (i.e. assertions that must
hold true every time the computation returns to the top of the loop). Part I consists of Chapters
1 to 7:

Chapter 1 “Iterative Algorithms: Measures of Progress and Loop Invariants” (24 pages) on a
first reading it seems like a set of advices on how to write algorithms that work. But seen as a set
these advices propose a different way of abstract thinking, shifting from the one-instruction-per-step
model to the one-instance-of-the-solution-per-step model, by defining appropriate loop invariants

2 c©2009, KYRIAKOS N. SGARBAS

4

and measures of progress and applying them promptly. Examples used: insertion/selection/bubble
sort and binary search.

Chapter 2 “Examples Using More-of-the-Input Loop Invariants” (14 pages) presents some
more complex problems solved using more-of-the-input loop invariants (i.e. loop invariants where
the measure of progress is related to the amount of the input considered) and a comparison with
problems more easily solved with more-of-the-output invariants (i.e. loop invariants where the
measure of progress is related to the amount of the output constructed). Examples used: Plane
coloring, parsing with DFA, arithmetic operations, Euler cycle, etc.

Chapter 3 “Abstract Data Types” (17 pages) briefly introduces lists, stacks, queues, priority
queues, sets, graphs, and trees, their implementation and basic operations on them.

Chapter 4 “Narrowing the Search Space: Binary Search” (11 pages) as its title suggests,
presents loop invariants using the principle of narrowing the search space of a problem after ensuring
that the target element always remains in the reduced search space. It uses two very nice examples:
Magic Sevens (a card trick) and VLSI Chip Testing (not really a hardware problem, just a problem
of element comparison). These examples are intentionally flawed in their definition, so the analysis
does not stop to their solution but extends to some variants as well.

Chapter 5 “Iterative Sorting Algorithms’ ’ (8 pages) discusses bucket sort, counting sort, radix
sort and radix counting sort and explains how they relate to each other.

Chapter 6 “Euclid’s GCD Algorithm” (6 pages) is a short chapter on the well-known algorithm
presented separately obviously due to its ’strange’ loop invariant. Two other problems using similar-
type invariants are mentioned in the chapter exercises.

Chapter 7 “The Loop Invariant for Lower Bounds” (10 pages) discusses how to prove the
lower bound of an iterative algorithm. The author points out that the process of calculation of a
lower bound can be seen as an algorithm itself, therefore the same model based on loop invariants
can be used to evaluate it. Examples used: sorting, binary search, parity, and multiplexer.

Part II “Recursion” discusses problems that can be solved using recursive algorithms and
explains some methods for devising them. Part II consists of Chapters 8-12:

Chapter 8 “Abstractions, Techniques, and Theory” (17 pages) provides the basic thinking
tools for confronting problems by recursion. Stack frames, strong induction and a framework for
a general-purpose blueprint for recursive algorithms are discussed. The problem of the Towers of
Hanoi is used as example and analyzed thoroughly.

Chapter 9 “Some Simple Examples of Recursive Algorithms” (16 pages) provides some more
examples of recursive algorithms explained with the model of Chapter 8. Examples used: merge
sort, quick sort, calculation of integer powers, matrix multiplication, etc.

Chapter 10 “Recursion on Trees” (23 pages) presents and analyzes recursive algorithms for
operations on trees: counting the number of nodes in binary trees, perform tree traversals, return
the maximum of data fields of tree-nodes, calculate the height of a tree, count the number of its
leaves, making a copy of the whole tree. A thorough analysis of the heap sort algorithm continues
and the chapter concludes with some algorithms for tree-representations of algebraic expressions:
expression evaluation, symbolic differentiation, expression simplification.

Chapter 11 “Recursive Images” (6 pages) is a small chapter explaining how to use recursive
algorithms to produce fractal-like images and random mazes.

Chapter 12 “Parsing with Context-Free Grammars” (9 pages): Context-Free Grammars (CFGs)
are used in compiler development and computational linguistics to express the syntactic rules of
an artificial or natural language. This chapter discusses how to develop algorithms for parsing

5

expressions (strings) according to a set of CFG-rules and produce structured representations of the
input expressions.

Part III “Optimization Problems” presents methodologies for building algorithms (iterative and
recursive) to confront several classes of optimization problems. Part III consists of Chapters 13-21:

Chapter 13 “Definition of Optimization Problems” (2 pages) presents the definition of what
an optimization problem is and gives short examples (only the definition) of different degrees of
complexity: longest common subsequence, course scheduling and airplane construction.

Chapter 14 “Graph Search Algorithms” (25 pages) presents and analyzes several algorithms
on graphs: a generic search algorithm, a breadth-first search algorithm for shortest paths, Dijk-
stra’s shortest-weighted-path algorithm, iterative and recursive depth-first search algorithms, and
topological sorting.

Chapter 15 “Network Flows and Linear Programming” (27 pages) starts with the definition of
the Network Flow and Min Cut optimization problems and presents gradual solutions introducing
several variations of hill-climbing algorithms (simple, primal-dual, steepest-ascent). The chapter
concludes with a discussion on linear programming.

Chapter 16 “Greedy Algorithms” (26 pages) uses the Making Change problem (i.e. finding the
minimum number of coins that sum to a certain amount) to explain the basics of greedy algorithms
and then applies them in some more examples on job/event scheduling, interval covering, and
producing the minimum-spanning-tree of a graph.

Chapter 17 “Recursive Backtracking” (16 pages) explores the idea of finding an optimal so-
lution for one instance of the problem using a recurrence relation that combines optimal solutions
for some smaller instances of the same problem that are computed recursively. Examples used:
searching a maze, searching a classification tree, n-Queens problem, SAT problem (Davis-Putnam
algorithm).

Chapter 18 “Dynamic Programming Algorithms” (28 pages): Dynamic Programming resem-
bles Recursive Backtracking except that the optimal solutions for the smaller instances of the
problem are not computed recursively but iteratively and are stored in a table. The chapter uses
the problem of finding the shortest weighted path within a directed leveled graph to explain the
basics on developing a dynamic programming algorithm and then elaborates in several optimization
aspects.

Chapter 19 “Examples of Dynamic Programs” (29 pages) provides some additional examples
of problems solved using dynamic programming algorithms, i.e. the longest-common-subsequence
problem (with several variations), the weighted job/event scheduling problem, matrix multiplica-
tion, CFG-parsing, etc.

Chapter 20 “Reductions and NP-Completeness” (22 pages) begins with the definition of prob-
lem reduction and then uses it to classify problems according to this relation. It discusses NP-
completeness and satisfiability and explains with great detail how to prove that a problem is
NP-complete. Examples used: 3-coloring, bipartite matching.

Chapter 21 “Randomized Algorithms” (8 pages) points out that sometimes it is a good idea
to use randomness (e.g. to avoid a worst case) and presents two models for analysis of randomized
algorithms: Las Vegas (guaranteed to give the correct answer but the running time is random),
and Monte Carlo (guaranteed to stop within a certain time limit but may not give the right
answer). These models, along with the classic (deterministic) worst case analysis are used in some
comparative examples.

Part IV “Appendix”: These are not simple appendices, they are normal chapters just like all

6

the previous ones. Some of them have exercises too! Part IV consists of Chapters 22-28:
Chapter 22 “Existential and Universal Quantifiers” (9 pages) provides the basic definitions

for relations, quantifiers, free and bound variables and discusses some proof strategies involving
universal and existential quantifiers.

Chapter 23 “Time Complexity” (8 pages) provides definitions of time and space complexity
of algorithms and examples on their estimation.

Chapter 24 “Logarithms and Exponentials” (3 pages) summarizes the definitions, the proper-
ties and some frequent uses of logarithms and exponentials.

Chapter 25 “Asymptotic Growth” (11 pages): Formal definitions, estimations and examples
of Big Oh, Omega, Theta, etc.

Chapter 26 “Adding-Made-Easy Approximations” (10 pages) contains formulas and methods
to calculate or approximate sums of series.

Chapter 27 “Recurrence Relations” (10 pages) contains formulas and methods for solving
recurrence relations.

Chapter 28 “A Formal Proof of Correctness” (2 pages) sketches the required steps in order
to formally proof the correctness of an algorithm. It does not include any examples but one can
compare the process with some of the formal proofs of correctness provided in previous chapters.

Part V “Exercise Solutions” (25 pages) contains solutions of many of the exercises.
The book concludes with a few lines Conclusion and a 10-page Index. It does not have any list

of references.

3 Opinion

Since page one, the reader can realize that this is not an ordinary book about algorithms. Its lay-
out, its structure, and its language, all indicate that it is something uncommon, probably unique.
Reading it is an experience much different that what one gets from reading a common algorithm
textbook. Instead of presenting and analyzing algorithms formally down to every single mathemat-
ical detail, instead of stressing the left part of your brain with lengthy proofs and dive deep into
algorithm science, this book resembles more than a practical guide on algorithm craftsmanship.

Approachable and informal, although it uses pseudocode to express algorithms and meta-
algorithms, it does not formally define the syntax of the pseudo language used.

