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In this column we review the following books.

1. From Zero to Infinity: What Makes Numbers Interesting by Constance Reid. Review by Vaishak
Belle. The book is an informal (non-technical) introduction to the lore of natural numbers. It benefits
a general audience, and those with an inclination for an appreciation of general mathematical lore in
particular. Advanced readers may also be challenged.

2. Mathematics for the Analysis of Algorithms by Daniel H. Greene and Donald E. Knuth. Review by
Mladen Miksa. To determine how fast an algorithm runs you may need to do some hard math. This
classic book presents a diverse set of mathematical paradigms used for solving these problems.

3. Algebraic Cryptanalysis by Gregory V. Bard. Review by Joseph Fitzsimons. This book is about
the branch of cryptanalysis which is tied to areas of computational complexity and finite-field alge-
bra. The book focuses on attacks which can be constructed when given matching pairs of plain-text
(unencrypted messages) and their corresponding cipher-text (the corresponding encrypted messages).

4. Algebraic Function Fields and Codes by Henning Stichtenoth. Reviewed by Swastik Kopparty.
This book gives a rigorous, systematic and thorough treatment of the theory of algebraic function
fields and its applications in coding theory. Algebraic function fields are natural objects that arise
in the study of algebraic curves and exponential sums over finite fields, and have found widespread
applications in the areas of coding theory and pseudorandomness.

5. Those Fascinating Numbers by Jean-Marie De Konick. Review by William Gasarch. When I wrote
the review the book was selling on amazon for $37.80. The book tells me that 378 is the smallest
number which is not a cube but which can be written as the sum of the cubes of its prime factors. If
you like this sort of thing you will like this book.

6. Pólya Urn Models by Hosam Mahmoud. Review by Stephen Stanhope. If an Urn has 99 red balls,
810 white balls, and 80 blue balls then what is the probability that a white ball is taken. This is easy.
But what happens if you pick without replacement and ask asymptotic questions? Many interesting
questions can be asked and answered in this model.

7. Not always buried deep: a second course in elementary number theory by Paul Pollack. Re-
viewed by S. C. Coutinho. In a first course in number theory you learn things like a prime p is the sum
of 2 squares iff the p ≡ 1 (mod 4) and you hear mentioned harder theorems like an infinite arithmetic
progression a, a + d, a + 2d, . . . (where gcd(a, d) = 1) has an infinite number of primes. This book
is for that second course where you actually prove these theorems.

1 c©William Gasarch, 2011.
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8. Pioneering Women in American Mathematics: The Pre-1940 PhD’s by Judy Green and Jeanne
LaDuke. Review by Sorelle A. Friedler. This is a comprehensive examination of the lives of all 228
women who earned PhDs in mathematics before 1940 who were US-born or earned their PhDs in the
US.

9. A Guide to Elementary Number Theory by Underwood Dudley. Reviewed by Song Yan. This is
not quite a text on number theory. It is, as the title says, a guide. It is 39 chapters of varying lenghts
each devoted to a single question about numbers.

10. Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics by Dan A.
Simovici and Chabane Djeraba. Reviewed by Pauli Miettinen. A sutdent, or even a researcher, in
Data Mining may find that they need to know some math that they do not know. This book intends to
fill that gap.

BOOKS I NEED REVIEWED FOR SIGACT NEWS COLUMN
Algorithms and Related Topics

1. Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R by Valiente.

2. Triangulations: Structure for Algorithms and Applications by De Loera, Rambau, Santos.

3. Proofs and Algorithms by Gilles Dowek.

4. Flows in Networks by Ford and Fulkerson. (the classic reprinted!)

5. Fast Algorithms for Signal Processing by Blahut.

6. Bioinspired Computation in Combinatorial Optimization by Neumann and Witt.

7. Modern Computer Arithmetic by Brent and Zimmermann.

Cryptography, Coding Theory, Security

1. Locally Decodable Codes and Private Information Retrieval by Yekhanin.

2. The Cryptoclub: Using Mathematics to Make and Break Secret Codes by Beissinger and Pless (for
middle school students).

3. Mathematical Ciphers: From Ceaser to RSA by Anne Young. (For a non-majors course.)

4. Adaptive Cryptographic Access Control by Kayem, Akl, and Martin.

5. Preserving Privacy in data outsourcing by Sara Foresti.

6. Cryptanalysis of RSA and its variants by Hinek.

7. Algorithmic Cryptanalysis by Joux.

Math

1. Polynomia and Related Realms by Dan Kalman.
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2. Mathematica: A problem centered approach by Hazrat.

3. Mathematics Everywhere Edited by Aigner and Behrends.

4. Mathematical Omnibus: Thirty Lectures on Classic Mathematics by Fuchs and Tabachnikov.

5. Probability Theory: An Analytic View by Stroock.

6. The Dots and Boxes Game: Sophisticated Child’s play By Berlekamp.

7. New Mathematical Diversions by Martin Gardner.

8. The Magic Numbers of the Professor by O’Shea and Dudley.

9. Kurt Godel: Essays for his Centennial by

Misc-Comp Sci

1. Quantum computing: A gentle introduction by Rieffel and Polak.

2. Foundations of XML Processing: The Tree-Automata Approach by Haruo Hosoya.

3. Introduction to Computational Proteomics by Yona.

4. Introduction to the Theory of Programming Languages by Dowek and Levy.

5. Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics by Platzer.

6. Digital Nets and Sequences: Discrepancy theory and Quasi-Monte Carlo Integration by Josef Dick
and Friedrich Pillichshammer.

7. Approximation and Computation: In Honors of Gradimir Milovanovic Edited by Gautchi, Mastoianni,
Rassias.

8. Clustering in Bioinformatics and Drug Discovery by MacCuish and MacCuish.

9. Drawing Programs: The theory and Practice of Schematic Functional Programming by Addis and
Addis.

History of Math

1. History of Mathematics: Highways and Byways by Amy Dahan-Dalmedico and Jeanne Peilfer.

2. An Episodic History of Mathematics: Mathematical Culture through Problem Solving by Steven
Krantz.
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Review of
From Zero to Infinity: What Makes Numbers Interesting

by Constance Reid
A K Peters, Ltd. 2006

208 pages, Softcover, $19.95 as a book, $9.95 in Kindle

Review by
Vaishak Belle; belle@cs.rwth-aachen.de

Blondelstr. 28, 52062 Aachen, Germany

1 Introduction

The book is an informal (non-technical) introduction to the lore of natural numbers. It benefits a general
audience, and those with an inclination for an appreciation of general mathematical lore in particular. Ad-
vanced readers are invited to tackle puzzles at the end of each chapter.

2 Summary

It would be difficult for anyone to be more profoundly interested in anything than I am in the theory of
primes. - G. H. Hardy (see book).

From Zero to Infinity by Constance Reid has been inspiring the mathematically keen for over 50 years
now. Written in informal style, the book offers an introduction to the beauty of natural numbers. It is
organized into 12 chapters, with a chapter each for the first ten natural numbers. A special chapter is
dedicated to the Euler identity, and another one to Aleph-0. Tracing the discovery of the numbers, the
chapters expand upon features and facts, all of which tells us why these numbers are interesting. While
perhaps many of such facts can be found in elementary undergraduate texts, it nonetheless attempts a holistic
picture describing relations between prime, composite, perfect, rational and irrational numbers.

As the author explains in the preface, the book has a story. The advent of computers enabled the dis-
covery of a new set of perfect numbers, which started the chapters. While it may be hard to imagine how a
whole chapter could be written about the most common of numbers, the author does so in a very satisfactory
manner. The chapters usually end with some notes, open problems and hints about these problems. The
reader is often encouraged to tackle them, and not all are that elementary!

The discovery of “0” is perhaps well known. It is also known that it serves as an important identity. The
chapter introduces the modern positional notation, and goes to explain why this number is so important.
Chapter “1” serves to form the foundation of natural numbers, via addition, and also enables discussions
about factorization. Chapter “2” not surprisingly speaks of the binary notation, its significance and intro-
duces a novice reader to binary addition and multiplication. Chapter “3” talks about primes and chapter “4”
talks about squares. In there, the readers gets a first feeling with notions of infinity. In particular, the author
helps us to reason about what it means to say that a set is infinite: A set is infinite when it can be placed in
one-to-one correspondence with a part of itself. Also discussed in this chapter is the Pythagorean Theorem
and Fermat’s Last Problem.

Chapter “5” takes us through Euler generating functions. The motivation for this function lies in the
theory of partitions. For instances, in how many ways can you define the number 5 as the sum of one, two,
three, four or five numbers? It is easy to verify that there are 7 possibilities. Partitioning the number 6 leads
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to 11 possibilities, and continuing this further shows that there is no apparent relation between the number
and the cardinality of its partitions. Euler’s function sheds light on this theory. Chapter “6” takes us through
how large primes can be found, and why people think this search is important. This can be understood as
follows. The number 6 is a perfect number, that is the sum of all its divisors except itself (3, 2, 1). So how
many perfect numbers are there? Euclid claimed that all numbers of the form 2n−1 × (2n − 1) are perfect,
but provided 2n − 1 is prime. The search for perfect numbers inevitably lead to the search for primes.
Chapter “7” talks about Fermat primes, and chapter “8” introduces Waring’s suggestion. What this states
is that every (natural) number can expressed as the sum of 4 squares, 9 cubes, 19 biquadrates and so on.
Of course, the number 8 brings to mind cubes, and so Waring’s claim can be seen as an extension to two
dual questions about numbers: how can cubes be represented as other natural numbers, and how can natural
numbers be represented as the product or sum of cubes? Mainly, what is the maximal number of cubes one
needs to represent in terms of a sum any given natural number? Finally, chapter “9” returns to the theme of
notations.

The chapter on the Euler identity is well explained. It offers a clean introduction to the natural logarithm,
explaining what sort of conceptual breakthrough came about with its discovery. Also discussed are the
imaginary numbers. Coming to the last chapter, this is arguably the most difficult theme to present in a
simple language, and this is where the author does well. Discussing the controversy that Cantor’s discovery
created in the mathematical circles, the author goes on to explain the diagonalization argument among other
things. All is all, a very accurate summarization of the theory of the infinite is given. I believe readers will
certainly be compelled to obtain copies of her other books, such as the one on David Hilbert.

It is interesting to note that Constance Reid has no formal education is mathematics, and yet her books
could not be any more lucid.

3 Opinion

The book is well written, uses an informal languages, and serves as a great introduction to the theory of
numbers, known facts about them and the history of this discovery.

Review of
Mathematics for the Analysis of Algorithms 2

Authors: Daniel H. Greene and Donald E. Knuth
Publisher: Birkhauser, 2008, ISBN: 978-0-8176-4728-5

132 pages, Softcover, $40

Reviewer: Mladen Miksa (mladen.miksa@fer.hr)

1 Overview

When designing an algorithm it is important to know how well it will perform at a given task. In order to
answer that question, we define mathematical equations that describe the relation between performance and
input. Most of the time we are interested in the explicit form of that relation, but finding such a form can
be a difficult task. Mathematics for the Analysis of Algorithms by Daniel H. Greene and Donald E. Knuth
presents a diverse set of mathematical paradigms used for solving those equations.

2 c©Mladen Miksa, 2011
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2 Summary of Contents

The book consists of four thematically separated chapters covering: binomial identities, recurrence relations,
operator methods and asymptotic analysis. The last third of the book contains exams given at Stanford and
their solutions, providing additional examples for presented topics. It consists of three midterm and three
final exams along with one additional problem.

This summary gives a short description of the chapters and is not intended as a comprehensive list of
everything described in the book.

2.1 Chapter 1: Binomial Identities

This chapter is relatively short and to the point. It starts with a summary of useful identities and then
proceeds to the description of “meta” concepts used in classifying binomial identities (e.g. inverse relations),
ending with another list of identities, this time involving harmonic numbers. Some ideas for proving the
identities are explained, but the reader is mostly referred to other sources for additional information on the
subject.

2.2 Chapter 2: Recurrence Relations

Methods for solving recurrence relations are described in this chapter. They are divided into two major
categories: linear and nonlinear relations.

The part describing linear relations presents additional subdivisions of types of relations, starting with
easier ones and progressing to those more challenging. It describes finite and full history relations with
solving techniques varying from trying trial solutions to the repertoire approach.

