
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. We review four collections of papers by Donald Knuth. There is a large variety of types of papers
in all four collections: long, short, published, unpublished, “serious” and “fun”, though the last two
categories overlap quite a bit. The titles are self explanatory.

(a) Selected Papers on Discrete Mathematics by Donald E. Knuth. Review by Daniel Apon.

(b) Selected Papers on Design of Algorithms by Donald E. Knuth. Review by Daniel Apon

(c) Selected Papers on Fun & Games by Donald E. Knuth. Review by William Gasarch.

(d) Companion to the Papers of Donald Knuth by Donald E. Knuth. Review by William Gasarch.

2. We review jointly four books from the Bolyai Society of Math Studies. The books in this series are
usually collections of article in combinatorics that arise from a conference or workshop. This is the
case for the four we review. The articles here vary tremendously in terms of length and if they include
proofs. Most of the articles are surveys, not original work. The joint review if by William Gasarch.

(a) Horizons of Combinatorics (Conference on Combinatorics Edited by Ervin Györi, Gyula
Katona, László Lovász.

(b) Building Bridges (In honor of László Lovász’s 60th birthday-Vol 1) Edited by Martin
Grötschel and Gyula Katona.

(c) Fete of Combinatorics and Computer Science (In honor of László Lovász’s 60th birthday-
Vol 2) Edited by Gyula Katona, Alexander Schrijver, and Tamás.

(d) Erdős Centennial (In honor of Paul Erdős’s 100th birthday) Edited by László Lovász, Imre
Ruzsa, Vera Sós.

3. Bayesian Reasoning and Machine Learning by David Barber Review by Matthias Gallé. This book
tries to present a unified view of Machine Learning using as much as possible a Bayesian approach.
It uses graphical models as an underlying general representation throughout the book.

4. Integrated Methods for Optimization by John Hooker. Review by S.V.Nagaraj. This book inte-
grates key concepts from mathematical programming and constraint programming to solve optimiza-
tion problems.

5. Programming with Higher-Order Logic by Dale Miller and Gopalan Nadathur. Review by Vaishak
Belle. To summarize this book in 2 sentences I quote the review: This book presents deep techniques
that take the many ideas at the heart of PROLOG, and extend its power and expressivity by elegantly
combining these ideas with a simply typed version of higher-order logic. The end result is a rich
programming language that benefits from the paradigms of higher-order logic and logic programming.

1 c©William Gasarch, 2014.

1

6. People, Problems, and Proofs by Richard Lipton and Ken Regan. Review by William Gasarch.
Lipton and Regan run a computer science theory blog called Godel’s Lost Letter. This book is a
collection of articles that are either blog posts or modified versions of blog posts or inspired by a set
of blog posts. As such it has a wide range of topics. The review is itself a fictional blog.

7. Who’s Bigger? Where Historical Figures Really Rank by Steven Skiena and Charles B. Ward.
Review by Nicholas Mattei. Say you are in a bar and want to argue who was more famous Charles
Darwin or Abraham Lincoln (both born Feb 12, 1809). You could get into a fist fight OR you could
figure out a rigorous criteria of fame and measure it. Or you could look at this book.

2

BOOKS I NEED REVIEWED FOR SIGACT NEWS COLUMN
Algorithms

1. Greedy Approximation by Temlyakov

2. Algorithmics of matching under preferences By Manlove.

3. Data clustering: Algorithms and Applications Edited by Aggarawal and Reddy.

4. The LLL Algorithm. Edited by Nguyen and Vallee.

5. Jewels of Stringology Text Algorithms by Maxime Crochemor and Wojciech Rytter.

6. Tractability: Practical approach to Hard Problems Edited by Bordeaux, Hamadi, Kohli.

Misc Computer Science

1. Introduction to reversible computing by Perumalla.

2. Distributed Computing through combinatorial topology by Herlihy, Kozlov, Rajsbaum.

3. Selected Papers on Computer Languages by Donald Knuth.

4. Algebraic Geometry Modelling in Information Theory Edited by Edgar Moro.

Misc Math

1. The Golden Ratio and Fibonacci Numbers by Richard Dunlap.

2. Probability Theory: An Analytic View by Daniel Stroock.

3. Proof Analysis: A Contribution to Hilbert’s Last Problem by Negri and Von Plato.

4. Towers of Hanoi— Myths and Maths by Hinz, Klavzar, Milutinovic, Petr.

5. A Mathematical Orchard: Problems and Solutions by Krusemeyer, Gilbert, Larson.

6. Mathematics Galore! The first five years of the St. Marks Institue of Mathematics by Tanton.

7. Six sources of collapse: A mathematician’s perspective on how things can fall apart in the blink of an
eye by Hadlock.