Its structure is uncommon as well. There are chapters with 2 pages each and chapters with
more than 20 pages each. Most of them have exercises, usually in the last section of the chapter,
but some have exercises also inside the sections (in appendices too).

Furthermore you will see mathematical formulas with no explanation of what the variables
stand for (e.g. in the beginning of Chapter 7). You either already know from previous experience,
or you may try to deduce from the context, or -finally- you might think to skip into an appropriate
appendix (sometimes the text prompts you to do so, sometimes not).

Actually, the text has many self references to other chapters but not any external references.
Regardless whether it presents some well-known algorithm (like Dijkstra’s algorithm), or provides
additional information (e.g. in Chapter 20 where it mentions that the relation of any optimization
problem to CIR-SAT was proved by Steve Cook in 1971), or discussing the current state of the art
(like in Chapter 7 on proving lower bounds) there is not a single external reference, neither in any
footnote nor in any list of collected bibliography at the end of the book. Strange thing indeed.

7

The careful reader will also observe a few typos, but they are not serious enough to hinder the
reading or alter the semantics of the text.

Reading the text sometimes feels like reading the slides of a class lecture, along with the actual
words of what the teacher said, with all the redundant information, the not-so-relevant comments
and the jokes the speaker usually adds to make his speech more interesting (e.g. you’ll be surprised
on the ingredients of hot dogs when you read the linear programming section). Sometimes it uses
metaphors to explain something, and keeps the metaphor along several chapters, thus resulting into
a unique pictorial terminology framework (e.g. friends, little birds, and magic denote algorithmic
components).

Of course, whether you like reading about algorithms under these terms or not, I believe is
a matter of personal taste. Personally I loved reading this book, but I suppose one might just
as easily hate it for exactly the same reasons. But surprisingly enough, this model works well
when explaining difficult subjects. It tends to communicate effectively the whole picture without
much details, while the examples fill in the gaps. For instance, Chapter 20 on Reductions and
NP-completeness is probably the most well-explained introduction text I have read on the subject.

In conclusion, I believe this book could be considered a must-read for every teacher of algorithms.
Even if he reads things he already knows, he will be able to view them from different angles and
in the process get some very useful ideas on how to explain algorithms in class. The book would
also be invaluable to researchers who wish to gain a deeper understanding on how algorithms work,
and to undergraduate students who wish to develop their algorithmic thought. However, I would
not recommend someone to try to learn algorithms starting from this book alone. I believe one
has to know a great deal on the subject already, in order to fully appreciate the book and benefit
from it. For this is not really an algorithm textbook; it’s more like the right-brain counterpart of
an ordinary algorithm textbook. And as such, it has the potential to be considered a classic.

Review of3

A Programmer’s Companion to Algorithm Analysis
by Ernst Leiss

Chapman & Hall/CRC, 2007
55 pages, Softcover

Review by
Dean Kelley (dean.kelley@mnsu.edu)
Minnesota State University, Mankato

1 Introduction

In a perfect world software would. . . well, work. It would be stable and produce correct results in
a timely manner. Ernst Leiss has written an interesting book which addresses some of the issues
which inhibit the development of perfect-world software.

This book is directed toward programmers and software developers and is not a textbook on
algorithms. Rather, it focuses on the process of converting an algorithm to efficient, correctly
behaving and stable code. In doing so, it necessarily examines the considerable gulf between the

3 c©2009, Dean Kelley

8

abstract view of things when an algorithm is being designed and analyzed and the hard reality of
the environment in which its implementation executes.

2 What’s in There – Summary of the Book

The book consists of two main parts plus substantial appendix material. Part 1 describes “the
idealized universe that algorithm designers inhabit” with an eye toward ultimately identifying
areas where the translation of an algorithm into a program can yield less than satisfactory (or even
anticipated) results. Part 2 outlines how the “idealized universe” can be adapted to the real world
of the programmer.

Part 1 begins with two chapters that describe various aspects of algorithmic complexity and
the assumptions that underlie them. A third chapter gives flesh to these concepts with examples
and careful, worked-out analysis.

Part 2 begins by exploring a collection of ways in which a program’s reality can fail to match
the expectations that algorithm analysis might have led to. The next four chapters look at specific
real-world factors that impact what happens when an algorithm becomes code, and what can
be done to reduce their impact. Another chapter focuses on constant factors with attention to
crossover points. The last chapter in this part of the book examines the impacts of undecidability,
infeasibility and NP-completeness.

The four appendices are mostly in support of the material in Part 2 with two of them directly
illuminating and expanding the material on undecidability and NP-completeness in the last chapter
of that part of the book.

2.1 Chapter 1: A Taxonomy of Algorithmic Complexity

This chapter presents the traditional measures of complexity: space and time complexity, average-
case, best-case, worst-case complexity, parallel complexity in various flavors and bit versus word
complexity.

Additionally, and in anticipation of material in Part 2, I/O complexity is introduced. This
somewhat nontraditional complexity measure essentially measures the amount of data transferred
between types of memory. A consequence of the need to move data between memory types is that
memory access in an algorithm does not necessarily have uniform cost.

The intent in this chapter is to present a conceptual framework for evaluating the performance
of algorithms, emphasizing that there are many dimensions to complexity and that all reflect
performance, though from different points of view.

2.2 Chapter 2: Fundamental Assumptions Underlying Algorithmic Complexity

In designing and analyzing algorithms we often (usually) assume that things are inherently friendly.
For example, in most cases all arithmetic operations require times which are within a constant mul-
tiple of each other and so it’s convenient (and safe) to ignore that constant. This is an assumption
that generally remains valid when software is designed based on an algorithm which has been
analyzed with that assumption.

In frequent analyses, assignment is assumed to have the same kind of uniformity as arithmetic
operations – that all assignments cost essentially the same. Similarly with retrieval. We are

9

effectively assuming that we have enough memory for the data. This assumption doesn’t always
remain valid when the algorithm is transitioned to code. The resulting impact on performance can
be detrimental.

Much of Chapter 2 emphasizes those assumptions which are made in analyzing algorithmic
complexity and which are ultimately unfriendly to a programmer implementing the algorithm.
This is what the author refers to as “the idealized universe that algorithm designers inhabit” and
the differences between it and the world inhabited by software designers are explored in Part 2 of
the book.

2.3 Chapter 3: Examples of Complexity Analysis

This chapter applies techniques of complexity analysis to some standard algorithms. The book
is intended for software developers who presumably have some exposure to design and analysis,
but may not necessarily be comfortable enough to be able to see the implications of the details of
analysis. In view of that, Chapter 3 provides considerable hands-on exposure to the analysis of a
fairly large collection of standard algorithms, some of which will be used in the exposition(s) of
Part 2.

Algorithms analyzed include Strassen’s algorithm, optimizing a sequence of matrix multiplica-
tions, comparison-based sorting algorithms and radixsort, binary search and quickselect, algorithms
for binary search tree operations, hashing, graph representation and graph searching algorithms,
and Dijkstra’s algorithm.

In the analysis of these algorithms, the author directs the reader’s attention toward all of the
complexity measures in Chapter 1’s taxonomy. Because of the quantity of material covered, the
chapter is long (the longest in the book). It may be skipped or lightly read by readers who are not
uncomfortable or inexperienced with algorithm complexity analysis. In particular, if the book is
being used as a companion book for an algorithms course, most of this material is likely presented
more pedagogically elsewhere in the course.

2.4 Chapter 4: Sources of Disappointments

Chapter 4 begins Part 2 of the book which focuses on how to deal with lower-level details that
can adversely affect both the performance and correctness of an algorithm’s translation into code.
In Chapter 4 the author discusses general categories of “disappointments” that can occur leaving
treatment of the underlying causes to subsequent chapters.

Beginning with a correct algorithm, one reasonably expects that the code derived from a faithful
translation of it should produce correct results. Unfortunately, this may not be the case. For ex-
ample, number representation can give rise to incorrect numerical results as well as error situations
which must be properly handled to insure correct results. Things like this are often not part of an
algorithm’s design and analysis but are of considerable concern for implementation.

Significant differences in the performance suggested by the analysis and the performance ob-
served in faithfully rendered code may be more familiar than outright incorrect results. The choice
of parameter-passing mechanism(s), the presence (or absence) of sufficient memory for the algo-
rithm’s data and code, and the way in which data structures are represented can all contribute to
devastate an algorithm’s actual execution-time performance.

How the execution of code is supported by the operating system and the implementation lan-
guage’s runtime system can also affect execution time performance. For example, the recovery of

10

unused dynamically allocated memory (garbage collection) may be automatically handled by the
runtime support system or the programmer may be required to explicitly release the memory. In
the case of automatic garbage collection, it is simply not predictable when the garbage collection
is carried out. In the case of the programmer explicitly releasing the memory, failure to do so con-
sistently may result in additional activity by the operating system’s virtual memory management.
In either situation, performance will likely be adversely effected and/or unpredictable.

2.5 Chapter 5: Implications of Nonuniform Memory for Software

Many of the assumptions underlying complexity analysis relate to uniformity. This chapter con-
siders the often unrealistic assumption that the cost of memory access is uniform and what can be
done to reduce the effects of nonuniformity.