The division of nonlinear relations is not as detailed as that of their linear counterparts, owing to the
fact that the methods for solving them are less systematic, as mentioned in the book. Relations covered in
this part include relations with maximum or minimum functions, and relations with hidden or approximate
linear recurrences.

2.3 Chapter 3: Operator Methods

Another relatively short chapter presents operator methods and their use in the analysis of algorithms.
Through various examples it demonstrates the use of operators in removing recurrence from equations.
The removals are achieved using a variety of tricks, all of them relying on moving through the recurrence
using a self-replicating process (e.g. eigenoperator).

One other key concept used in this chapter is induction at the other end, a form of induction where new
elements are added to the beginning of the sequence, rather than the end.

2.4 Chapter 4: Asymptotic Analysis

A lot of times the solutions to the recurrences can not be expressed in a closed form, so effort is instead
turned to finding an asymptotic solution. This chapter covers techniques used in finding those solutions
and is divided into three parts: basic concepts, the use of Stieltjes integration and recovering asymptotic
solutions from generating functions. The emphasis is on as thorough approximations of the exact solution
as possible, trying to find the approximation with the smallest error term.

6



The basic concepts starts with briefly describing O-notation, moving its way through several other topics
and ending with Tauberian theorems. The part on the use of Stieltjes integration gives its definition and
relation to asymptotics with additional attention given to Euler’s summation formula. The last part uses
generating functions to recover asymptotics and covers Darboux’s method for functions with singularities,
and the saddle point method for functions without them.

Each of three parts is followed with an example which uses the techniques described in it. The first two
examples that are presented come from factorization and number theory, while the last example is a proof
of the central limit theorem.

3 Opinion

Mathematics for the Analysis of Algorithms covers a variety of topics in a relatively small amount of pages.
Despite its briefness, most of the topics are clearly and fully explained using detailed examples for better
understanding. As such, the book is suitable for use as a study material, as well as a good reference guide.

The focus of the book is placed on advanced techniques described in chapters three and four, and the later
parts of chapter two. Those chapters are mostly driven by detailed examples which give a clear presentation
of the use of techniques described in each of them. Following the emphasis, the first few chapters are
explained less thoroughly with no or just brief examples presented.

Familiarity with the basic concepts in combinatorics and complex analysis is assumed in the book. Some
of them are explained, but only briefly and in passing to more advanced methods. On some occasions it may
require more than just the basics and additional knowledge could help, but nothing too difficult that can not
be easily looked up from other sources.

The book presents mathematics used in the analysis of algorithms; it does not describe them any more
than it is necessary for the analysis. The intention of it is to be an addition to other books on algorithms,
namely The Art of Computer Programming series by Donald E. Knuth which is referenced a lot. Even
without the other books it can still provide an interesting read, although it can sometimes present problems
with the understanding of the material, depending on the reader’s prior knowledge of the properties of
mentioned algorithms. More can certainly be gained from it if used with other references, and that is what
the author of this review would recommend.

Many summations in the chapter on binomial identities and some of recurrences in the second chapter
can now be automatically solved using available mathematical software. That makes those parts less relevant
for the analysis of algorithms, but the focus of those chapters is more on the basic ideas (rather than detailed
methods) and they are relatively short containing some insights that could still provide an enjoyable read.

The reviewer recommends this book to anyone interested in advanced theory of algorithms and the
mathematics behind it, either as an exposition to the topic or as reference material in future work.
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Review of3

Algebraic Cryptanalysis
by Gregory V. Bard

Published by Springer, 2009
356 pages, Hardcover

Review by
Joseph Fitzsimons (joe.fitzsimons@gmail.com)

Merton College, Merton Street, Oxford OX1 4JD, UK

“Few false ideas have more firmly gripped the minds of so many intelligent men than the one
that, if they just tried, they could invent a cipher that no one could break.”
— David Kahn, The Code Breakers.

1 Introduction

Throughout its history, computer science has been inextricably linked with code-breaking. Charles Babbage,
a pioneer in the field of mechanical computation in the mid-19th century and inventor of the first Turing-
complete mechanical computer, is credited with breaking the Autokey and Vigenère ciphers. Turing himself
spent the years of World War Two working in the Government Code and Cypher School at Bletchley Park,
where he contributed to the breaking of the Enigma and Lorenz ciphers. It should come as no surprised then
that cryptography and cryptanalysis, the making and breaking of ciphers, are still closely tied to the study
of computational complexity. Algebraic Cryptanalysis focuses on a particular form of cryptanalysis which
is particularly closely tied to areas of computational complexity and finite-field algebra. The book focuses
on attacks which can be constructed when given matching pairs of plain-text (unencrypted messages) and
their corresponding cipher-text (the corresponding encrypted messages). These are by no means the most
general attacks, but do have the advantage of allowing the relationship between these pairs to be expressed
as a system of polynomial equations which include the encryption key as variables. Thus a number of
constraints exist, which if sufficiently many pairs are used can be simultaneously satisfied only by the
correct encryption key. The goal of this book is to show how such constraints can be generated given the
specification of a cipher, and to demonstrate how such constraint problems can be solved, either via computer
algebra techniques or by translating to instances of the conjugate normal form satisfiability problem.

2 Summary

The book is arranged into three parts, each consisting of a number of chapters. Part I covers the topic of
converting a cipher into a system of polynomial equations over a finite field; Part II covers various aspects
of the algebra of finite fields and complexity theory; finally Part III covers algorithmic methods for solving
systems of equations as generated in Part I. The division between parts is relatively clear, although the
chapters within each part often cover quite disparate topics. As such it makes sense to cover the contents of
each chapter separately, with the exception of Chapter 1, which merely outlines the structure of the book.

3 c©2010, Joseph Fitzsimons
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2.1 Part I: Cryptanalysis

Part I of the book focuses on generating systems of simultaneous equations from the description of a cipher.
Much of this section is based on the author’s own work on the Keeloq cipher, which is used as an example
throughout the early chapters. As a result, it is helpful to print a copy of the authors PhD thesis4 which
covers much of the material used in the book and which can be used as a reference while working through
Part I.

2.1.1 Chapter 2: The Block Cipher Keeloq and Algebraic Attacks

In this chapter the reader is first introduced to the Keeloq cipher. The reader is then taken step by step
through the process of generating a system of polynomial equations from the specifications of Keeloq. The
chapter concludes with a discussion of the failure of attempts to directly solve the equations generated in
this way.

2.1.2 Chapter 3: The Fixed-Point Attack

This chapter describes an attack on Keeloq taken from the authors PhD thesis. The attack works by exploit-
ing the structure of Keeloq to express it in a particular form, such that at its heart there is a new function
f(x) which is iterated eight times. The attack proceeds by trying to identify fixed points of f(x), and then
using a pair of such fixed points to provide the constraints used to generate a system of polynomials which
is then solved algorithmically.

2.1.3 Chapter 4: Iterated Permutations

Chapter 4 is quite long, and has two distinct parts. The first half of the chapter forms a general introduction
to the field of analytic combinatorics, while the second half of the chapter examines attacks arising when a
particular operation is applied recursively a large number of times within a cipher.

2.1.4 Chapter 5: Stream Ciphers

This part of the book concludes with a discussion of stream ciphers. In a stream cipher the plain-text is
encrypted by combining with a pseudo-random bit stream in such a way that the cipher-text generated by a
given piece of plain-text depends on the current state of the encrypting device. The main focus of this chapter
is simply on generating systems of polynomials from the initial description of the cipher. In particular the
author highlights the Bivium, Trivium and QUAD ciphers.

2.2 Part II: Linear Systems Mod 2

Part II of the book contains chapters on a variety of topics, for the most part related to the complexity of
linear algebra over GF(2). For those unfamiliar with it, GF(2) is the Galois Field of 2 elements. The field’s
addition and multiplication operations correspond to bitwise XOR and AND respectively, and so GF(2)
provides a convenient representation for systems described in terms of Boolean operations.

4Currently available at http://www-users.math.umd.edu/∼bardg/
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2.2.1 Chapter 6: Some Basic Facts about Linear Algebra over GF(2)

This chapter acts as an introduction to linear algebra over GF(2). It is clearly aimed at the reader familiar
with linear algebra over R or C, and simply highlights important differences between GF(2) and the more
familiar cases.

2.2.2 Chapter 7: The Complexity of GF(2)-Matrix Operations

In this chapter the author introduces a new complexity measure for matrix operations on GF(2). The reason
for this is that, traditionally, counting floating point operations has served as a proxy for time complexity
when analysing operations on real or complex matrices, significantly simplifying calculations. For opera-
tions over GF(2), however, there is no need for floating point operations, and so another proxy is desirable.
The scheme the author introduces is simply to count memory operations. The scheme is outlined and the
limitations discussed.

2.2.3 Chapter 8: On the Exponent of Certain Matrix Operations

Chapter 8 collects a number of theorems proving that many important matrix operations have equivalent
computational complexity to matrix multiplication. These include matrix inversion and squaring, as well
as LUP-factorization and inversion of triangular matrices. This is particularly useful, as using these results
such operations can be constructed directly from matrix multiplication. A number of algorithms are known
for matrix multiplication, and so there is a choice available. One might expect that the best choice is simply
to choose the option with the smallest asymptotic scaling. This is however not the case as in practice the
cross-over can occur at extremely large matrix sizes and so the choice is either between algorithms of cubic
complexity, Strassen’s algorithm or the Method of Four Russians described in the Chapter 9.

2.2.4 Chapter 9: The Method of Four Russians

This chapter introduces a method of matrix multiplication known as the Method of Four Russians (M4RM),
and makes use of it to create an algorithm for matrix inversion, which the author calls the Method of
Four Russians for Inversion (M4RI). Both algorithms run in time O(n/ log(n)), and so do not out-perform
Strassen’s algorithms. However, the author proposes these be used as the fall-back algorithm in Strassen’s
algorithm, since it works by recursively dividing up matrices into smaller matrices until a threshold size is
reached. These small matrices are then naively multiplied, and so by using M4RM and M4RI a constant
speed-up can be achieved.

2.2.5 Chapter 10: The Quadratic Sieve

Chapter 10 stands out from the rest of the book. It introduces the RSA cryptosystem and focuses on two dis-
tinct algorithms for integer factorization, namely the linear and quadratic sieves. With its number theoretic
underpinnings, RSA differs greatly from the block and stream ciphers discussed earlier in the book and so a
number of results are imported from number theory in order to construct these algorithms.

2.3 Part III: Polynomial Systems and Satisfiability

The final part of the book focuses on methods for algorithmically solving systems of polynomial equations
as generated earlier in Part I. Initially the focus is on computer algebra techniques, though the focus rapidly
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changes to SAT-solvers with which the final three chapters are concerned.

2.3.1 Chapter 11: Strategies for Polynomial Systems

This chapter begins Part III with a look at techniques used to make systems of polynomial equations over
finite fields more amenable to the computational approaches used later in the book. In particular the author
introduces techniques for reducing the degree of polynomials encountered, as well as discussing the utility
of guessing the value of particular variables and the consequences for running time of solvers of having
over-defined variables.

2.3.2 Chapter 12: Algorithms for Solving Polynomial Systems

Chapter 12 introduces an number of algorithms for solving systems of equations. By necessity, these algo-
rithms have poor worst case run times, as solving such problems is known to be NP-complete. The most
widely studied class of such algorithms, those based on finding Gröbner bases, is only mentioned in passing
and it is suggested that the reader use the implementations built into already existing computer algebra sys-
tems. Instead the main focus is on algorithms based on linearisation of the polynomials, which appear to be
a more practical choice for cryptanalysis problems.

2.3.3 Chapter 13: Converting MQ to CNF-SAT

The focus of this chapter is on converting GF(2) systems into instances of the conjugate normal form
satisfiability problem (CNF-SAT). CNF-SAT has been studied in great detail in its own right, and a number
of good heuristic algorithms exist. The reader is walked through the conversion, which is then followed by
a discussion of running times.

2.3.4 Chapter 14: How do SAT-Solvers Operate?

Chapter 14 provides a detailed introduction to the world of SAT-solvers. SAT-solvers are often used as
a black box, but this chapter provides an interesting look under the hood of such algorithms. A number
of different approaches to SAT are introduced and the algorithms underlying some prominent solvers are
examined, with a view to fostering some understanding of what constitute easy and difficult instances.