The increasing access time as one moves down the memory hierarchy from processor registers
to cache memory to main memory to external memory coupled with the decreasing capacities as
one moves the opposite direction strongly argue that great care should be taken in how data should
be organized and used in software. The convenience of virtual memory management drastically
reduces the amount of tedious, error-prone, and often restrictive aspects of memory management
that a programmer needs to be concerned with, but it also trades away considerable control over
the movement of data around the memory hierarchy.

Understanding the system software, the structure of the memory hierarchy of the target com-
puter, the memory needs of the program itself, and how all three interact can help to understand
why performance may deteriorate. Of these things, a programmer can only exert some control over
the last two, predominately by the way in which operations within the program are performed.

Focusing on matrix multiplication, the main section of Chapter 5 shows how to manually apply
and analyze program transformations in order to reduce the effects of expensive data movement
on execution-time performance. The author makes a compelling argument that more and better
support for execution-time optimization via I/O analysis, program transformations and the im-
plementation of nonstandard memory mapping functions should be provided by compilers. The
absence of such support yields two unpalatable alternatives: accept inefficiency or accept unreadable
code.

2.6 Chapter 6: Implications of Compiler and Systems Issues for Software

Fundamental issues of programming languages and the environments that support the execution
of code written in them can have significant effects on performance and correctness. Chapter 6
considers several of these things and how they can contribute to performance degradation and/or
unpredictability:

Memory issues aren’t necessarily restricted to data and code. The implementation of recursion
creates a memory need by the execution environment that can dynamically change. Typically
it’s not possible (or at least not easy) to predict the exact space needs of the recursion stack
where the activations of functions, including the recursive ones, are managed.

Dynamic data structures are appealing because they can never be full - unless the execution
environment runs out of available memory. Reusing chunks of memory that are no longer
in use helps to delay the time at which memory is exhausted (in many cases, reuse may

11

avoid total depletion). Locating a chunk of memory to fulfill a program’s request can require
determining which chunks are no longer in use, making decisions about which available chunk
should be allocated and even spending time defragmenting memory.

Parameter passing provides two opportunities for things to go awry. The two usual choices, call-
by-value and call-by-reference, can both affect performance and correctness. In call-by-value,
essentially a copy of the parameter is made and handed off to the called function. In call-by-
reference a copy of the address of the parameter is given to the called function. Copying a
parameter can be time consuming. Passing an address can lead to safety issues.

Somewhat less tangible, but equally important, issues discussed in this chapter include pro-
gramming language properties such as initialization of memory, packing data and overspecification
of execution order and aspects of optimizing compilers.

2.7 Chapter 7: Implicit Assumptions

An algorithm is often designed with some basic, implicit assumptions. For example, it is not
unreasonable to assume that n ≥ 1 for an algorithm that multiplies two n × n matrices. That n
satisfies n ≥ 1 is an implicit assumption in the algorithm’s design. A programmer must treat that
assumption as a fundamental requirement that is met by the n that the code deals with. Good,
bullet-proof programming requires that the code handles the exceptional situation that arises when
it is asked to execute with n ≤ 0.

Chapter 7 outlines issues that implicit assumptions and exceptional situations can provoke.
Determining exceptional situations and reacting to them can damage execution-time performance
despite the validity of the algorithm’s complexity analysis.

2.8 Chapter 8: Implications of the Finiteness of Representation of Numbers

Because numerical values are represented in a finite number of words each of which is of finite
length, only a finite number of values can be represented. Consequently, issues of overflow, under-
flow and rounding come into play regardless of whether a program is doing heavy-duty numerical
computation or simply compounding interest. Additionally, since the representation of values is
binary, some numbers with perfectly good finite representations cannot be represented finitely
(for example 0.3 has binary representation 0.010011). Chapter 8 examines how these things impact
equality testing, mathematical identities and convergence leading to potentially unreliable behavior
or incorrect results.

2.9 Chapter 9: Asymptotic Complexities and the Selection of Algorithms

This chapter and Chapter 10 deal somewhat less with disappointments arising from the translation
of algorithms into code and somewhat more with how to react to disappointing theoretical results.

Focusing on time complexity and using examples from sorting, selection and matrix multipli-
cation as motivation this short chapter develops the concept of hybrid algorithms based on careful
analysis of constant factors and crossover points.

12

2.10 Chapter 10: Infeasibility and Undecidability: Implications for Software
Development

Impossibility can be an annoying problem and this chapter explores various aspects of the im-
possible: undecidability, prohibitively large complexity for decidable problems, and heuristics and
approximation algorithms. Two of the 4 appendices are devoted to providing the background for
understanding NP-completeness and undecidability but this chapter contains an extremely concise,
1-paragraph discussion of why NP-completeness is of importance to the programmer.

3 Opinion

It is unfortunate that it has taken so long for this book to appear. Had it appeared earlier there
would likely be more and better coverage of the issues it addresses in software development cur-
ricula. In my opinion, this book should be on the bookshelf of anyone aspiring to become a good
programmer.

There is very little in the book that software developers and programmers could not benefit from
by being aware of. Very likely, good programmers eventually have to learn most of the material
from the first five chapters of Part 2 the hard way: on the job at crunch time. Their ordeal could
be reduced by exposure to it as part of their undergraduate study.

As the title suggests, this book would be a good auxiliary book in courses on algorithms,
especially those intended for students intent on becoming software developers. Similarly with an
advanced programming-type course. The book also would work well for self-study.

The book is somewhat dense. Physically, the text fully occupies the pages which made my eyes
complain. There are a lot of concepts packed into the 10 chapters and they are tied together nicely
making for compelling reading, in my opinion.

Thank you to Ernst Leiss and to Chapman & Hall/CRC for bringing this book to us.

Joint review of4

Algorithms
by Richard Johnsonbaugh and Marcus Schaefer

Pearson/Prentice-Hall, 004
52 pages, hardcover

and
Algorithms

by Sanjoy Dasgupta, Christos Papadimitriou and Umesh Vazirani
McGraw-Hill, 008
20 pages, softcover

Reviewed by
Dean Kelley (dean.kelley@mnsu.edu)
Minnesota State University, Mankato

4 c©009, Dean Kelley

13

1 Introduction

This is a joint review of two textbooks for a mid-level, or possibly upper-level, undergraduate
algorithms course. In many cases this course follows a mid-level data structures course which
covers up through trees. There have been several well written new books in recent years aimed at
this course (including the two reviewed here). This likely reflects the continuing maturation of the
discipline, an improved understanding of how to teach algorithms, and a clearer understanding of
how and where the study of algorithms as an individual topic fits into an undergraduate computer
science curriculum.

Both of the reviewed books have at their core material which has become standard for this
course. Despite that commonality, the books are quite different.

2 Johnsonbaugh and Schaefer

Focusing on design techniques, Johnsonbaugh and Schaefer have written a textbook which should
be accessible to students with essentially a second-year undergraduate “data structures and algo-
rithms” background. The book has sufficient depth that it could contribute to a beginning graduate
course as well.

Providing a fairly standard path through sorting and searching, divide-and-conquer, dynamic
programming, greedy algorithms, P/NP, and parallel and distributed algorithms, the book contains
hundreds of examples and roughly as many solutions to end-of-section exercises (spanning about
80 pages at the end of the book).

Chapters end with chapter problem sets which considerably expand the material of the chapter
and/or explore interesting real-world applications. For example, the problems at the end of the
chapter on dynamic programming explore optimizing static search trees, minimizing gap penalties
in typesetting and the membership problem for context-free grammars. As another example, the
problems at the end of the chapter on parallel and distributed algorithms explore alternative proofs
of correctness for sorting networks and an alternative approach for leader election (choosing a
processor to be “in charge”).

Throughout the book the quality of presentation is extremely good. This reflects the consider-
able teaching experience and expertise of the authors and the number of iterations the material has
been through in their courses at DePaul. An instructor’s manual is available from the publisher
and one author’s website (Johnsonbaugh) contains a useful set of additional resources.

3 Dasgupta, Papadimitriou, and Vazirani

Dasgupta, Papadimitriou and Vazirani have written a book which takes a different approach to the
algorithms course than Johnsonbaugh and Schaefer. Eschewing a formal and traditional presenta-
tion, the authors focus on distilling the core of a problem and/or the fundamental idea that makes
an algorithm work. Definitions, theorems and proofs are present, of course, but less visibly so and
are less formally presented than in the other text reviewed here.

The result is a book which finds a rigorous, but nicely direct path through standard subjects
such as divide-and-conquer, graph algorithms, greedy algorithms, dynamic programming, and NP-
completeness. You won’t necessarily find every topic that you might want in all of these subjects,

14

but the book doesn’t claim to be encyclopedic and the authors’ presentation doesn’t suffer as a
result of their choice of specific topics.

Nice collections of chapter problems provide opportunities to formalize parts of the presentation
and explore additional topics. The text contains plenty of “asides” (digressions, illuminations,
addenda, perspectives, etc.) presented as boxes on some of the pages. These little side trips are fun
to read, enhance the presentation and can often lead to opportunitites to include additional material
in the course. It has been my experience that even a disinterested, academically self-destructive
student can find something of sufficient interest in these excursions to grab their attention.

In addition to the relatively standard subjects listed above, the book ends with a chapter on
quantum computation, specifically applied to factoring numbers. This chapter bookends nicely
with the first chapter’s motivation for studying algorithms (which is based around factoring and
primality testing). The chapter’s presentation is focused and accessible. Beginning with a quote
from Richard Feynman, “I think I can safely say that no one understands quantum physics,” the
chapter proceeds to demonstrate that quantum computing just might be understandable.

4 Opinion

Either of these books would support a mid-level or upper-level undergraduate course in algorithms
very well. Both are quite accessible to reasonably engaged (and prepared) undergraduate students.
Both would do a good job of feeding the intellectual curiousity of enthusiastic students, though in
somewhat different manners.

Johnsonbaugh and Schaefer’s book has a density of topics which, when coupled with its thor-
oughness (and resulting size), may require some care and guidance if a student is turned loose
on it independently. On the other hand, the quantity of topics and the depth and care taken in
their coverage make it an excellent textbook for a regular course. Dasgupta, Papadimitriou, and
Vazirani’s book might take an unguided student farther faster, but students may need help filling
in details. On the other hand, its tightly focused progression seems to yield an excellent big-picture
perspective when used in a course.

There is considerable difference in price of these two books. The current (March, 2008) new
price of Johnsonbaugh and Schaefer’s book on amazon.com is $96.20 and the price of Dasgupta,
Papadimitriou and Vazirani’s is $33.75. (The used book prices of the books are roughly equal) A
portion of this difference likely arises from hardcover/paperback production cost differences and
from the considerable difference in page counts. As one might surmise from my above review, I
like both of these books and am not able to form an opinion about cost versus quality. However a
smaller, cheaper, well-done textbook from a major publisher is a welcome surprise.

Review5 of
Design and Analysis of Randomized Algorithms:

Introduction to Design Paradigms
Published by Springer. $56.00

Author of Book: Juraj Hromkovič

Review by Marios Mavronicolas
5 c©2009 Marios Mavronicolas

15

1 Introduction

Everybody in the Theory of Computing community (especially those who work on Algorithm De-
sign) is well acquainted with the concept of Randomization. It is not an exaggeration to say that
Randomization is currently one of the major approaches to Algorithm Design. This is evidenced
by the fact that modern leading textbooks on Algorithm Design and Analysis often include a chap-
ter on Randomization (next to chapters on Dynamic Programming, Approximation and Linear
Programming, to mention a few of the other standard techniques for the design of Computer Algo-
rithms). Besides its (partial) coverage in general textbooks on Algorithm Design, there are already
two textbooks devoted to Randomization and emphasizing Randomized Algorithms, Random Pro-
cesses and Probabilistic Analysis of Algorithms; the textbook by Hromkovič is the third in this
row. In my view (and see my comments below on this), this book still gives a fresh and interesting
point of view to Randomization and Randomized Algorithms.

2 Content

The book is organized along a remarkable logical structure. The first two chapters are introductory,
while each of the remaining five chapters focuses on a particular technique for designing Random-
ized Algorithms, together with analyzing a few representative Randomized Algorithms that were
designed using the particular technique.

The first chapter starts on with a philosophical discussion on Randomness and Randomization.
Although the less philosophically inclined reader may skip Section 2.1 to proceed faster to the
most substantial body of the chapter, I whole heartedly recommend Section 2.1 to all lovers of
philosophical principles who embarn on learning the beneftis and the mathematical principles of
Randomized Algorithms. Section 1.2 is a very crucial section in the book since it provides the
first concrete example of a Randomized Algorithms while demonstrating the efficiency benefits of
using Randomization in Algorithm Design. The chapter concludes with a self-portrait of the book
(Section 1.3) and immense advice to the student (Section 1.4) and the teacher (Section 1.5) using
the book.

Section 2 is a background chapter. It is devoted to three main axes: the mathematical foun-
dations of Randomization, which are the fundamentals of Probability Theory (Section 2.2), the
theoretical foundations of Randomized Algorithms (Sections 2.3, 2.4 and 2.5), and an outline of the
main techniques for the design of Randomized Algorithms (Section 2.6). (Actually, the third axis
may be seen as a prologue to the rest of the book.) In more detail, Section 2.3 squeezes the most ele-
mentary facts from Probability Theory that are a must for the designer and analyst of Randomized
Algorithms. Readers with a strong (or even average) background in Probability Theory may choose
to skim through this section very fast. Section 2.3 defines the main complexity-theoretic measures
for the evaluation of Randomized Algorithms under two distinct theoretical models. The provided
examples are best chosen to demonstrate the analysis of the presented measures. Further, Section
2.4 classifies Randomized Algorithms as Las Vegas and Monte Carlo (with various levels of error).
A corresponding classification of Randomized Algorithms for optimization problems is pursued in
Section 2.4. Each of the divisions of Section 2.6 is a fast prelude to a subsequent chapter; some
readers may prefer to proceed directly to the subsequent chapters. This chapter is significantly
longer than any other chapter.

The technique of Fingerprinting is the subject of Chapter 4. Chapter 4 present several inter-

16

esting applications of the technique; in fact, some of the applications were indeed the original cases
out of which the technique emerged; of those, verification of matrix multiplication (Section 4.4)
merits a special mention.

The method of failing the adversary is one of the most basic techniques for the design of
Randomized Algorithms. As the authors point out in Chapter 3, this method could also be called the
method of avoiding the worst-case inputs. In essence, the method attempts to create a suitable set of
deterministic algorithms such that the randomized algorithm is a distribution on this set achieving
that a randomly drawn deterministic algorithm (according to the distribution) will compute the
correct result with high probability. The particular examples of Hashing (Section 3.2) and Universal
Hashing (Section 3.3) illustrate well the technique, although their technical level is a bit above the
average (over all sections of the book). Section 3.4 is an advanced section on applying the technique
of foiling the adversary to online algorithms.

Chapter 5 turns to the very successful technique of Random Sampling and its relative technique
of Success Amplification. (The author argues that these two techniques can be presented together;
however, one could see them to be completely separate). The examples employed for both tech-
niques in this chapter are both excellent - especially (in my opinion) the example of generating
quadratic nonresidues (Section 5.4).

Another yet successful technique for the design of Randomized Algorithms is that of Abundance
of Witnesses, presented in Chapter 6. Some mathematical background (included in the book’s
Appendix) is necessary for following this chapter. The Randomized Algorithms for Primality
Testing (Section 6.3) and Prime Generation (Section 6.4) are probably excellent examples that
demonstrate the potential and the mathematical wealth of the technique.

Finally, Chapter 7 describes the technique of Randomized Rounding, which is based on re-
laxation to linear programming and subsequent rounding of the solution. The provided examples
(especially the one on MAX-SAT) are all excellent. Section 7.4 is perhaps the only section in the
book that demonstrates how two of the presented techniques can be combined together; I strongly
recommend it since it promotes the synthetic abilities of the reader.

3 Opinion

This is a very good to excellent textbook on the Design and Analysis of Randomized Algorithms.
Its unique (perhaps distinguishing) feature is that it explicitly isolates and promotes the most im-
portant design techniques; this is really a great experience for the incoming theorist to specialize on
Randomized Algorithms. I would have liked to see some more examples of Randomized Algorithms
for hard counting problems via the celebrated Markov Chain technique. Some more exercises and a
more detailed discussion on an expanded bibliography would also be very beneficial to the reader.
Some discussion on (techniques for) Randomized Distributed Algorithms would also add.

Review6 of
Theoretical Aspects of Local Search

Author of book: Wil P. A. J. Michiels, Emile H. L. Aarts, and Jan H. M. Korst
Springer in the EATCS Series Monographs in Theoretical Computer Science, 007

ISBN: 78-3-540-35853-4, hardcover, 235 pages, EUR 54.95
6 c©2009 Jakub Mareček

17

Author of Review: Reviewed by Jakub Mareček
“Theoretical aspects of local search? That must be like two pages long!” said a seasoned theoretical
computer scientist, when he learned what a book was under review. Many computer scientists do
indeed share a scathing contempt for anything heuristic. Perhaps this is because they do not realise
that many real-life optimisation problems do boil down to large instances of hard-to-approximate
problems, well beyond the reach of any exact method known today. Perhaps they do not realise
that performance of exact solvers for hard problems is largely dependent on the quality of in-built
heuristics. Certainly, this leads to the irrelevance of a large body of work in Theoretical Computer
Science to the operations research industry, and a certain lack of analytical approach in real-life
problem-solving, to say the least. Any attempt to change this situation would be most welcome.
Local search, readily admitting theoretical analysis, might be a good starting point.