2.3.5 Chapter 15: Applying SAT-Solvers to Extension Fields of Low Degree

Chapter 15 closes off the main text with a discussion of how to use SAT-solvers in conjunction with systems
over GF(2k) for low k, by converting them to GF(2) systems. For many cryptosystems this is a more natural
form than working directly with a Boolean representation, and so this is a fitting way in which to conclude
the book.

2.4 Appendices

Algebraic Cryptanalysis also contains a total of five appendices, which vary widely in their utility. Ap-
pendix A contains a discussion of the security of block ciphers with extremely small block sizes. This is an
important inclusion, as the security of a cipher does not only depend on the difficulty of solving the relevant
constraint satisfiability problems, but also on the practicality of other attacks, such as frequency analysis,
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which become important at small block sizes. Appendix B contains explicit formulae for field multiplica-
tion laws for GF(4), GF(8), GF(16), GF(32) and GF(64). Appendix C extends the approaches taken in
the book to tackle the task of graph colouring, in which vertices on a graph have to be assigned one of c
different colours in such a way that no two neighbouring vertices have the same colour. The general forms
of both the constraint satisfiability problems discussed in the main text and the graph colouring problem are
NP-complete, and so the author reasons that the approaches outlined in the main text can be translated to
problems outside of cryptanalysis which are expressible as graph colouring problems. Indeed this appendix
concludes with a number of example applications. Appendix D contains a review of fast algorithms for the
manipulation of sparse matrices. This makes a useful reference for anyone wishing to implement the crypt-
analysis techniques discussed in the main text. The book concludes with Appendix E which contains three
quotes from Robert Recorde which the author considers inspirational, and are apparently the compromise
he has come to between continuing the tradition of starting each chapter with a quote5 and the difficulty im-
posed by having an insufficient supply of suitable quotations. Finally, Algebraic Cryptanalysis also contains
a detailed bibliography, which the author has been careful to cite from throughout the text.

3 Opinion

This book aims to appeal to graduate students moving into the area of algebraic cryptanalysis, as well
as to researchers from other areas of cryptography and computer algebra. The book is well written in
a discursive style that makes it quite accessible, and so I believe that Algebraic Cryptanalysis will be a
welcome addition to the bookshelves of anyone with an intrest in code-breaking. There is however one
small caveat: This book is clearly not intended to be a definitive guide to the subject, and tends to focus
on general principles illustrated with specific examples. There is little discussion of the different kinds of
cryptanlytic attacks frequently encountered or of techniques such as linear and differential cryptanalysis
which have become common-place. Unusually for a book of this type, there is also no discussion of attacks
on historical ciphers. One additional concern is that the complexity measure introduced in Chapter 7 seems
to conflate space and time in a way that will potentially cause trouble in the context of time-memory trade-
offs common in cryptanalysis, and so should be taken with a grain of salt. With this in mind, however,
Algebraic Cryptanalysis would make an excellent second book for anyone with an interest in the area. The
discussion of algorithms goes far beyond what is normally encountered in such books, which together with
the wealth of examples taken from real cryptosystems and the in-depth coverage of SAT-solvers and finite-
field algebra provides an excellent way to deepen the readers existing knowledge.

5As mentioned on page 6 of Algebraic Cryptanalysis.
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Review of
Algebraic Function Fields and Codes 6

Author: Henning Stichtenoth
Publisher: Springer, 2009

ISBN: 978-3-540-76877-7, $59.95
Graduate Texts in Mathematics, 254

Reviewer: Swastik Kopparty (swastik@mit.edu)

1 Overview

The book being reviewed, “Algebraic Function Fields and Codes” by Henning Stichtenoth, gives a rigorous,
systematic and thorough treatment of the theory of algebraic function fields and its applications in coding
theory. Algebraic function fields are natural objects that arise in the study of algebraic curves and expo-
nential sums over finite fields, and have found widespread applications in the areas of coding theory and
pseudorandomness.

This is the second edition of a book that is already one of the standard references in the area of algebraic-
geometry codes. The new edition features a new chapter on curves with many rational points, as well as a
large number of exercises at the end of every chapter. The new chapter is a particularly welcome addition,
since the book now contains an explicit construction and complete analysis of excellent error-correcting
codes that beat random codes (which is one of the most celebrated applications of the theory of algebraic
function fields to coding theory and theoretical computer science).

Below we will give a short introduction to algebraic function fields and a brief description of one of their
major applications in coding theory We will then proceed to discuss the contents of this book.

1.1 Algebraic function fields

The abstract algebraic theory of function fields was first studied by Dedekind, Kronecker and Weber in the
1880s, when they noticed many formal similarities between the theory of number fields and the theory of
algebraic functions on complex algebraic curves. Since then, it has seen much activity and developed into a
flourishing theory in the hands of E. Artin, F. K. Schmidt, H. Hasse, A. Weil, C. Chevalley and others.

Formally, an algebraic function field over a base field F is a field of transcendence degree 1 over F. In
practice, the notion of an algebraic function field arises naturally as a generalization of the field of rational
functions F(X) over a field F:

F(X) =
{

f(X)
g(X)

∣∣∣∣ f(X), g(X) polynomials with coefficients in F, and g(X) 6= 0
}

.

An algebraic function field is simply a finite algebraic extension field of F(X), and the elements of this field
are called algebraic functions. For example, the field

L = F(X)[Y ]/〈Y 2 −X3 + 2X + 1〉

is an algebraic function field. The rational function field F(X) is naturally viewed as the field of rational
functions on a line. Analogously, an algebraic function field arises as the field of rational functions on a

6 c© Swastik Kopparty, 2010
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one-dimensional algebraic curve. For example, the field L is the field of rational functions on the curve in
F2 defined by Y 2 = X3 − 2X − 1.

The theory of algebraic function fields sets up a rich and beautiful theory of polynomials and rational
functions on every algebraic curve. It enables us to formulate and answer questions such as: How many roots
can a “low-degree algebraic function” have? What is the dimension of the space of “low-degree algebraic
functions”? The theory then allows us to go back and answer basic questions (that make no mention of the
algebraic function field) about algebraic curves themselves: how many points in F2 lie on a given algebraic
curve? For instance, if F is a finite field with q elements, it turns out that the number of solutions to
Y 2 = X3 + 2X + 1 in F2 lies in the interval [q − 2

√
q, q + 2

√
q], which is a highly non-trivial fact derived

from the theory of the algebraic function field L.
We now highlight two of the results coming from the theory of algebraic function fields (and proved

in this book) that have been especially impactful in coding theory and theoretical computer science. The
first is the Hasse-Weil theorem on the number of solutions to polynomial equations over finite fields, which
plays an important role in pseudorandomness, coding theory and cryptography. The second result is the
Ihara-Tsfasman-Vladut-Zink Theorem on the existence of curves with many rational points and low genus,
which plays an important role in the construction of excellent error-correcting codes. In the next subsection,
we briefly describe this second application.

1.2 Algebraic-geometry codes

One of the outstanding problems in the theory of error-correcting codes is to determine the size of the largest
set C of n-letter strings over a q-ary alphabet, such that every pair of elements in C differs in at least δn
coordinates. A large set C with this property (an “error-correcting code”) can be used to protect data against
error as follows: a unique codeword in C is associated to each q-ary string of length logq |C|. Any given
q-ary string of length logq |C| is represented using its associated codeword; now even if a δ/2 fraction of
the coordinates of this representation get corrupted, the uncorrupted codeword (and hence the original data)
is still uniquely determined.

The tradeoff here is between the efficiency of the encoding, measured by the rate R = logq |C|
n , and the

relative distance δ of the code. One is interested in determining the best tradeoff between rate and relative
distance for arbitrarily long codes, i.e., as n →∞.

In the 1950s, several different constructions of codes were proposed that all achieved the best-known
tradeoff between rate and distance (meeting the so-called Gilbert-Varshamov bound). For a long time,
many believed that these codes had the optimal tradeoff between the rate R and distance δ, but a proof was
elusive. Another concern was that all these constructions were not explicit: some of these constructions
were randomized, while others were inefficient (membership in C took time exp(n) to decide). The quest
for explicit codes at least as good as random codes was also stuck for a long time.

And then in the 1980s, algebraic-geometry codes announced themselves with a bang: there are explicit
codes which achieve a better tradeoff between rate and relative distance than the random code!

We begin by describing a classical code, the Reed-Solomon code, associated with the simplest algebraic
function field F(X). Generalizing this to more general algebraic function fields yields algebraic-geometry
codes. The Reed-Solomon code over Fq is given by the following data: (1) a collection of “evaluation
points” α1, . . . , αn in Fq, and (2) a degree bound m. The codewords are indexed by polynomials of degree
at most m; the codeword corresponding to the polynomial p(X) is the vector (p(α1), p(α2), . . . , p(αn)).
This code clearly has rate = (m + 1)/n, and has relative distance (n − m)/n, since two polynomials of
degree ≤ m can agree on at most m points (or else their difference, which is also of degree at most m,
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would have more than m roots).
However, the Reed-Solomon code has a basic limitation: because of the need to pick n distinct points

from Fq, we must have n ≤ q. In particular, this construction does not7 directly give codes of arbitrarily
long length for a fixed q.

In the late 1970s, Goppa suggested an elegant way of getting longer codes by generalizing this construc-
tion to arbitrary one-dimensional algebraic curves in place of the line. These lead to algebraic-geometry
codes. Then in the early 1980s, Tsfasman-Vladut-Zink showed that by specializing this construction to a
certain remarkable family of algebraic curves (a family independently studied by Ihara), one can get excel-
lent error-correcting codes beating the Gilbert-Varshamov bound.

An algebraic-geometry code over an algebraic curve C is given by the following data: (1) a collection of
evaluation points P1, . . . , Pn on C, and (2) a degree bound m. The codewords of this code are indexed by
“algebraic functions of degree at most m” on C. The rate of this code can be calculated by understanding
the dimension of the space of algebraic functions of degree at most m. The relative distance of this code
can be calculated by understanding the number of roots that an algebraic function of degree at most m can
have. Finally, one wants to choose the curve C so that the above calculations lead to excellent codes.

The basis for all this, and much much more, is provided by the theory of algebraic function fields. We
now describe the contents of the book.

2 Summary of Contents

Chapter 1 gives an introduction to algebraic function fields over a base field F and proves some basic results
about them. The chapter begins by defining valuation rings and places of an algebraic function field. The
places of an algebraic function field correspond to the points of the underlying algebraic curve; the rational
places correspond to the F-points of that curve. Thus, from an algebraic function field one can recover
the points of an algebraic curve, and one can speak of evaluating the algebraic functions at points (places)
of the algebraic curve. The important notions of vanishing-order and degree of an algebraic function are
introduced. This leads us into the definition of a Riemann-Roch space (which is the analogue of the space
of low-degree univariate polynomials in F(X)). We then see a proof of the fundamental Riemann-Roch
theorem, which calculates the dimension of Riemann-Roch spaces. In the process, we get introduced to the
genus of a function field, which quantifies how different the function field is from the rational function field
F(X). We also get introduced to adeles and Weil differentials, both of which are elegant algebraic constructs
which capture the local-to-global phenomena in the underlying algebraic curve, and are of fundamental
importance to the rest of this book.

Chapter 2 deals with coding theory. It begins by introducing error-correcting codes. We then get in-
troduced to two general constructions of algebraic-geometry codes from an algebraic function field. Using
the Riemann-Roch theorem, the rate and relative distance of these codes is calculated, and we see that the
important parameters that govern the performance of these algebraic-geometry codes are the genus and the
number of rational places of the function field. The chapter ends with an in-depth treatment of algebraic
geometry codes based on the rational function field (a.k.a. Reed-Solomon codes).

Chapters 3 develops some technical machinery which is useful for function fields. The basic setting for
this chapter is the following: we have a algebraic function field, L1, and a finite algebraic extension field
of it. L2; how can we deduce properties of L2 from the properties of L1? We get introduced to important

7Nevertheless, the family of Reed-Solomon codes with q = n (i.e., over a non-constant sized alphabet) does play an important
role in coding theory, and even help in constructing codes over a constant sized alphabet.
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notions such as ramification, the splitting of places and the “different”, and important theorems such as the
Hurwitz Genus Formula and Dedekind’s Different Theorem. Additionally, important examples of function
field extensions, such as Kummer extensions and Artin-Schrier extensions, are discussed and examined in
detail. There are also detailed subsections on Galois extensions, inseparable extensions, compositums of
extensions, Hilbert’s theory of higher ramification groups and Castelnuovo’s and Riemann’s upper bounds
on the genus of a function field.