Design, analysis, and empirical evaluation of algorithms for hard problems generally involve
a number of interesting challenges. No matter whether you are designing integer programming
solvers, model checkers, or flight scheduling systems, you have to use heuristics, which present-day
Theoretical Computer Science by and large ignores. For instance in precoloured bounded/equitable
graph colouring, which underlies many timetabling and scheduling problems, the present-best the-
oretical result says it is NP-Complete for trees and hence a tree-width decomposition doesn’t help
[4], in addition to being hard to approximate in general [15]. Despite the depth of these negative
results, their practical utility might be somewhat hard to see for a person working on solvers for the
very problem. The divorce of theoretical study of approximability of rather obscure problems and
special cases from the development of solvers for messy real-life problems of operations research,
is also reflected in the in the usual undergraduate Computer Science curriculum. If any attention
is given to heuristics (see [11] for a rare exampl is often confined to the plain old greedy “iterated
improvement” and some elementary stochastic local search heuristics, which may seem too trivial
even to an undergraduate. The importance of the choice of neighbourhood and objective function is
often stressed, but rarely demonstrated. An abstract discussion of the trade-off between the search
across many basins of attraction within the search space (diversification) and the convergence to lo-
cal optima within each basin (intensification) sometimes follows. (See the gripping personal account
of [6].) Only few textbooks proceed to mention heuristic pre-processing and decompositions, or the
role of pre-processing within heuristics (at least, for instance, sorting with tie-breaking). Even less
attention is usually focused on the concept of relaxation and restriction, such as forbidding features
detected in many bad solutions [13], or fixing features common to many [12], instance analysis
determining which algorithm to use, or auto-tuning [7], vital to industrial solvers. As non-trivial
analyses of expected behaviour remain rare, the treatment is often concluded with a description of
the worst case scenario, where the heuristic takes infinitely long to converge or does not converge at
all. Not only research, but also the usual treatment in the curriculum tend to remain rather distant
to real-world solver design and seem best read with a funeral march playing in the background.

The authors of the book under review are in an excellent position to write a very different
account. On one hand, at least two of them are well-known in the algorithm design community,
not least for their grim analyses of local search heuristics (see the conclusions of [1]: “simulated
annealing algorithm is clearly unsuited for solving combinatorial optimization problems [to opti-
mality]”) and vocal contempt for “home-made voodoo optimisation techniques inspired by some
sort of physical or biological analogy rather than by familiarity with what has been achieved in
mathematics” [3]. On the other hand, however, all three authors are involved in the design of
heuristics solving real-life problems at Philips Research. It might then seem reasonable to expect

18

the book under review to be more upbeat than the usual dead march.
The book under review is clearly aimed at advanced undergraduate students, although the

blurb mentions “researchers and graduate students” as the intended audience. At 185 pages bar
the appendices, the book is of the right length for a relaxed, largely self-contained term-long
course. In chapter two, it introduces five problems used as running examples throughout the book
(TSP, vertex colouring, Steiner trees, graph partitioning and make-span scheduling). Chapters 3
and 4 introduce the concept of a neighbourhood and discuss properties of various neighbourhoods
for the example problems. Chapter 5 introduces rudiments of approximability and hardness of
approximation and presents elementary proofs of performance guarantees for some of the local
search methods introduced previously. Chapter 6 recalls the existence of some non-trivial results
on the complexity of local search. Chapter 7 previews some general heuristic design schemes
(“metaheuristics”), such as simulated annealing. Chapter 8 introduces Markov chains, conditions
of their ergodicity and convergence properties of simulated annealing. Finally, three appendices
include a list of 12 problems-neighbourhood pairs, which are known to be PLS-complete (see
below). All chapters are accompanied by exercises and most have the very comforting feel of an
easily understandable lecture transcribed, while maintaining a reasonable level of rigour.

For a narrowly-focused researcher in Complexity, only Chapter 6 may be of immediate interest.
It provides a concise overview of PLS-Completeness, a framework for reasoning about complexity
of local search algorithms and an alternative measure of complexity of “easier hard” problems,
introduced by [10]. A pair of a given problem and neighbourhood structure falls into the class of
PLS (poly-time searchable), if an initial solution can be obtained using poly-time, there is a poly-
time evaluation function, and a poly-time test of optimality within a neighbourhood, producing
an improving solution together with the negative answer. From this follow the concepts of PLS-
Reducibility and PLS-Completeness. Unless NP = co-NP, problems in PLS are not NP-Hard.
For certain problems, the choice of neighbourhood seems relatively restricted and results suggesting
the impossibility of finding an improving solution fast in a commonly used neighbourhood might
seem damning. Unlike in approximability, results in PLS-Completeness are, however, tied to a
particular neighbourhood, which is similar to results in parametrised complexity being tied to a
particular decomposition. Introduction of a new neighbourhood structure or decomposition [8] may
bring new breakthroughs. These connections and ramifications are, however, not discussed in the
book. At 36 pages, the chapter on PLS-Completeness is more concise than the paper that has
introduced the concept [10] or the exposition by [14] “it is based on” (p. 98, sic!), and does not
seem to represent good value for money if the rest of the book is of little or no interest to the
reader.
Opinion: Overall, the book provides a concise and easily understandable introduction to the
basics of local search, an important concept in the design of heuristics. As it gracefully omits
anything and everything a theoretical computer scientist need not learn from the arguably bloated
jargon of heuristic design as well as applications to complex real-life problems, it is well-suited
for a term-long course on heuristic design for theoretically-inclined undergraduates and first-year
graduate students. In other circumstances, either a chapter in a good undergraduate algorithm
design textbook [11] with some project-work, a broader survey of heuristic and exact optimisation
[5], or a more comprehensive study on local search [2, 9] might be worth consideration.

19

References

[1] E. H. L. Aarts, J. H. M. Korst, and P. Zwietering. Deterministic and randomized local search.
In P. Smolensky, M. C. Mozer, and D. E. Rumelhart, editors, Mathematical perspectives of
neural networks, pages 43–224. Lawrence Erlbaum Associates, Mahwah, NJ, 996.

[2] E. H. L. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. Wiley-
Interscience, Chichester, UK, 997.

[3] E. H. L. Aarts and J. K. Lenstra. Preface. In Local Search in Combinatorial Optimization [2],
pages vii–viii.

[4] H. L. Bodlaender and F. V. Fomin. Equitable colorings of bounded treewidth graphs. Theoret.
Comput. Sci., 49(1):22–30, 2005.

[5] E. K. Burke and G. Kendall, editors. Search Methodologies: Introductory Tutorials in Opti-
mization and Decision Support Techniques. Springer, New York, NY, 005.

[6] F. Glover. Tabu search – uncharted domains. Ann. Oper. Res., 49:89–98, 2007.

[7] F. Glover and H. J. Greenberg. New approaches for heuristic search: A bilateral linkage with
artificial intelligence. European J. Oper. Res., 9(2):119–130, 1989.

[8] P. Hliněný, S. il Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and
their applications. Computer J., to appear. 0.1093/comjnl/bxm052.

[9] H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications. Morgan Kauf-
mann, San Francisco, CA, 004.

[10] D. S. Johnson, C. H. Papadimtriou, and M. Yannakakis. How easy is local search? J. Comput.
Syst. Sci., 7(1):79–100, 1988. http://dx.doi.org/0.1016/0022-0000(88)90046-3.

[11] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman, Boston, MA, 005.

[12] S. Lin. Computer solutions to the travelling salesman problems. Bell Syst. Tech. J., 4(10):2245–
2269, 1965.

[13] K. Steiglitz and P. Weiner. Some improved algorithms for computer solution of the traveling
salesman problem. In Proc. th Annual Allerton Conference on Circuit and Systems Theory,
pages 14–821, Urbana, IL, 1968. http://note.acm.org/0.1145/800113.803625.

[14] M. Yannakakis. Computational complexity. In Local Search in Combinatorial Optimization
[2], pages 19–55.

[15] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory Comput., (6):103–128, 2007. http://www.theoryofcomputing.org/
articles/main/v03/a006.

20

Review of7

The Traveling Salesman Problem: A Computational Study
Authors of Book: Applegate, Bixby, Chvátal, and Cook

Princeton University Press, 06 pages, $46.95
Review by William M Springer II

1 Introduction

Given a set of cities and roads (or other means of travel) between them, find the best route by
which to visit every city and return home.

Thus is stated one of the most intensely studied problems in mathematics, the Traveling Sales-
man Problem (TSP). In various forms, the problem can be found in literature going as far back as
the 9th century (expressed as a knight’s tour); studies have been done on the ability of children and
animals to solve simple TSPs. The authors of “The Traveling Salesman Problem: A Computational
Study” have been working on the problem for nearly twenty years, finding solutions to TSPs with
as many as eighty-five thousand cities; the book describes the methods and code they developed
for solving large cases of the TSP. The book is basically divided into three sections; this review
will cover only the first section in depth, leaving the latter two for the interested (and dedicated)
reader.

2 Why solve the TSP?

Chapter one gives an introduction to the traveling salesman problem itself, along with a brief history
of the various forms in which it has appeared over the last millennium. The mathematical history
of the TSP is given, followed by an outline of the rest of the book. The TSP is also explained to be
an NP-hard problem, justifying the use of approximation techniques; as it is in fact NP-complete,
techniques developed in studying it can also be applied to other NP-complete problems. This is
the only chapter of the book which contains no mathematics, and is appropriate for any interested
reader.