Chapter 4 takes a step back and revisits the notion of a Weil differential, and relates it to the more
familiar notion of differential form. Along the way we study completions at a place, which allows one to
expand out algebraic functions as power-series.

Chapter 5 starts discussing algebraic function fields over a finite field Fq. This chapter starts by defining
the zeta function of a function field over a finite field, which is a power series that encodes the number
of Fqm-points on the underlying algebraic curve, for all m ≥ 1. It is then proved that this zeta function is
actually a rational function, and it satisfies a functional equation. The next goal of this chapter is to prove the
fundamental Hasse-Weil theorem, which is an analogue of the Riemann hypothesis (for the Riemann zeta
function; which is as yet unproven) for the zeta function of a function field over a finite field. The beautiful
proof of this theorem due to Bombieri (building on earlier proofs of Stepanov and Schmidt) is given here.

Chapter 6 performs a detailed study of some important examples of function fields, including elliptic
function fields, hyperelliptic function fields and Hermitian function fields.

Chapter 7 (which is new to this edition of this book) studies the asymptotic relationship between the
number of rational places and the genus of a function field. We first see the Drinfeld-Vladut upper bound
on their asymptotic ratio. The rest of the chapter establishes the Ihara-Tsfasman-Vladut-Zink theorem, that
the Drinfeld-Vladut bound is tight. Here the remarkably elegant proof of this theorem due to Garcia and
Stichtenoth (the author) is given, which gives an explicit construction of a tower of Artin-Schrier extensions
of function fields with many rational places relative to their genera.

Chapter 8 revisits the topic of algebraic-geometry codes. Most significantly, this chapter proves the
Tsfasman-Vladut-Zink theorem on the existence of algebraic-geometry codes with better tradeoff between
rate and distance than the Gilbert-Varshamov bound. This is proved by combining the generalities on
algebraic-geometry codes from Chapter 2 with the remarkable function fields of the Ihara-Tsfasman-Vladut-
Zink theorem from Chapter 7. The chapter ends with a description of the Skorobogatov-Vladut decoding
algorithm for algebraic-geometry codes, which decodes them upto nearly half their (designed) minimum
distance.

Finally, Chapter 9 studies subfield subcodes and trace codes, which include the Bose-Chaudhuri-Hocquenghem
(BCH) codes and the dual-BCH codes. The minimum distance and dimension of these codes is then esti-
mated; the Hasse-Weil bound from Chapter 5 turns out to play a crucial role in this.

The first appendix covers the basics of field theory. The second appendix provides a dictionary between
the language of algebraic function fields and the more geometric language of algebraic curves.

3 Opinion

This book gives a thorough and self-contained introduction to the theory of algebraic function fields and
algebraic-geometry codes. The purely algebraic approach taken in this book allows it to take off with
minimal prerequisites in algebra, and proceed to give complete proofs of all the fundamental results of the
area. The thorough treatment of the Tsfasman-Vladut-Zink theorem is an especially appealing aspect of this
book. All this, combined with the fact that algebraic techniques and results from the theory of algebraic
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function fields are playing an ever-increasingly important role in theoretical computer science and coding
theory, makes this book highly-recommended for the bookshelf of every theoretical computer scientist with
an algebraic leaning8.

I must now add a pinch of salt. First and foremost, this book is not for the faint of heart. The main topic
of this book is the theory of algebraic function fields, and even the application-oriented reader will have
to learn the theory of algebraic function fields. In particular, there are no “shortcuts” or “guided tours” in
this book for the coding theorist seeking to understand the analysis of codes meeting the Tsfasman-Vladut-
Zink bound, or the pseudorandomizer seeking to learn a proof of the Hasse-Weil theorem. The book has
been written in a traditional mathematical style, with definitions and lemmas coming first, and reasons and
theorems later. The typical theoretical computer science reader will perhaps find this style a bit foreign, and
will have to be highly motivated about the final fruits in order to make it through the book cheerfully. That
being said, the investment of time and effort for one who does makes it through will be very rewarding, both
intellectually and technically.

There are many approaches to studying algebraic function fields: purely algebraic [Sch76, Mor91], ap-
proaches emphasising geometric aspects [Har77, HKT08, TV91], or by analogy with the theory of number
fields [Ros02, Wei67]. Each of these approaches has their own advantages; the different points of view en-
rich and inform each other. Admittedly, the more geometric treatments of the theory of algebraic curves and
algebraic geometry codes in the literature either require a certain degree of expertise in algebraic geometry,
or else omit proofs of some fundamental theorems. On the other hand, with the geometry comes intuition,
and awareness of the geometric approach can nicely complement the rigorous-but-sometimes-dry algebraic
approach to the subject.

For one seeking a thorough introduction to algebraic geometry codes, or for one seeking to add some
powerful viewpoints and techniques to their pseudorandomness toolkit, this book would serve the purpose
well. There are many well-chosen exercises at the end of each chapter. This book would also be an excellent
supplementary text for a course on algebraic coding theory.

Overall, I like the book very much, and I am sure that this book will become very influential and a
standard reference in the years to come.
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[TV91] M. A. Tsfasman and S. G. Vlăduţ. Algebraic-geometric codes, volume 58 of Mathematics and its
Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated
from the Russian by the authors.
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Review by
William Gasarch gasarch@cs.umd.edu

1 Introduction

This is a very odd book. I had a back and forth argument with myself on whether I liked it or not. The book
is a list of numbers and the properties of them. There are references which are helpful to learn more. I can
imagine someone reading some property and getting interested in that property. I can also imagine someone
saying all of these properties? Who cares! Indeed, some of the properties I don’t care about.

In most cases I was not interested in the number but I was interested in the property. Here is an example:
The number 1167 is the largest number that cannot be written as the sum of 5 composite numbers. I do not
care about 1167. However, I do care about the theorem: for almost all n, n can be written as the sum of 5
composite numbers.

2 A Random Sample of the Book

I looked at every square-numbered page and picked out some numbers from that page to discuss. I pick
those that are either interesting or to make some point about what the author finds interesting. I also tried to
pick concepts that the readers of this review do not know.

1. 3 is the prime number that appears the most often as the second largest prime factor of an integer.
Later in the book he has the prime that appears most often as the third, fourth, etc (I am not sure what
the last one is.) Now that I know the concept I want to read up on it. It seems like a deep question. A
reference is given so I could start there.

2. 11 is the smallest prime p such that 3p−1 ≡ 1 (mod p2). Why do we care about 3p−1?

3. 12 is the smallest psuedo-perfect number. A number is psuedo-perfect if it it is the sum of some of its
proper divisors. Now that I know this concept I want to read up on it. However, I am not sure if this
is a deep question or if much is known, though a reference is given.

9 c©2011, William Gasarch
10The book has no entry for 426. For 42 we find that it is the least number such that the sum of the squares of its divisors is a

perfect square. For 39 we find that its the smallest number n such that 2n − 7 is prime.
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4. 24 is the only n ≥ 2 such that 12 + · · · + n2 is a perfect square. This could be the basis of a good
programming assignment

5. 43 is the fourth prime p such that 19p−1 ≡ 1 (mod p2). This is an example of what is wrong with
some of the entries in the book. The first such number might be interesting. But the fourth? And why
do I care about 19p−1 (mod p2)? This needs more context. It might be supplied in the reference.

6. 44. This one needs some notation. Let ω(m) be the number of distinct prime factors of m. 44 is the
smallest number n such that

Sn =
∑

m≤n,ω(m)=2

1
m

> 1.

This makes me wonder if the sequence S1, S2, . . . diverges.

7. 77 is the largest number which cannot be written as the sum of positive integers whose sum of recip-
rocals is equal to 1. Note that

• 78 = 2 + 6 + 8 + 10 + 12 + 40

• 1
2 + 1

6 + 1
8 + 1

10 + 1
12 + 1

40 = 1

This is interesting: for almost all all n, n can be written as the sum of numbers whose reciprocals sum
to 1.

8. 111 is the smallest insolite number. A number is insolite if its decimal representation has no 0’s and
the number is divisible by both the sum and the product of the squares of its digits. This concept is
tied to base 10 and hence is not that interesting.

9. 164 is the fifth solution of φ(n) = φ(n + 1) where φ(n) is the number of numbers m ≤ n that are
co-prime to n. This is a typical entry of the book: Let F be a function like φ(n) or σ(n) (the sum of
the divisors of a number) or σ2(n) (the sum of the squares of the divisors of n). Let k, m ∈ N . This
book may have the kth number n such that F (n) = F (n + m). These entries draw attention to the
function F but get repetitive.

10. 167 is the seventh numbers n such that n! + 2n − 1 is prime. This could be the basis of a good
programming assignment

11. 251 is the smallest number which can be written as the sum of three cubes in two distinct ways:
251 = 13 + 53 + 53 = 23 + 33 + 63. Ramanujan would think this was interesting. And he was a far
better mathematician than I, so I defer to him.

12. 255 is the number of Carmichael numbers that are < 108. A number n is a Carmichael number if
it is composite but satisfies all the equations bn−1 ≡ 1 (mod n) for b relatively prime to n. The
concept is very interesting since some of the randomized polynomial time algorithms for Primality
fail on Carmichael numbers. This is an odd entry in that they are using 255 to count some other type
of number. There are a few other entries like this: the number of numbers of type X that are < y.
That does not seem to be in the spirit of the book for two reasons: (1) they use the number to count
something else, and (2) they have an arbitrary upper bound. Even so, this introduces you to a new
concept.
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13. 384 is the least number n such that n2n − 1 is prime. This could be the basis of a good programming
assignment

14. 671. This one needs notation. Let f(x) = x/2 if x is even, 3x + 1 if x is odd. A number n is
self-contained if there exists a k such that n divides fk(n) (f iterated k times). 671 is the third
self-contained number. This could link to the Collatz Conjecture11 but the author does not mention
this.

15. 1215. The smallest number n such that both n and n + 1 are divisible by a fifth power. Are there
an infinite number of such? The book does not say. This could be the basis of a good programming
assignment. It may also lead to some mathematics of interest.

16. 2295. The fifth positive solution x of the Diophantine equation x3 + 999 = y3. The entry refers to
the entry for 251. In the entry for 251 we find that there are only a finite number of solutions and they
are all listed, along with a reference. This sounds interesting.

17. 5906. The smallest number which can be written as the sum of two fourth powers of rationals but
not the sum of two fourth powers of naturals. This number lives up to the title of the book. This is
fascinating in that I never knew there were any such numbers.

18. 70841. The largest prime p such that π(p) ≤ p
ln p + p

ln2 p
+ 2p

ln3 p
. These are the first three terms in

the asymptotic expansion of Li(p) where Li(x) =
∫ x
0

dt
lg(t) . By the prime number theorem Li(p) is a

very good estimate for π(p). The prime number theorem is very interesting; however, it is not clear
how this factoid relates to it. No references were given for more information on this topic.

19. 366439. The 21st prime number pk such that p1 · · · pk + 1 is prime. The concept is interesting since
it relates to Euclid’s proof that the primes are infinite.

20. 4,729,494. The number appearing in the famous cattle problem of Archimedes, namely in the Fermat-
Pell equation x2 − 4729494y2 = 1. I urge the reader to look up cattle problem. This is interesting
historically, though not mathematically. That is absolutely fine!

21. 173,706,136. The 19th dihedral perfect number. A number n is dihedral perfect number if σ(n) +
τ(n) = 2n where σ(n) is the sum of the divisors of n (including 1 and n) and τ(n) is the number of
divisors of n. I care about the concept. But why the 19th?

22. 250,330,350,875. Possibly the only number whose index of composition is > 2.2 and which can be
written as the sum of 2 co-primes numbers whose index of composition is ≥ 6. What is an index of
composition? The entry does not tell me nor give a reference to another number. The books index
points to the number 629693, but that did not help. I went online to find out but could not.

23. From pages 400-406 almost all of the numbers are either Mersenne primes, even perfect numbers,
Fermat Numbers, properties that depend on base 10, or empirical properties (e.g., the largest known
number such that . . .).

24. Page 407 has the Skewes numbers which are interesting for their relation to the prime number theorem,
and Goodstein sequences which are interesting because they lead to large numbers.