In chapter two, some applications of the TSP are developed, including both traditional trans-
portation problems such as school bus routes and more general applications ranging from gene-
mapping to scheduling space-based telescopes. This chapter also contains very little mathematics
and gives the reader an appreciation for the many applications of the TSP.

3 Representing the problem

Chapter three is where the meat of the book really begins. Given n cities, a tour is represented
as an incidence vector x of length n(n − 1)/2, with each component of the vector set to 1 if that
edge is part of the tour (and set to zero otherwise). If c is a vector containing the costs to travel
between every pair of cities, then the TSP can be restated as a minimization problem; letting S be
the set of vectors representing all possible tours, we want to minimize cT x such that x ∈ S. Notice
that the there must be a total of two edges going to every city if we simply minimize cT x subject

7 c©009 William M Springer II

21

to this restraint without worrying about the restriction of having a valid circuit (this might, for
example, give several unconnected cycles) we have a lower bound on the size of any valid tour. At
this point we are not restricted to full edges; there may be “half edges” (displayed in the graph
as dotted edges, they have weight 1/2) where three half edges form a cycle; in this case, two half
edges incident on the same vertex will have the same weight as one full edge, either of which might
be used in the final solution. As such, linear programming methods can be used to both establish
a lower bound on solutions and give a starting point which can often be modified to give a “pretty
good” solution to the TSP. Once this starting point is found, we can add a series of conditions until
eventually the graph becomes a tour. The rest of the book consists largely of methods for either
modifying the current graph to produce a tour, or moving from the current tour to one with lower
weight.

4 History of TSP Computation

With small TSPs now having been solved computationally, the 1950s saw a flurry of activity around
the problem. During these years, branch and bound algorithms became popular. In the previously
described cutting-plane method, once a tour is obtained more and more cuts are added to improve
the path, and the improvements get smaller and smaller. With the branch and bound method, once
the improvements drop below a certain level, the algorithm branches; a vector α and two numbers
β

′
and β

′′
are chosen, with β

′
< β

′′
, such that every x ∈ S satisfies either αT x ≤ β

′
or αT x ≥ β

′′
.

There are now two subproblems, which are solved separately:

minimize cT x subject to x ∈ S and αT x ≤ β
′

minimize cT x subject to x ∈ S and αT x ≥ β
′′

At a later time, either or both of these subproblems could be split into smaller subsubproblems,
and so on. We are constantly solving a problem of the form

minimize cT x subject to x ∈ S and Cx ≤ d

for some system Cx ≤ d of linear inequalities, where C is a matrix and d a vector; subproblems can
be discarded if they are found to have minimal weight solutions at least as large as some previously
discovered element x ∈ S. The branch and bound method was improved by incorporating spanning
trees, giving another method of finding lower bounds for the TSP. The tree can then be used to
force certain edges to be excluded or included in the subproblems, giving stronger bounds and thus
faster algorithms.

In the 1960s, dynamic programming came into use for TSP computations, based on the idea
that in any optimal tour, once some number of cities have been visited, the path through the
remaining cities must still be optimal. As such, we can build the tour step by step; first generate a
list of all minimum-cost paths through subsets of k cities, then extend them to paths through sets
of k+1 cities. While the amount of data that needs to be processed increases rapidly as k grows, it
was shown that dynamic programming algorithms can solve any TSP on n cities in O(n22n) time, a
significant improvement over the n! time required to enumerate all tours, and in fact this is the best
time complexity for any known algorithm that can solve any instance of the TSP. Unfortunately,
this is still impractical for larger TSP instances, so in practice algorithms are needed which are

22

tailored to a particular type of TSP problem in order to obtain a solution in a reasonable amount
of time.

5 The Rest of the Book

As more sophisticated (and faster) linear programming software became available, the focus re-
turned to cutting-plane algorithms, and most of the remainder of the book involves linear program-
ming methods. Chapters five through eleven describe ways of obtaining ever-better cuts. Chapter
five, the introduction for this section, gives a very brief introduction to graph theory and a formal
summary of linear programming. It then gives an outline of the cutting plane method. There is also
a brief discussion on dealing with numerical errors; fixed-point arithmetic is used to avoid rounding
errors. Chapter six involves finding subtour cuts using PQ trees; most of the remainder of this
section deals with the use of combs. The third section, chapters twelve through sixteen, deals with
actually creating software for finding tours; chapter sixteen is specifically on the Concorde software
developed for large-scale instances of the TSP. The software, approximately 130,000 lines of C code,
is available at www.tsp.gatech.edu. The algorithm was used to find a new best path for the World
TSP, an instance containing 1,904,711 cities (available at www.tsp.gatech.edu/world) specified by
latitude and longitude, with travel cost being the great circle distance on Earth; the algorithm was
terminated in 401.7 days, after 18 local cuts, with distance 0.058% over the the minimum possible
cost. In another case, a 1,000,000 city random Euclidian instance, the algorithm processed 28 local
cuts in 308.1 days, finishing with a gap of only 0.029%. Chapter seventeen briefly mentions several
avenues for future research that may be able to speed up the algorithm. As near-optimal solutions
for the largest known TSP problems were obtained using Concorde, the authors have created a
new TSP instance for future work: the 526,280,881 celestial objects in the United States Naval
Observatory catalog, with the goal being to move a telescope to view every object rather than
actually traveling between them. At the time of the book’s publication, a tour had already been
produced and proven to be within 0.796% of the cost of an optimal tour.

6 Conclusion

I found this book to be interesting and well-written. I would not recommend it to someone looking
for a layman’s view of current work on the TSP, as this is most definitely a research book, and the
reader will want to have at least a basic grasp of set theory and linear algebra before attempting it.
That said, the authors have made a strong attempt to provide background material as needed, and
the interested reader who is willing to put in the needed effort will find it rewarding. For anyone
with the required background who has an interest in the Traveling Salesman Problem, this book is
an exceptionally good value and well worth its modest price.

Review by8 Alice Dean of
Visibility Algorithms in the Plane9

by Subir Kumar Ghosh
Cambridge University Press, 2007, Hardcover, 332 pages, $108.00

8 c© Alice M. Dean, 2009
9 c© Alice M. Dean, 2009

23

Reviewer: Alice M. Dean (adean@skidmore.edu)
Skidmore College

1 Overview

Computational Geometry is a young field, tracing its beginnings to the PhD thesis of Michael
Shamos [6] in 1978. Its many applications include, to name a few, computer graphics and imaging,
robotics and computer vision, and geometric information systems. Topics studied within computa-
tional geometry include arrangements, convex hulls, partitions, triangulation of polygons, Voronoi
diagrams, and visibility.

One of the most famous theorems in computational geometry is the Art Gallery Theorem, and
this theorem also serves as an example of the focus of the book under review. Posed by Victor
Klee in 1973, it asks how many stationary guards are required to see all points in an art gallery
represented by a simple, n-sided polygon. The answer, given first by Chvátal [3] and later by
Fisk [5], using an elegant graph-theoretic proof, is that bn/3c guards are always sufficient and may
be necessary. Questions such as this one, of visibility within a polygon, are the subject of Visibility
Algorithms in the Plane, by S. Ghosh.

2 Summary of Contents

The book, which contains eight chapters, is a thorough and detailed investigation of theorems and
algorithms for a variety of types of polygon visibility problems. It is aimed at an audience of
graduate students and researchers who already have a background in computational geometry, and
it also assumes that the reader has a general knowledge of algorithms and data structures. The first
chapter is introductory, and each of the other seven chapters focuses on a particular type or aspect
of visibility. Each chapter begins by reviewing relevant theorems and problems; then algorithms
and other results are presented. Each chapter ends with a discussion of other issues related to the
chapter’s topic, including on-line and parallel algorithms.

• Chapter 1 Background defines the several notions of visibility that are subsequently discussed
in the book. Properties of polygons and triangulations are covered, and the complexity model
real RAM, which is used in the rest of the book, is introduced. Chap. 1 also covers the Art
Gallery Problem.

• Chapter 2 Point Visibility considers the problem, given a polygon P and a point q ∈ P , of
computing the visibility polygon V (q), which is the polygonal sub-region of P consisting of
all points visible from q. In other words, V (q) is the set of all points p ∈ P such that the
straight line from q to p lies entirely within P . Results and algorithms are given for simple
and non-simple polygons, and for non-winding and winding polygons.

• Chapter 3 Weak Visibility and Shortest Paths considers three variations of visibility along an
edge vivi+1 of a polygon P . P is completely visible from vivi+1 if every point p ∈ P is visible
from every point w ∈ vivi+1. P is strongly visible from vivi+1 if vivi+1 contains a point w such
that every point p ∈ P is visible from w. P is weakly visible from vivi+1 if each point z ∈ P
is visible from at least one point wz ∈ vivi+1. Further, the weak visibility polygon of P from

24

vivi+1 is the set of all points z ∈ P such that z is visible to at least one point of vivi+1. Weak
visibility polygons are characterized in terms of Euclidean shortest paths between vertices,
and algorithms for computing weak visibility polygons are given. Algorithms are also given
to compute Euclidean shortest paths between points in P .

• Chapter 4 LR-Visibility and Shortest Paths: P is an LR-visibility polygon if its boundary
contains two points s and t such that every point on the clockwise boundary from s to t
is visible to at least one point on the counterclockwise boundary from s to t. LR-visibility
polygons, which generalize weak visibility polygons, are characterized in terms of Euclidean
shortest paths. Algorithms to recognize LR-visibility polygons, and to compute shortest paths
within LR-visibility polygons, are presented.

• Chapter 5 Visibility Graphs: The visibility graph of a polygon P has as its vertices the vertices
of P , with two vertices adjacent if they are visible to each other in P . Algorithms are given
to compute visibility graphs of simple polygons and polygons with holes. Algorithms are also
given to compute the tangent visibility graph of P , which contains those edges of the visibility
graph that are relevant for computing Euclidean shortest paths.

• Chapter 6 Visibility Graph Theory considers questions complementary to those of Chap. 5,
namely, given a graph G, determine whether it is the visibility graph of some polygon, and
if so, construct such a polygon. These two questions are called, resp., the graph recognition
and graph reconstruction problems. These are both unsolved problems, and their complexity
is unknown as well, except it is known that the reconstruction problem is in PSPACE [4].
Necessary conditions for a graph to be a visibility graph are given, and testing algorithms
are also given for these conditions. In addition, the chapter gives algorithms for recognizing
special classes of visibility graphs.

• Chapter 7 Visibility and Link Paths: In contrast to a Euclidean shortest path in a polygon P ,
a minimum link path minimizes the number of line segments in a piecewise linear path joining
two points of P , and the link diameter of P is the maximum number of links in any minimum
link path in P . Algorithms are given to find minimum link paths between two points of P ,
and also to compute the link diameter and related parameters.

• Chapter 8 Visibility and Path Queries: Query problems in computational geometry are prob-
lems that require a large number of similar computations within a common polygonal domain.
For example, given an arbitrary polygon P with n vertices and a point q ∈ P , there is an
algorithm to compute the visibility polygon of q in time O(n log n) [1]; thus this problem for m
points, {q1, q2, ..., qm} ⊆ P , can be solved in time O(mn log n). But with O(n2) preprocessing
time, the question for m points in P can be answered in time O(mn) time [2]. This query
algorithm is presented, as well as query algorithms for the ray-shooting problem (given q ∈ P ,
find the point on the boundary of P closest to q), Euclidean shortest path, and minimum link
path.

3 Comments and conclusion

The book has ample exercises interspersed in the text. They vary in difficulty from brief thought
exercises to research level investigations. The text is conversational in tone, yet clear and rigorous

25

in its exposition. It has an index and an extensive bibliography; when using the former while
preparing this review, I found it was missing a few fundamental terms, my only criticism of the
book. In general, this text accomplishes its intended purpose well – providing a graduate-level text
on visibility algorithms that can also serve as a useful reference.

References

[1] T. Asano. Efficient algorithms for finding the visibility polygons for a polygonal region with
holes. Trans. IECI Japan, 8:557–559, 1985.

[2] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility of disjoint polygons.
Algorithmica, :49–63, 1986.

[3] V. Chvátal. A combinatorial theorem in plane geometry. J. Combin. Theory Ser. B, 8:39–41,
1975.

[4] H. Everett. Visibility graph recognition. PhD thesis, University of Toronto, 990.

[5] S. Fisk. A short proof of Chvátal’s watchman problem. J. Combin. Theory Ser. B, 4:374, 1975.

[6] M. Shamos. Computational geometry. PhD thesis, Yale University, 978.

Review of10

A Course on the Web Graph
Author of Book: Anthony Bonato

Publisher: American Mathematical Society, Providence, Rhode Island, USA
Series: Graduate Studies in Mathematics

Volume 9, Year 2008, 185 pages
.

Reviewer: Elisa Schaeffer, D.Sc., Associate Professor
Universidad Autónoma de Nuevo León (UANL)

San Nicolás de los Garza, Mexico

1 Introduction

In the past ten years, network modeling has become highly fashionable, combining elements of
traditional study of random graphs and stochastic processes with methods of statistical physics. In
the late 1990s, works such as the article of Watts and Strogatz (Nature, 393:440–442, 1998) and
Barabási and Albert (Science, 286:509–512, 1999) led to a wave of complex systems studies in graph
theory, with special emphasis on the study of the structural properties of natural networks, that
is, graph representations of real-world systems. Combined with the increasing importance of the
Internet and the World-Wide Web, studies of these two networks in particular began to flourish,
through seminal studies such as that of Faloutsos, Faloutsos and Faloutsos (ACM SIGCOMM’99,
pp. 215–262) and Albert, Jeong and Barabási (Nature, 401:130–131, 1999).

10Elisa Schaeffer c©2009

26

Representing the Web as a graph comes about quite naturally. A graph, formally, is a pair of
two (usually finite) sets, G = (V,E), where the elements of V are called vertices or nodes and the
elements of E are pairs of vertices called edges. In the case of the World-Wide Web, the vertices
are the web pages. Two vertices u and v are connected by a (directed) edge (u, v) in the graph
if the web page represented by the vertex u has a hyperlink pointing to the web page represented
by the vertex v. The computational challenge is due to the amount of vertices and edges in the
graph representation of the Web as a whole, and the practical challenge arises from the difficulty
of obtaining but a local snapshot of this ever-evolving, massive network.

In his 2008 textbook, Anthony Bonato reviews the fundamentals of modeling and analyzing the
Web graph and summarizes many of the most important results published in the past decade of
Web graph studies. His approach is rather mathematical, but completely accessible to researchers
and graduate students with previous exposure to basic discrete mathematics and probability theory.

2 Summary of contents

Bonato starts out in Chapter 1 with a brief review on the basic concepts of graph theory and
probability that are well-written for the target audience — Mathematics graduate students — or
simply any reader with previous knowledge on the topics who seeks to refresh his memory, whereas
a Computer Science graduate student with less exposure to mathematics may feel lost at times
with the terminology and the numerous definitions that are needed throughout the book.

In Chapter 2, with the basic terminology covered, Bonato discusses estimations of the total
number of webpages as well as the average distance between any two webpages or the diameter of
the Web graph, being the maximum distance between any two webpages. Structural properties of
the Web graph such as power-law degree distributions and the small-world property are explained
as well as the presence of clusters of webpages, known as the community structure of the Web.
Bonato also briefly draws the connections to other networks in which these properties have been
found and studied.

The study that Bonato gives of random graph models in Chapters 3 and 4 is an excellent sum-
mary of the immense quantity of scientific work done by mathematicians, physicists and computer
scientists in the past 60 years, going from the uniform models studied by Erdös and Rényi and the
probabilistic method that permits to characterize many interesting properties of random graphs to
the models and methods designed to replicate some characteristics of the Web graph in particu-
lar, such as the Barabási-Albert method of preferential attachment and variants, linearized chord
diagram model of Bollobás et al. and the copying model of Kleinberg et al. that introduce vertices
and edges into a graph in an incremental fashion to grow a graph that structurally resembles the
Web graph in some predefined sense. These models are throughly analyzed and many results are
included with the proofs to illustrate the mathematics required in their derivation.

Also models that permit the deletion of vertices and models that incorporate a geometric or
spatial sense of proximity are explained, as well as a mathematically more easily approachable
non-incremental model of Chung and Lu that creates a graph to match a given degree distribution,
building on previous work of Molloy and Reed. Bonato provides the reader with an analytic to-do
list with some of the open questions in the modeling of the Web graph. Chapter 3 includes a good
summary of the probabilistic techniques needed to analyze properties of random graph models for
those that have not had the pleasure of reading the excellent textbook “Probabilistic Method” by
Alon and Spencer (Wiley, 2000).

27

Bonato’s review of the methods to search the Web (Chapter 5) are of interest even to those
that are not into modeling, as he provides a mathematical, graph-theoretical explanation of the
algorithms for searching the Web, namely for ranking the web pages. The mathematical background
of linear algebra and stochastic processes included makes the chapter on Web search nearly a stand-
alone for those readers who only seek to know how Google works. The classic algorithms of the
Web search literature (PageRank, HITS and SALSA) are all explained in detail and briefly analyzed
with respect to sensibility to perturbations and initial conditions.

In Chapter 6, Bonato attends the dynamic nature of the Web by considering the Web graph to
be an infinite (although countable) graph instead of a massive, finite system. This approach permits
to arrive at types of emergent behavior not present in finite graphs and a better understanding of
those models of the Web graph that evolve over time as their limit behavior can be studied.

Chapter 7 closes the book with a discussion of future directions and the birth of the so-called
“Internet Mathematics”, which is growing to be a discipline in its own right, including topics such
as spectral analysis (studying the eigenvalues of different matrix representations of graphs) and
epidemiological modeling (in particular virus propagation).