11for all n there exists a k such that fk(x) = 1
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3 Opinion

Should you buy this book? On the one hand this book introduces some interesting concepts in number
theory. On the other hand, some of the concepts are not that interesting and some of the references are
missing. My final verdict: if you are interested in concepts about numbers then this book is good to browse
through. Whether that means you buy it new, used, off a grant, have your department buy it for their library,
or sneak a peek at it during an AMS meeting is up to you.

This book would make more sense as a website with pointers to the relevant definitions and (if available)
papers. There already is such a website which is not connected to the book:

http://www2.stetson.edu/ efriedma/numbers.html.
(Other websites of interest are
http://www.nathanieljohnston.com/2009/06/11630-is-the-first-uninteresting-number/
and
http://primes.utm.edu/curios/page.php?short=11.)
There is some information on the website that is not in the book (95 is the number of planar partitions

of 10) but there is a lot more in the book that is not on the website.
The author asks for suggestions for improvements. Here is one: make the book into a website.

Review12 of
Pólya Urn Models

Author of Book: Hosam Mahmoud
2009, CRC Press, Hardcover, 312 pages

$80.00
Review by Stephen Stanhope sstanhop@bsd.uchicago.edu

1 Introduction

Consider an urn containing a number of colored balls. Suppose that you are assigned the task of repeatedly
reaching blindly into it, picking out a ball, replacing it, and then depending on the color of that ball adding
a specified number of new colored balls into the urn. Such an urn and associated sampling-replacement
scheme is referred to as a “Pólya urn,” and given this description a number of mathematical questions can
be asked: What is the long-term proportion of balls expected to be allocated to one color? After a given
number of samples are drawn, what is the distribution of the number of balls of a particular color? How
do the answers to these questions change as the rules for the urn are generalized - for example, what if
conditional on drawing a ball of a particular color a random rather than specified set of balls of various
colors are readded to the urn, or what if rather than drawing only one ball at a time, multiple balls are
drawn? More applied researchers might utilize these mathematical results to attempt to model a variety of
physical systems, and in so doing create new demands for both further generalizations of the Pólya Urn and
mathematical technique for analyzing the behavior of these urns.

In Pólya Urn Models (2009), Hosam Mahmoud provides both an overview of the mathematical tools
used to study Pólya urns and examples of their application to multiple problems in computer science and the
biosciences. The primary requirement for the book is a familiarity with probability and stochastic processes,
although additional background in differential equations and combinatorics is useful. There is substantial

12 c©2011 Stephen Stanhope
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citation of the results presented in the text, and the pacing of the book makes it useful for either self study
or as a reference for applied work.

2 Summary

The book is comprised of 10 chapters. The first two provide background material. Of the remaining eight,
six are related to mathematical tool development and two to applications. Each chapter is concluded with
several questions, and solutions to all questions are provided in the text. For each chapter, I will briefly
restate a problem and the suggested approach for solving it in order to provide some flavor for the types of
questions asked.

Chapter 1: Urn Models and Rudiments of Discrete Probability (16 questions)

Chapter 1 covers basic definitions, probability axioms, stochastic processes and exchangability. Examples
of discrete distributions relevant to urn models are provided. Poisson processes and Markov chains are
discussed.

Sample question, #1.4

An urn contains five white balls and three blue balls. Three balls are taken out (one at a time) and each
draw is at random and without replacement. What is the probability that (a) all three balls are white; (b) two
balls are white and one is blue; (c) that the first two balls in the sample are white and the last is blue? (The
distribution of total number of white balls drawn is hypergeometric, which solves parts a and b. Part c can
be solved by conditioning or by exchangability.)

Chapter 2: Some Classical Urn Problems (8 questions)

This chapter continues building background material by providing descriptions of several classical (i.e. non-
Pólya) urn problems. Occupancy problems (n balls are placed into m urns, what is the probability that no
urn will be empty?) and coupon collecting (one of n distinct coupons is randomly received upon visiting
a store. How many visits are required to obtain a complete set?) are briefly described, as is Banach’s
matchbook problem (a smoker has two pockets each containing n matches, and randomly pulls matches
from one or the other. Upon first emptying a pocket, how many matches remain in the other?). Ballot
problems and the Gambler’s Ruin are described in more detail. The first of these supposes that m > n votes
are respectively cast for two candidates in an election, and is concerned with calculating the probability that
the first candidate is ahead throughout the vote. The second asks, for two gamblers who repeatedly wager
$1 on the toss of a (weighted) coin, what is the probability that one or the other gambler will go bankrupt?
Mahmoud’s treatments of these questions use recurrence relations in manners similar to suggested in other
texts and are explained clearly.

Sample question, #2.6

In an n-coupon collecting problem, what is the expected waiting time to collect all coupon types? (Mahmoud
suggests stating the waiting time as a sum of geometric-distributed random variables.)
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Chapter 3: Pólya Urn Models (7 questions)

Chapter 3 introduces the main topic of the text. The preface for the chapter describes how a sampling-
replacement scheme for a urn can be represented through a matrix with rows and column indexing the
balls drawn and reintroduced respectively. Such a matrix is referred to as a “schema.” A discussion of the
tenability of an urn scheme is provided, with particular focus on two color problems with deterministic
schema entries and single ball draws. That focus continues by analyzing a number of two color Pólya urn
problems. In increasing order of generality the Pólya-Eggenberger (in which a draw of a ball reintroduces
a number of same colored balls into the urn), Friedman (in which a draw of a ball reintroduces a number of
balls of each color into the urn, with symmetry dependent on the color of the drawn ball) and Bagchi-Pal urns
(draws of balls of a given color reintroduce a number of balls of each color into the urn, with no symmetry
such as used by the Friedman urn) are examined. The chapter concludes by describing the Ehrenfest urn,
which can be regarded as a special case of Friedman’s urn that holds the total number of balls constant, and
is of particular interest because of its use as a model for the exchange of gas molecules across two chambers.

Sample question, #3.3

A Pólya-Eggenberger scheme with the ball replacement matrix diag(2) starts with four white balls and
three blue balls. (a) Given the first draw is blue, what is the probability that the second draw is white? (b)
Show that irrespective of the draw number, the probability of picking a blue ball is 3/7. (c) Show that the
probability that two consecutive drawings are the same color is 13/21. (Mahmoud suggests that b and c be
approached by using exchangeability.)

Chapters 4 and 5: Poissonization (6 questions) and The Depoissonization Heuristic (4 ques-
tions)

Chapters 4 and 5 are focused on developing mathematical tools for analyzing urn models. As in Chapter
3 their main focus is two color problems with deterministic schema entries, although the author provides
some suggestions and extensions for multicolor deterministic schemes and two color schemes with random
entries.

Chapter 4 deals with poissonization - that is, the embedding of the discrete time urn in continuous time.
The author begins by describing the embedding, which uses a Poisson process to approximate the number
of draws of each ball initially contained in the urn that are obtained in a given time interval. Two results
are obtained that pertain to the dynamics of the total number of balls of each color. The first shows that
the moment generating function for the joint process satisfies a first order partial differential equation, and
the second manipulates this partial differential equation to yield a formula for the expected number of balls
of each color at a particular time. The chapter then applies these results to the monochromatic Pólya urn,
Pólya-Eggenberger urn, and Ehrenfest urn. In each of these cases, the moment generating function is used
to obtain convergence properties.

In Chapter 5, the reverse operation of depoissonization is discussed with a focus on problems with
invertible schemas. As preparation, Mahmoud shows that the (random) time of the nth draw has convergence
in probability. Through an intricate series of steps, he then demonstrates how that asymptotic property can
be manipulated to obtain a relationship between the expected number of balls of each color after n draws as
a function of the schema and n. The chapter concludes by providing example calculations for several cases,
including a Friedman urn and two instances of Bagchi-Pal urns.
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Sample question, #4.2

Suppose a poissonized Ehrenfest process starts with two white balls and one blue. What is the probability
distribution of the number of white balls at time t? What are the mean and variance exactly and asymp-
totically? (As noted in the text, the moment generating function for the number of white and blue balls
satisfies a first order partial differential equation. The probability distribution is obtained by solving this
pde and appropriately using the definition of the moment generating function. After doing so, moments can
be calculated in a variety of ways. Note that Mahmoud describes a two-ball version of this problem in the
chapter, and provides a number of references to his own work on the subject for interested readers.)

Sample question, #5.1

Apply the depoissonization heuristic to derive the average number of balls in a Pólya-Eggenberger dichro-
matic urn scheme growing in discrete time after n draws, where s balls of the same color are added after
each draw. (This is solved by recognizing that the schema is symmetric and invertible and then directly
applying results derived in the chapter.)

Chapter 6: Urn Schemes with Random Replacement (3 questions)

Chapter 6 expands upon previous results to consider urns with random replacement - that is, conditional on
a ball of a particular color being drawn, a random number of balls of each color are reintroduced into the
urn. The chapter begins by extending deterministic schemas defined in Chapter 3 for describing sampling-
replacement schemes to those with random entries. Such matrices are referred to as a generators, and
under appropriate restrictions (e.g. tenability) “extended urn schemes.” Convergence properties of two color
deterministic extended urn schemes (where the deterministic entries of the matrix are regarded as degenerate
random variables) are derived, which lead to results on the asymptotic normality of the number of balls of a
given color after n draws. The results obtained for deterministic extended urn schemes are then developed
to obtain analogous properties of extended urn schemes with random entries.

Sample question, #6.1

An extended Pólya urn scheme of white and blue balls progresses by sampling a ball at random and adding
balls according to a given fixed schema. After n draws, let W̃n be the number of times a white ball has been
sampled. Derive a weak law for W̃n/n. (After n draws, the number of white balls can be expressed as a
function of n and W̃n. This relationship is inverted, and a weak law for W̃n is obtained from the weak laws
on the number of white balls.)

Sample question, #6.2

A Pólya urn scheme on white and blue balls grows in discrete time by adding X and Y balls of each
color respectively irrespective of what color ball is drawn, where X and Y are Bernoulli(p) distributed.
a) Determine the exact distribution of the number of white balls after n draws. b) Find a central limit
representation for the number of white balls. (These questions can be addressed through properties of sums
of Bernoulli random variables.)
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Chapter 7: Analytic Urns (4 questions)

The goal of Chapter 7 is to provide an alternative method for analyzing Pólya urns based on the enumeration
of histories that lead to a particular state, rather than the probabilistic methods used in most of the text.
As previously, the focus is on two color problems with deterministic schema. The proposed technique is
based on extracting the coefficients of generating functions expressed as a summation over exponentiated
terms. Mahmoud shows that a generating function for urn histories can be derived by solving a system
of differential equations related to the scheme and initial condition, and that coefficients of terms of that
function are directly related to the probability of obtaining a particular result after n draws. A simplified
version of the approach is used to obtain formulas for the exact and asymptotic number of possible histories
after n draws. More detailed examples are demonstrated by reanalyzing the Pólya-Eggenberger, Friedman,
Ehrenfest, and Coupon Collector’s urns.

Sample question, #7.3

Suppose that white and blue balls are sampled one at a time without replacement from an urn. Let Wn and
Bn be the number of white and blue balls in the urn after n draws. Using the analytic urn method, show that
{Wn, Bn} are jointly hypergeometrically distributed. (This problem involves solving a pair of differential
equations to obtain the form of the generator function, as suggested by Mahmoud. After the generator
function is obtained, it is expressed as binomial series, and the coefficients can be extracted and used as
described in the chapter to obtain the distribution of {Wn, Bn}. Although the distribution is hypergeometric
by definition, it is useful and interesting to rederive the result with the techniques described in the chapter.)

Chapter 8: Applications of Pólya Urns in Informatics (5 questions)

Chapter 8 covers applications of Pólya urn models to a wide variety of search trees - binary, balanced, m-
ary, 2-3, paged binary, bucket quad and bucket k-d. Recursive trees are also discussed in some detail. In
each case, the structure of the tree is presented followed by a description of how growth of the tree can be
modeled by a Pólya urn, and moments or asymptotic properties of its number of leaves, internal nodes or
total nodes are derived. The chapter provide a broad overview of results, and provides citations that make it
useful as a source for further study in the original research papers.

Sample question, #8.5

A binary pyramid (a recursive tree with at most 2 outdegrees per node) grows in real time t. New nodes
appear at interarrival times that are independent and exponential(1) distributed. When a new node appears,
it chooses as parent an unsaturated node in the pyramid at random. What is the average number of leaves in
the pyramid at time t? (In the discussion of binary pyramid trees it is shown that their growth dynamics can
be represented by a those of a two color urn, with white balls representing leaves and blue balls unsaturated
nodes. Mahmoud suggests poissonization of the urn, which is natural given that nodes arrive at continuous
time, and application of the results in Chapter 4 yield a solution to the problem directly.)

Chapter 9: Urn Schemes in Bioscience (3 questions)

Chapter 9 describes the application of Pólya urn models to questions and problems in the biosciences. As
in Chapter 8 the focus is on providing a wide array of results with appropriately heavy citations. Most of
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the chapter is concerned with models of population genetics and evolution. Basic Wright-Fisher models
are discussed with extensions to gene miscopying and mutation, as are Hoppe’s urn scheme and Ewens’
formula for modeling speciation, and models of competitive exclusion and niches. In the discussion of these
models, moments and asymptotic behaviors are derived for the composition of the population, the number of
species and the size of each species. Lyapunov’s and Lindeberg’s central limit theorems are provided in the
process of developing these results. In the area of epidemiology Kriz’ urn scheme for contagion is described,
and applications of “play the winner” schemes to clinical trials are discussed. Finally, an application of urn
schemes to the structure of phylogenetic trees is provided. The text notes that such trees are related to binary
trees studies in Chapter 8.

Sample question, #9.3

In a phylogenetic tree following the edge-splitting model, what proportion of nodes are leaves, what pro-
portion of leaves are not in cherries, and what proportion of nodes are internal? (In the discussion of
phylogenetic trees in the text, it is shown that the structure of the tree can be represented by a 3-color Pólya
urn with colors representing different types of edges and draws representing an edge split. The number of
nodes in the tree can be expressed as a function of edge split operations, and then following the chapter’s
discussion of phylogenetic trees asymptotic relationships between numbers of edges and edge splits can be
derived. Relationships between edges, total number of leaves and leaves of different types can then be used
to solve the problem.)

Chapter 10: Urns Evolving by Multiple Drawing (7 questions)

Chapter 10 expands upon the results obtained in previous chapters to study the case of urns in which multiple
balls (rather than one) are drawn at a time. The focus of the chapter is on two color urns with deterministic
schema. It begins by describing how such problems can be structured and analyzed, and obtains a result for
the equilibrium behavior of such urns. General results are obtained for the mean and variance of the number
of balls of a particular color after n multi-draws, which lead to related asymptotic properties. A martingale
transformation is introduced, and asymptotic properties of that process lead to asymptotic convergence in the
distribution of the nonmartingalized process. To provide an example, the results are applied to the problem
of modeling the number of outputs in an evolving random circuit.

Sample question, #10.1

Consider an urn starting with 1 white and 2 blue balls. Pairs of balls are drawn. If two white balls are drawn
two white and 1 blue ball is added; if two blue balls are drawn 3 blue balls are added; else 1 white and 2
blue balls are added. Show that the mean number of white balls after n draws of ball pairs is approximately
n2/3Γ(5/3)−1 as n. (After using the applicable results the mean number of white balls is shown to be a ratio
of two gamma functions of n. Mahmoud suggests using Sterling’s approximation to the gamma function to
show that this ratio is approximately equal to n2/3. Alternatively, it seems that the ratio can be expressed
as the expectation of a function of a gamma-distributed random variable that can be approximated with a
Taylor’s expansion.)
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3 Opinion

In his bibliographic notes, Mahmoud suggests that he was inspired by Urn Models and Their Applications
by Johnson and Kotz (published in 1977) and An Introduction to Probability Theory and Applications by
Feller (published in 1968). The actual bibliography for Pólya Urn Models spans 177 separate publications,
the earliest of which is The Doctrine of Chances written in 1712 by Abraham De Moivre. I mention this to
provide context for my first opinion regarding the book - it is very broad and overall a reasonably challenging
text.

Having said that, Pólya Urn Models is also extremely enjoyable and engaging. I found sitting down
with it in a quiet room and working through Mahmoud’s arguments and problems to be very rewarding.
The book has a good balance of analytic tool building and application, its pacing is fast without skipping
the majority of details necessary to understand and use the material, and the problems Mahmoud poses help
add to the reader’s understanding. I think that the book is particularly nice in its presentation of probability-
based methods for analyzing urn models (Chapters 3-5) and applications of Pólya Urns to problems in
biology (Chapter 9), although this probably reflects on my own interests and background. Mahmoud’s
description of the analytic method (Chapter 7) was intriguing, as were the parallels Mahmoud drew between
phylogenetic trees in Chapter 9 and other tree structures considered in Chapter 8. Somewhat related to this
comment, because of Mahmoud’s meticulous use of citation the book is an excellent choice for self study or
as a background text for researchers.

To be fair, I can think of two small issues with the book. The first is that answers to all the questions
asked in the book are provided in an appendix. This might be a problem for the classroom use of the book,
although it is a real benefit to other readers. The second is that the ordering of presentation seemed at times
to jump ahead or back. For example, as I read the book it seemed as if Chapter 10 might have been better
placed before the applications chapters, and likewise the description of the poissonization of schemes with
random entries in Chapter 4 with the other material on schemas with random entries in Chapter 6. Although
it is easy enough to reorder some of the material after reading the text once, at first reading these transitions
seem somewhat abrupt.

These are however very minor points, and the book is quite pleasant. In his bibliographic notes, the
author cites Sheldon Ross’ books as inspiration. Pólya Urn Models will most definitely have a continued
place on my bookshelf near these texts, and I plan on reading and consulting it further in the future.
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1 Overview

The definition of prime number is at least as old as Euclid, who states in Book 7 of his Elements that

a prime number is one which is measured [we would say, divisible] by the unit alone.

The remainder of Book 7 contains many results that are still a part of a first course in number theory,
including the algorithm that we use to compute the greatest common divisor of two integers (Proposition 2).
Actually, a result of another book of the Elements has been chosen over and over as a paradigm of what a
beautiful and simple proof in mathematics should be. It is Proposition 20 of Book 9, which Euclid states as
follows:

The (set of all) prime numbers is more numerous than any assigned multitude of prime numbers;

or, as we would say today: there are infinitely many prime numbers. Further testimony to the Greek fas-
cination with prime numbers can be found in the work Erathostenes, who lived in Ptolemaic Alexandria a
little later than Euclid. He seems to have been the first to propose a systematic method for finding prime
numbers. In the words of Nichomachus of Gerasa (c. 100 C. E.):

The method for obtaining these [i.e. the prime numbers] is called by Erathostenes a sieve, since
we take the odd numbers mixed together and indiscriminate, and out of them by this method, as
though by some instrument or sieve, we separate the prime and indecomposable by themselves,
and the secondary and composite by themselves.

Prime numbers were not the only aspect of number theory that fascinated the Ancient Greeks. An even
earlier trend which gets mixed up with the study of primes was apparently initiated by the Pythagoreans,
for whom some numbers had mystical properties. For example, they considered an integer n to be perfect
if its proper divisors added up to n. These numbers are also discussed in The Elements. In Proposition 36
of Book 9 Euclid shows that if 2p − 1 is prime, then 2p−1(2p − 1) is a perfect number. That all even perfect
numbers are of this form was eventually proved by Euler.

Another famous number theoretic result, unrelated to primes, that appears in the Elements is the con-
struction of Pythagorean triples given in Proposition 29 of Book 10. In modern parlance, this proposi-
tion describes a formula that enables one to generate all triples of positive integers (x, y, z) that satisfy
x2 + y2 = z2. This result, which probably antedates Euclid, marks the beginning of what we now call
diophantine analysis, after the last hellenistic mathematician to make substantial contributions to number
theory, Diophantus of Alexandria. Actually, his Arithmetica is a collection of rules for finding rational
solutions of indeterminate equations, of which the Pytaghorean one is a simple example.

13 c©2011 S.C. Coutinho
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After the collapse of Hellenistic civilization, number theory remained more or less dormant until the
16th century, when it found a new champion in Pierre de Fermat. One of Fermat’s source was Diophantus’s
Arithmetica, in a margin of which he made the famous note concerning the integer solutions of the equation
xn + yn = zn. Given that, it is not surprising that many of Fermat’s results are concerned, in one way or
another, with indeterminate equations; his contributions to the theory of prime numbers were rather few.
That would only change in the 18th century, after Goldbach succeeded in interesting Euler in the work of
Fermat. Among other things, Euler gave a new proof of the infinity of primes, based on the divergence of
the harmonic series, which would bear good fruit in the next century.

The 19th century was a great time for number theory. It opened with Gauss’s Disquisitiones arithmeti-
cae, which contains the first complete proof that every integer greater than one can be uniquely factored
in prime numbers, and where modular arithmetic is formally introduced for the first time. It was also in
this century that the study of prime numbers came of age. Both Gauss, and his contemporary Legendre,
proposed an asymptotic formula for counting prime numbers. More precisely, they conjectured, based on
numerical evidence, that if π(x) denotes the number of positive primes less than or equal to x, then

lim
x→∞

π(x) log(x)
x

= 1; (1)

a result that became known as the Prime Number Theorem. The breakthrough that would eventually lead to
the proof of this theorem came from Dirichlet. In a paper published in 1837 he proved another conjecture
of Legendre, according to which

there are infinitely many primes in an arithmetic progression whose first term is coprime with
the ratio.

In order to do this, he systematically used analytic methods (L-series), thus showing the power of continuous
methods in the study of integers, the domain of the discrete par excellence.

The first major contribution to the proof of the Prime Number Theorem came from Chebyshev. In papers
published in 1851 and 1852 he showed, among other things, that if the limit in (1) existed then it had to be
equal to one. The final push to the proof of the Prime Number Theorem was prompted by a paper Riemann
contributed to the Berliner Akademie in 1859. In it he introduced the ζ function, defined on a complex
number s by

ζ(s) =
∞∑

n=1

1
ns

;

and proved some of its elementary properties. He also stated a number of results without proof, among them
an explicit formula from which the Prime Number Theorem would follow directly.

Unfortunately Riemann did not live long enough to prove any of these results, and some of them, like
the explicit formula mentioned above and the famous Riemann hypothesis concerning the zeroes of the ζ
function, remain unproved to this day. Luckily it turned out that the formula was not really necessary for a
proof of the Prime Number Theorem. Indeed, two independent proofs were published in 1896, by Hadamard
and de la Vallé Poussin, both of which made heavy use of the complex analytic methods introduced by
Riemann.

If anything, number theory has been keeping the momentum it had acquired by the end of the 19th
century. Among the many results proved in the 20th century and with which this book is concerned, we
should mention:
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• Hilbert’s proof of Waring’s statement that for every power k there exists a finite integer g(k) such that
every positive integer is the sum of at most g(k) kth-powers (1909);

• Brun’s sieve and its application to Goldbach’s conjecture (1915);

• the elementary (in the sense of not using complex analysis) proof of the Prime Number Theorem by
Erdös and Selberg (1949).

To end with a more recent result which is not discussed in this book, Ben J. Green and Terence Tao proved in
2004 that the sequence of primes contains arbitrarily long arithmetic progressions. Amazingly, the longest
of these progressions that we know explicitly has only 24 primes.

2 Summary of Contents

The book under review is intended as a second course in elementary number theory, with an emphasis on
analytic methods. Actually the book is mostly about prime numbers, with four of the eight chapters having
the word prime in their titles. Chapter one, perhaps the most charming of the whole book, is the first of two
that are entitled Elementary prime number theory. It is mainly a collection of proofs that there are infinitely
many primes. These range for Euclid’s simple argument to what the author calls “sledgehammers”, proofs
that use very high powered theorems indeed. The chapter ends with three sections on prime producing
formulae.

Entitled cyclotomy, Chapter 2 is the most algebraic in the whole book. It contains Gauss’s characteri-
zation of the polygons that can be constructed by straight edge and compass and applications of cyclotomic
extensions to reciprocity laws, both quadratic and cubic. With chapter 3 we are back in the realm of prime
numbers. Although not as elementary as chapter 1 (with which it shares its title), this chapter contains
several basic results that are required in the proof of the Prime Number Theorem given in chapter 7. As a
corollary, we have Chebyshev’s proof of Bertrand’s postulate:

for all sufficiently large x there is always a prime between x and 2x.