3 Opinion

Overall the text is well-structured and pleasant to read for mathematically oriented readers and
very fit to be taken as a text book also for less mathematical audience. Each chapter comes
with a set of exercises, ranging from simple to challenging. For the non-mathematical computer
scientists, perhaps an easier approach to the Web Graph was taken by Baldi, Fransconi and Smyth
in their textbook “Modeling the Internet and the Web: Probabilistic Methods and Algorithms”
(Wiley, 2003). Having both texts at the library is recommendable for anyone planning to enter the
field, complimenting them with purely mathematical texts on graph theory (basic, algebraic and
algorithmic) and probability theory (with emphasis on stochastic processes).

For newcomers to the field of Internet Mathematics, also the well-selected bibliography of Bon-
ato’s book will come handy in selecting what to read in the vast amount of literature produced on
the topic in the past decade (it is no longer feasible to read “everything relevant” published on the
Web graph in order to begin studying it). I personally eagerly await for the opportunity to give
a course based on Bonato’s book on postgraduate level - not so much for teaching about the Web
graph in particular, but rather using it as a wonderfully rich case study to teach mathematical net-
work modeling and the power of graph-theoretical methods in analyzing, predicting and explaining
structural properties of large and complex real-world systems.

Review11 of
Higher Arithmetic: An Algorithmic Introduction to Number Theory

Author of Book: H. M. Edwards
Publisher: American Mathematical Society
Student Mathematical Library Vol. 45, 2008

168 pages, Softcover

Review by
Brittany Terese Fasy brittany@cs.duke.edu

11 c©B. Fasy and D. Millman, 2009

28

and David L. Millman dave@cs.unc.edu

1 Introduction

Higher Arithmetic presents number theory through the use of algorithms. The motivating theme
of the book is to find all solutions of A2 + B = 212 In other words, given two numbers A and
B find all pairs (x, y) such that, Ax2 + B = y2. This book is written for a computer science or a
mathematics undergraduate student to understand number theory. The students should be familiar
with algorithms and proofs before reading this book, but the knowledge of Big O notation is not
necessary.

Before proceeding, we make a note here. For the purposes of this book (and hence this review),
only the non-negative integers will be called numbers.

2 Summary

This book is broken into 31 short chapters (about three pages each). Each chapter is accompanied
by study questions and computational exercises. The exercises range in difficulty and in scope.
Each chapter is concise and pointed, introducing exactly one new concept to the reader. For this
reason, the act of going through the exercises is important for completeness of understanding the
material, especially for an undergraduate student.

In the first half of the book, Edwards revisits the basics of arithmetic by relating it to counting.
He then proceeds to cover the traditional number theory topics, including: the Euclidean Algorithm,
simultaneous congruence, the Chinese Remainder Theorem, the Fundamental Theorem of Algebra,
and Euler’s totient function. He describes how to compute the order of a number under modular
arithmetic, a method for primality testing, and the RSA encryption algorithm. He also presents
some non-traditional topics as extensions of those previously listed. The presentation of many of
these ideas is unique in that he is working strictly with nonnegative integers. For example, Edwards
describes an augmented Euclidean Algorithm that finds numbers, u, v, x, y of

d + ub = va

d + xa = yb

where a and b are non-zero numbers and d is their greatest common divisor.
As each new topic is introduced, the author builds a formal definition, and thoroughly explains

each proof. In particular, Chapter eight is well balance between the presentation of algorithms
and proofs. The chapter begins by describing a practical algorithm for computing ab by giving an
example and explanation of the algorithm. Next, the author considers the problem of finding all
the solutions to ab ≡ 1 mod c with a, c > 1 and b > 0. He shows that the problem has a solution
if and only if a is relatively prime to c. This chapter concludes by posing the problem of given two
non-zero relatively prime numbers a and c find the order of a mod c. In other words, what is the
smallest integer k for which ak ≡ 1 mod c?

In the later chapters of the book, Edwards moves forward from the traditional introductory
number theory topics to more advanced topics. Chapter 15 uses Jacobi’s table of indices mod p

12This is not a typo or a weird LaTeX thing. The author uses 2 to mean a square.

29

to find the solutions to ax2 + bx + c ≡ 0 mod p. In particular, he shows that if the index i of a
number mod p is odd it does not have a square root mod p.

In chapter 19, the author derives all solutions to A2+B = 2. A primitive solution to A2+B = 2

is a solution to the problem Ax2 + B = y2 where x and y are relatively prime. The Comparison
Algorithm, which determines if two modules are equivalnet, is used to find all the primitive solutions
to A2 + B = 2. The last part of this chapter constructs all the solutions of this equation from the
primitive solutions.

Next, he turns his attention to proving Euler’s Law:

The value of Cp(A) depends only on the value of p mod 4A.

He introduces the quadratic character of A mod p denoted Cp(A), properties of stable modules,
and the Law of Quadratic Reciprocity. In Chapter 25, Edwards presents The Main Theorem, which
provides a criterion for when a is a square mod p. Then, Euler’s Law is proven as a consequence
of The Main Theorem. The book concludes with a brief discussion of the composition of binary
quadratic forms.

3 Opinion

A review of a number theory book would be incomplete without comparing it to other texts that
are used in introductory number theory classes. While other books, such as [2], are purely mathe-
matical, and only investigate topics such as RSA encryption as an afterthought or an application
at the end of the textbook, this book introduces RSA and other applications quite early. In fact,
half way through the book, almost all topics in a typical elementary number theory class have been
covered. Furthermore, he completely tackles the essence of a first semester number theory course
from the perspective of solving the problem A2 + B = 2.

Other number theory books, such as [1], assume a more mathematically sophisticated audience.
Although knowledge of abstract algebra would enhance the reader’s understanding of the material,
it is not a prerequisite for reading Higher Arithmetic.

Many universities use number theory as the first class that students are introduced to formal
proofs. This book does not address the fact that some students may not be comfortable with the
methods of proving theorems. At the same time, however, the proofs are generally well-written
and easy to follow. This means that the students should be able to read and understand the proofs
without having a formal introduction to proof techniques.

Higher Arithmetic assumes that the students are familiar with algorithms and writing pro-
grams. When he introduces a new algorithm, he begins by giving examples and descriptions of
the algorithms. After the algorithm is formally introduced, a short discussion usually follows. Fur-
thermore, efficiency improvements (such as removing repetitive computations) to the algorithm are
also discussed. Many of the computational exercises are implementations of the algorithms. This
gives the student further insights into the algorithm. This method makes a computer scientist very
comfortable by describing the basics in terms of algorithms, and makes non-computer scientists
comfortable by using examples to describe the algorithms. It is worth noting, however, that the
book does not refer to Big O notation that is commonly used to describe the running time of
algorithms.

Although the text is dense, Edwards strives to instill an intuitive feeling for the material. This
is most prevalent in the exercises. Each chapter is accompanied by a set of exercises, including

30

both study/analytical questions and computational problems. In the beginning, these exercises
are classified as either study or computational. As the book progresses, however, this distinction
is no longer made. The author feels that written work is important to clarify new ideas. In his
experience, previous students had enjoyed and benefited from the computational problems.

Many of the exercises focus on having the student implement algorithms or explain the concepts.
One question asks the student to explain a result “to an eight year old.” The problems often ask
the student to be creative. For instance, in chapter two, the student is asked to describe how s/he
thinks Archimedes came up with bounds for

√
3. Some of the results of the exercises are revisited or

extended in later chapters. Although this makes the text, along with the exercises, more cohesive,
this method results in the exercises having information in them that could be lost by the casual
reader. For example, chapter five exercise eight gives a formal algorithm for solving ax ≡ c mod b.

There are some nuances of the text that are worth noting. The use of capital letters A,B
to represent one-dimensional variables is not standard. Thus, the equation A2 + B = 2 looks
remarkably like solving a system of equations, which it is not. There were some other notational
quirks of the book, including the use of the symbol 2 for a square number, the use of a ≡ b
mod [n, m] for double congruences, and the use of fractions in congruences: 1

6 ≡ 2 mod 11 since
1 ≡ 6 ·2 mod 11. Within the context of this book, however, these notations do seem natural. There
are several awkward moments in the text, including the following problem from Chapter 21:

Given a number A, not a square, for which primes p is A a square mod p?

It may take the reader a moment to realize that the question is asking: for what values of p is A
congruent to a square number mod p?

Despite the issues described above, this book is a good introduction to number theory for a
computer scientist. This book:

• links number theory with computer science.

• uses programming in the exercises.

• is well suited for self-study.

• provides plenty of examples and motivation.

We particularly liked how the focus of the book created a cohesive collection of theorems and
examples. Everything was introduced for a reason.

In sum, we recommend this book for an introduction to number theory for a computer science
or mathematics student familiar with algorithms, or for self-study for a computer scientist. Ad-
ditionally, this book would be well suited for an independent study, because there are plenty of
examples and exercises (with solutions) for the student to explore.

References

[1] G.H.Hardy, E.M.Wright, An Introduction to the Theory of Numbers, Oxford Science P,
New York, 2003.

[2] J.K.Strayer, Elementary Number Theory, Waveland P, Prospect Heights, IL, 2002.

31