The next chapter is one of my favourites: it contains a beautiful proof of Dirichlet’s Theorem on arith-
metic progressions, mentioned above. Chapter 5, which is concerned with Hilbert’s proof of the Waring
Problem is the shortest of the whole book. Sieve methods are discussed in chapter 6, which begins with
Legendre’s improvement of the sieve of Erathostenes and proceeds to Brun’s sieve and its application to
Goldbach’s Conjecture.

The book reaches its climax in chapter 7, which is totally devoted to a version of Selberg’s elementary
proof of the Prime Number Theorem. The ingenuity required is breathtaking. If you enjoy slick analytic
arguments, you will certainly like this chapter. Finally, chapter 8 reaches back to the dawn of mathematics,
for it is concerned with perfect numbers, the very same that the Pythagoreans defined thousands of years
ago. Given that Euclid had already characterized even perfect numbers, the focus here is on odd perfect
numbers. Surprisingly no odd perfect numbers are known and Pollack gives a heuristic argument, due to
Pomerance, that such numbers probably do not exist. This chapter also contains results on other numbers
with properties that would have delighted the Pythagoreans, like abundant numbers, amicable numbers and
sociable numbers.
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3 Opinion

Let me begin by saying that this is one of the best mathematics books that I have read recently. It is
beautifully written and very well organised, the kind of book that is well within the reach of an undergraduate
student, even one with little complex analysis. Indeed, a good knowledge of the analysis of real functions
of one variable is probably enough for reading most of the book. Chapter one is a case apart, it is so
elementary and so interesting that it should be read by anyone interested in mathematics. The other chapters
are far more demanding and have to be studied carefully if one is to profit by them. However, I know of no
better place to learn about Dirichlet’s Theorem on arithmetic progressions or Selberg’s proof of the Prime
Number Theorem. And if there are two results of analytic number theory that deserve to be known to every
mathematician, these are certainly they.

Since no book is perfect, there are a number of minor points that may be improved in future editions. For
instance, given the technical nature of the subject matter, it is not to be expected that readers will remember
previously proved results without an explicit reference. Unfortunately, the author often does not cite such
results, which makes the reading a little harder than necessary. A few more brackets in some of the more
complicated equations would also have helped the reader. I should also add that I have my doubts about the
author’s statement that

[t]he proof [of Selberg’s fundamental formula] [...] can be understood by a talented high-school
student (p. 215).

But these are very minor points on an otherwise excellent book. I only wish more well-organised, clear and
passionate books like this were written. Mathematics would benefit very much from it!

Review of 14

Pioneering Women in American Mathematics: The Pre-1940 PhD’s
by Judy Green and Jeanne LaDuke

345 pages, $63.00, hardcover, 2009, AMS
Review by Sorelle A. Friedler (sorelle@google.com)

1 Introduction

Pioneering Women in American Mathematics: The Pre-1940 PhD’s is a comprehensive examination of
the lives of all 228 women who earned PhDs in mathematics before 1940 who were US-born or earned
their PhDs in the US. The first eight chapters of the book examine the themes of these women’s lives
with regards to family background and childhood education, undergraduate and graduate education, and
career and professional opportunities and contributions. The rest of the book contains short biographies
(approximately one page each) of each of the 228 women.15 The authors focus mainly on the large set of
facts they collected, much of it from first-hand data or interviews. The information is extensive, and though
some themes and summaries are suggested, mostly the data is left to speak for itself.

14 c©2011, Sorelle Friedler
15Longer biographies and more extensive references can be found on the AMS site:

http://www.ams.org/bookpages/hmath-34.
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2 Summary

A surprising statement sets the tone for the book; “More than 14 percent of the PhD’s awarded in mathemat-
ics during the first four decades of the twentieth century went to women, a proportion not achieved again
until the early 1980s.”16 The authors continue by exploring the reasons why the percentage was not higher,
and begin explanation of the drop in percentage, through careful examination of the lives of the women who
earned PhDs in those years. These women represented a geographically, educationally, and economically
(but not racially) diverse snapshot of the United States population of the time. In addition to the plethora of
facts, we are given some insight into the perseverance and spirit of these women through anecdotes about
particular women.

The first woman to earn her PhD in mathematics was Christine Ladd-Franklin. She passed her disser-
tation defense in 1882 at Johns Hopkins University and the mathematics department agreed that she had
earned a PhD. The awarding of her PhD was blocked by the university trustees because she was a woman.

In 1926, at the fiftieth anniversary of the founding of Johns Hopkins, Ladd was offered an
honorary degree as a result of her work in physiological optics. She insisted, instead, that it be
the PhD she had earned forty-four years earlier or none.17

They agreed, and so 44 years after earning it, Ladd was awarded her PhD.
After presenting this story and giving some broad information to set the scene, the book begins by

examining trends in the women’s early education and family backgrounds. The authors found that there
were no common trends in the early education and family backgrounds of women who earned PhDs. The
women came from around the country, in numbers somewhat dependent on the availability of undergraduate
education for women in their state (e.g., Southern states produced proportionally less PhDs, North Eastern
states produced proportionally more). Similarly, while one might hypothesize that many of the women’s
parents also had advanced degrees, only a few parents did. The women’s pre-college schooling was made
up of about 70% public secondary schooling, with the remaining attending private schools or studying with
tutors. Unfortunately, the authors do not discuss if this was true for the broader population of the time
as well. Anecdotally, parents and high school teachers were described as important in leading to strong
interests in mathematics.

Women’s colleges were critical to producing women with PhDs in mathematics before 1940. Among the
ten schools that led in providing college educations to women who later earned PhDs, eight were women’s
colleges. Similarly, it is anecdotally reported that classes taught by women or supportive male faculty
were very influential to the women’s decisions to continue their education. Nola Anderson Haynes (PhD,
University of Missouri, 1929) describes the influence a supportive chairman had on her decision to pursue a
PhD as follows:

One day... the chairman of the department asked, “Miss Anderson, what are you going to do
next year?” I said, “I guess go out and get a job in a junior college,” thinking I could very
easily, of course. And he said, “Would you be interested in going on towards a PhD if you got
a fellowship?” Well, that was an easy thing; ... I didn’t have to think about getting a job, so I
accepted it and went on and got my PhD.18

16Page 1.
17Page 5
18Page 60, as quoted from Smithsonian meeting tapes recorded August 31, 1981 at a luncheon for pre-World War II female

American mathematics PhDs.
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The authors note that while most other prominent women’s colleges were among the leaders in producing
future PhDs, Barnard and Radcliffe were not. “Perhaps it is noteworthy that at both Barnard and Radcliffe
the undergraduate classes were taught by the male faculty of the associated men’s universities.”19

The graduate education of these 228 women included many firsts, and not just firsts for women. For
example, six women were the first of any sex to be awarded a PhD in mathematics at their university.20

Many universities were willing to admit women as graduate students long before they were willing to admit
female undergraduates.

The definiteness of aims, the increased earnestness and the more mature character which belong
to the greater age of graduate students, may entirely or largely remove difficulties which are
found in the way of men and women mingling in the undergraduate department. The Faculty
of Yale University knows very well that to admit women to its graduate school is quite unlike
opening the doors of Yale College to girls of the age of eighteen.21

But the most important factor in the graduate education of these women was their advisor; the eight advisors
who directed the most dissertations of women in the study advised two-thirds of all women who earned
PhDs at the schools in which they taught, and were the main reason why those schools were leaders in
educating women at the PhD level in mathematics.22 The University of Chicago, the leading producer of
female mathematics PhDs during this period, had two advisors, L. E. Dickson and G. A. Bliss, who together
advised 65% of the 46 Chicago women PhDs or 13% of the total 228 women considered in this book.23

After earning their PhDs, 90% of the women were employed within one year (even though many grad-
uated during the Depression). Most of these were jobs in academia, either in teaching, research, or other
associated positions. Of these, two-thirds had previous relationships with their employer, as employees or
students. Half of the women’s first teaching jobs were at women’s colleges, most of which employed only
single women. Marriage was a large factor in the employment of the women in this study, and the work
patterns for women differed based on marital status.

Of the women who were married, 36% were unemployed during the time that they were married. A
main cause of this unemployment was the existence of anti-nepotism laws which disproportionally affected
women. 65% of these married women were married to other PhDs, and it was only them, not their husbands,
who lost or were refused jobs. After World War II, the rise in undergraduate students due to the GI Bill meant
that many of these women who were previously denied employment were offered jobs.

In contrast, 96% of the women studied who were single were employed, despite the Depression. Many
of them were employed at women’s colleges, and were promoted to full professor by the time they had
retired. There were also some women who earned PhDs in this time period who were nuns. Generally,
these women were encouraged by their church to pursue a PhD to satisfy the teaching needs of their order’s
colleges. These women had the advantage of having a guaranteed job after graduation. They frequently
served in positions of administrative authority within their university or religious order.

While women’s colleges and religious orders served as positive employers in terms of the promotion and
advancement of their female employees, women teaching at co-ed schools often remained at the instructor
level throughout their careers. At the University of Chicago, despite graduating many female PhDs, there
have only been two women promoted to associate or full professor from its founding in 1892 until the writing

19Page 28.
20Page 55.
21Page 8, as quoted from The College Woman (New York: Baker and Taylor, 1894), 130-131.
22Page 46.
23Pages 44-45.
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of this book in 2009.24 Despite the professional set-backs some of these women experienced, one expressed
satisfaction with her choice in earning a PhD in mathematics in a 1926 professional survey, saying:

The freedom from monotony in the work in mathematics, the vision and grasp of fields of
knowledge that may be interpreted through mathematics, the ideals of thought and of thinking,
and the ability to interpret in conduct, relief from the turmoil of a crowded life, all these make
the Ph.D. more valuable than any professional advantage to be derived from it.25

In addition to academic employment, about two dozen women chose industry, military, or other non-
academic careers. One of the most notable of these women was Grace Murray Hopper. She graduated from
Vassar College in 1928 and from Yale with a PhD in mathematics in 1934. In 1941 she was an assistant
professor at Vassar when she took a leave of absence to join WAVES, a female branch of the US Naval
Reserve. From that time forward she had an ongoing involvement with the military, though she was not
always on active duty. She also worked at Harvard, the University of Pennsylvania, George Washington
University, and many computer companies. During her career she wrote code for the Mark I computer and
worked on the UNIVAC and developed its first compiler. She is best known for developing the first English-
language programming language, FLOW-MATIC, and for her work as one of the leading developers on its
successor, COBOL. When she was forced to retire from the navy in 1986, she had reached the rank of rear
admiral (lower half).26

Hopper’s contributions, though non-academic, could be considered to be the most influential produced
by the women in this book. Many research and other professional contributions were made by the women.
As a group, these women published almost 400 papers. With 14 papers presented at the meetings of the
AMS between 1914 and 1930, Olive C. Hazlett was among the top 10% of all math researchers of the
time.27 Many women also contributed professionally through math education publications and professional
organizations and, of course, through the students they taught.

In the final chapter before the bibliographic entries, the authors suggest possible reasons for the de-
cline of women as a percentage of mathematics PhD earners after 1939. The main reason suggested is a
demographic one - after World War II, the GI Bill provided the means by which many more men could
enter college and graduate school. The number of male students increased dramatically, thus decreasing the
percentage of women to about 5 percent in the 1950s. For example, the University of Chicago, one of the
leading graduate schools for women in mathematics in the 1930s, graduated a total of 88 students in the
1930s, 24 of whom were women, and a total of 102 students in the 1950s, only 3 of whom were women.28

While there were circumstances specific to the University of Chicago that contributed to the precipitous
decline (most notably, the retirement of some professors especially supportive to women students), the trend
was nationwide. “By the 1950s the number and percent of women earning PhD’s in mathematics were so
low that women in mathematics were effectively invisible.”29

24Page 88. It appears from the university’s website that this is still the case.
25Page 96, as quoted from Hutchinson, Women and the Ph.D., page 101.
26Pages 205-206.
27Pages 98-99.
28Page 116.
29Page 118.
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3 Opinion

Pioneering Women in American Mathematics presents an extensive history of the 228 American women
who earned PhDs in mathematics before 1940. While the book does summarize the data collected in its
introductory chapters, its purposeful lack of broad thematic description results in a dry, though important,
collection of the facts. The first such comprehensive investigation into the lives of these 228 women, perhaps
the book will serve as the foundation for future understanding of the trends and anomalies in these women’s
lives. It would be especially interesting to see more instances in which the experiences and lives of these
women are compared proportionally to equivalent experiences of all mathematics PhDs from the time.

The main takeaway message, if trying to use this history to understand how to support women PhDs
in mathematics and computer science today, is the import of teachers and advisors. As mentioned earlier,
supportive undergraduate faculty were influential in these women’s decisions to pursue a PhD, and two pro-
fessors were single-handedly responsible for supervising the dissertations of 13% of these women. Though
the number of students has increased, professors today should not underestimate the impact they can have on
the total number of female PhDs simply by supporting the efforts of the ones who arrive in their department.

For readers interested in research on women in mathematics, this book is a fundamental source. For
the average reader, I recommend skimming the first eight chapters and using the bibliographic entries and
embedded tables as an important reference. If you are interested in the specific history of your university,
the book contains an extensive index.

Review30 of
A Guide to Elementary Number Theory

Author of book: Underwood Dudley
Publisher: MAA, 2009, 141 pages, hardcover

$50.00
Reviewed by Song Yan syan@math.harvard.edu

1 Introduction

Number theory, in mathematics, is the study of the properties of integers. It used to be the purist of the pure
branch of mathematics. With the advent of modern computers and digital communications, it is now also
a very applied subject of mathematics, with applications particularly in cryptography and Internet security.
A traditional introductory book in elementary number theory such as [1] would include theories of divisi-
bility, congruences, continued fractions, arithmetic functions and Diophantine equations, whereas a modern
introductory book such as [2] would also include some materials in the theory of elliptic curves (the revised
sixth edition of [1] also included a chapter on elliptic curves at the end of the book), and some applications
of number theory to e.g., coding and/or cryptography.

2 Overview

As the author claimed, this is not a textbook in elementary number theory, it is written for someone who
wants to know e.g., which integers are the sum of two squares, or someone who once knew but has forgotten.
However, the author did write a text in elementary number theory 42 years ago [3].

30 c©2011 Song Yan
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The book consists of 39 distinct chapters (or better call sections), of various pages lengths from 1 to 7.
It covers almost all the basic concepts, ideas and results in elementary number theory. Roughly speaking,
the theory of congruences is discussed in e.g., chapters 4, 5, 6, 16, 17, 18 and 19, the theory for arithmetic
functions is introduced in e.g., chapters 7, 8, 9, 10, 11, 12, 13, 14, 29 and 39, whereas Diophantine equations
and sum of squares are presented in e.g., chapters 3, 21, 22, 23, 24, 25, 26. There are also chapters devoted
to the famous unsolved problems of Riemann’s hypothesis and the ABC conjecture, as well as many other
unsolved problems related to the distribution of prime numbers and the additive properties of integers such
as the twin prime conjecture, the odd perfect number conjecture, the Mersenne prime conjecture and the
Goldbach conjecture.

3 Opinion

This is one of the books in the MAA Guides series, others include A Guide to Complex variables, Real
Variable, and Topology, etc. Since this is a small book, the book review must be short. What we would like
to say is that this is a very nice book for anyone interested in number theory. However, if you want to know
more about number theory, you can read this book first, make yourself familiar with the basic concepts and
ideas of number theory, then read Baker’s marvelous introductory book [4], or Hardy’s authoritative and
comprehensive book [1].
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1 Overview

Data mining is a field of computer science developing methods for finding things from data sets that you
did not know to exists or even look for. While the field is relatively new, it has already produced a huge
number of methods. Students and researchers alike can easily spend all their time on learning just the
methods, without ever understanding the mathematics behind them. And as the authors note (p. v) “many
students of data mining are handicapped in their research by the lack of a formal, systematic education in its
mathematics.” And, I must add, as today’s students are tomorrow’s researchers, this handicap is not limited
to students.

To cure the handicap, the authors provide a formal, systematic treatise of mathematics behind data
mining. But the task is immense: data miners do not limit themselves to any particular subfield of mod-
ern mathematics, but freely use any methods they happen to know and find suitable to the task at hand.
The mathematics behind, say, frequent itemset mining, dimensionality reduction, and probabilistic mixture
models are so different that covering them fully takes easily at least three volumes. The authors of this book
have apparently reached the same conclusion. This book, as its subtitle reveals, covers what the authors
call the set-theoretic foundations of data mining. The authors say (p. v) that they are planning two more
volumes, covering linear algebra and probability theory.

The book is a math book, not a data mining book. Some data mining topics are discussed, but mostly to
provide a superficial case study of the mathematics covered. So if you buy this book to learn data mining,
you will be disappointed.

2 Summary of Contents

The book is divided into five parts, Set Theory, Partial Orders, Metric Spaces, Combinatorics, and Appen-
dices. Each part is divided into chapters and each chapter (except those in Appendices) ends with a set of
exercises and short bibliographical comments.

2.1 Set Theory

The back cover claims the book to be self-contained—and it very much is. The first part, Set Theory, starts
with basic properties of relations and a definition of a function as a special type of relation. It also gives the
basics of sets, sequences, and their functions, including power sets, partitions, countable and uncountable
sets, and even the axiom of choice. As an application the authors give the very basics of relational data

31 c© Pauli Miettinen, 2011
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bases, but in the spirit of this book, assuming nothing from the reader that is not yet covered, the authors
cannot even discuss the relational algebra yielding a very superficial image of the topic.

The second chapter is about algebras with an emphasis on basics of linear algebra and matrices. Third
and final chapter of this section covers graphs, trees, and hypergraphs. It contains topics such as heaps,
minimum spanning trees, flows, and matchings. All in all, any student with basic information of mathematics
and computer science should be able to skip this part, except for some notations used through the book.

2.2 Partial Orders

Partial orders, partially ordered sets (posets), and lattices are important concepts in data mining, and they
are used extensively in connection with frequent itemset mining and related tasks. First chapter of this part
presents the basic definitions and results about posets focusing on two important ones: the poset of real
numbers and the poset of partitions of a finite set. Chains, antichains, poset products, and Möbius functions
are also presented.

The second chapter is about lattices, covering topics such as complete lattices and Galois connection.
The chapter continues with Boolean algebras and Boolean functions and ends with a case study application
called Logical Data Analysis.

The topic of the next chapter in this part is a surprising one: topologies and measures. After all, at least
I do not see any particularly strong connection between posets and point-set topologies or measures. Nor
would I consider them even nearly as important tools for data miners as, for example, lattices are. But they
will be needed later in the book, justifying the chapter. The topics covered are standard: open and closed
sets, closures, dense sets, countable unions and intersections, compactness, continuous functions and others.
For measures, the topics include σ-fields, measurable sets, outer measures, and, of course, measures, the
Lebesgue measure being an important example.

Next the authors present the first application deserving its own chapter: frequent item sets and asso-
ciation rules. The authors present Apriori and Levelwise algorithms for finding frequent item sets and
association rules, and show the connections of these tasks to lattices and posets.

The next chapter is entitled “Applications to Databases and Data Mining”—though the previous chapter
was already an “application chapter.” The main content of this chapter is not an application but a tool: the
concept of entropy. The authors avoid the information-theoretic interpretation of entropy (as that would
require much more background to keep the book self-contained) by defining it as a function over partitions
of a finite set. And instead of restricting themselves to the usual Shannon entropy, the authors study a gen-
eralized version of entropy required to have certain reasonable monotonicity properties and “nice” behavior
under addition and multiplication of partitions. The authors show that both the Shannon entropy and the
Gini index are special cases of this generalized entropy.

The final chapter of this part is about rough sets, and the associated idea of approximating sets with (in
some sense simpler) partitions. An example application in classification is given.

2.3 Metric Spaces

Clustering and nearest neighbor searches are two prominent data mining questions where metrics (or, more
generally, dissimilarity measures) play a central role. In the first chapter of this section, authors define three
dissimilarity measures, metrics, ultrametrics, and treemetrics, and give examples of them. A natural focus is
on metrics, in particular for Rn and for set systems. The chapter ends with applications to k-nearest-neighbor
and range queries.
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The next chapter is about topologies and measures in metric spaces, covering the basics of the topic,
including completeness and Cauchy sequences. The chapter ends with a short introduction to embedding
of metric spaces. This chapter’s main purpose, however, is to introduce necessary background for the next
chapter.

The third chapter of this section is about the dimensions of metric spaces. This topic is motivated
by the notorious “curse of dimensionality.” The chapter focuses on various methods to define the “true”
dimensionality of data, such as the inductive dimensions of topological spaces or the covering dimension
for set systems. But notice that it does not discuss dimensionality reduction methods or any other related
topics stemming from linear algebra.

The main application of this part’s results is clustering, the topic of the fourth chapter. This chapter
contains algorithms for both hierarchical and partition-based (like k-means) clustering, with various link
functions for the former. It also covers Kleinberg’s impossibility theorem, and ends with a short introduction
to evaluating cluster quality.

2.4 Combinatorics

The last part before appendices contains additional topics from combinatorics, such as the inclusion-exclusion
principle and Ramsey’s theorem. It is also here the Sperner’s theorem is presented. Nevertheless, the main
topic of this part is the Vapnik–Chervonenkis dimension with its applications.

3 Style

The book follows a classical concise mathematics style: the body text contains definitions followed by lem-
mas, theorems, and corollaries, and their proofs. Every now and again an example appears. But virtually no
motivation is given for theorems (except of type “this theorem generalizes the previous one”), the rationale
behind the definitions must be deduced from their usage, and the connections between different theorems
and concepts mentioned are those appearing in the proofs.

The self-contained nature of this book allows the authors to build on earlier material without repeating it.
Sometimes that makes the text hard to follow as the reader can hardly remember notation introduced some
300 pages earlier. Adding to the confusion, the text has more than enough typographical errors. Most of the
time they are easy to ignore and are irritating at worst, but sometimes they are in critical parts of theorems,
proofs, or equations.

All this makes the book laborious to read. The style of books like this is always a compromise, and as the
book already has over 600 pages, one can easily see why the authors did not select a more verbose style. But
while the choice of the style is understandable, the lack of copy-editing is not. In addition to the errors, there
are other aspects that create an unfinished impression, such as recurrent theorems and definitions that can
have different names (Cauchy’s inequality is first proved on page 67 and again on page 379 under the name
“The Cauchy Inequality”) or even be contradictory (“the product of 0 with either +∞ or −∞ is undefined”
(p. 4) versus “x · ∞ = 0 if x = 0” (p. 139)).

4 Opinion

The authors mentioned the students’ lack of formal education in mathematics as a motivation of the book.
It is also “intended as a reference for the working data miner” (p. v). Does it fulfil these roles, and who else
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could benefit from it?
As mentioned above, this is not a data mining book, and will not serve you well if you want to learn data

mining techniques. The applications in this book tell you only the very basics, and will probably leave you
wondering where do you need all the math covered.

Yet, you can read the book without knowing any data mining. If you need a concise presentation on
some of the book’s topics, then you could consider this book. Of course, if it is only one or two parts of the
book you are interested in, a specialized book might be a better choice. And remember that these tools are
not the tools to analyze an algorithm’s time complexity; they are the tools needed to understand and develop
the algorithms.

What about the students, then? The authors consider a “typical three-semester sequence in calculus”
sufficient for “making the best use” of the book (p. vi). Not even that is needed, thanks to the self-contained
form. But a student should know his data mining, and should have a strong mathematical intuition to avoid
the book turning to a dull list of theorems and to see the connections where they are not mentioned and to
understand the rationale behind the definitions. Alternatively, he should have a good teacher.

Teachers and researchers alike can benefit from this book as it provides a comprehensive reference.
There are some drawbacks, though. The first is the number of typographical errors that require you to be
rather careful when consulting this book. The second is the index. The book has one, but if you want to
use this as a reference, it should have much more keywords. The third is a by-product of the big size and
self-contained nature of this book. Using the book as a reference can be hard if in order to understand a
theorem in, say, page 400, you need to find the notation and definitions buried somewhere in the preceding
399 pages. The pointers to previous material are very few in this book.

These drawbacks can be irritating, but compared to the the alternative—having half a dozen specialized
books on the various topics—easy to ignore. Hence, in my opinion, this book is a useful reference for
researchers and teachers. I am looking forward to the remaining parts of the planned trilogy—not least
because they will increase the usability of this book even further.
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