8. Classic papers in combinatorics edited by Ira Gessel and Gian-Carlo Rota.

9. The king of infinite space: Euclid and his elements by David Erlinski.

10. Archimedes: What did he do besides cry eureka? by Sherman Stein.

3

Review of 2

Selected Papers on Discrete Mathematics
by Donald E. Knuth

Center for the Study of Language and Information (CSLI), 2003

812 pages, Softcover – New/Used, from $20.00, Amazon
812 pages, Hardcover – New/Used, from $33.00, Amazon

812 pages, Cloth – New, $80.00, University of Chicago Press

Reviewed by Daniel Apon, Dept. of CS, Univ. of MD
dapon@cs.umd.edu

1 Introduction

Selected Papers on Discrete Mathematics is a 2003 collection of forty-one of Knuth’s papers on discrete
mathematics, bringing together “almost everything [he] has written about mathematical topics during the
past four decades.” This is the sixth entry in a nine-volume series archiving Knuth’s published papers. The
full series in order is: (i) Literate Programming, (ii) Selected Papers on Computer Science, (iii) Digital
Typography, (iv) Selected Papers on Analysis of Algorithms, (v) Selected Papers on Computer Languages,
(vi) the current book, (vii) Selected Papers on Design of Algorithms, (viii) Selected Papers on Fun and
Games, and (ix) Companion to the Papers of Donald Knuth.

While not designed as a textbook, this book is huge and covers a number of diverse topics in great detail.
Measuring nearly 800 pages before the index, the book contains something on almost every fundamental
area of discrete mathematics: mathematical notation, permutations, partitions, identities, recurrences, com-
binatorial designs, matrix theory, number theory, graph theory, probability theory, and a dash of algebra.
As if to emphasize this point, the final two papers in the book (both dedicated to Paul Erdős) comprise an
intensive, nearly 200-page study of the properties of “randomly-generated (evolving) graphs” first initiated
in a classic 1959 paper of Erdős and Rényi.

In the sequel, I give a chapter-by-chapter summary of the book. For lack of space, I can only briefly
skim over a few chapters, but I have tried to go into more depth on some of the parts I found most interesting
and rewarding. Afterward, I conclude with my opinion of the book.

2 Summary

Chapter 1 begins the book, perhaps symbolically, with a 1965 paper of Knuth and Hall’s observing that
computers may (in fact!) be useful for solving combinatorial problems by searching through the possible
witnesses. The chapter introduces the basic backtracking technique and discusses applications to construct-
ing latin squares and projective planes.

Chapters 2 and 3 discuss aspects of notation that Knuth would like to promote. One of these is Iverson’s
convention, which lets us write any sum as an infinite sum without limits: if P(k) is any Boolean property
of the integer k, then we could write

∑
P(k) f (x) as

∑
k f (x)[P(x)]. For example, the sum-of-squares for all

integers k in some set S could be written as
∑

k k2[k ∈ S].

2 c©2014, Daniel Apon

4

Chapters 4 and 5 discuss mathematical results from the early 17th century, due to Johann Faulhaber and
Thomas Harriot. (There’s even a picture of an engraving of Johann in 1630!) The first of the two proves
a result of Johann’s on sums of powers (for which Johann did not publish a proof). Namely, the r-times-
repeated summation of 1m, 2m, ..., nm is a polynomial in n(n + r) times the r-fold sum of 1, 2, ..., n, when m
is a positive odd number. Of particular interest – Knuth’s goal was to prove this fact only using techniques
available in the early 17th century (and thus, to Johann).

A particular favorite of mine was Chapter 6, which gives a self-contained exposition of G.P. Egorychev’s
1980 proof of a conjecture first made by van der Waerden in 1926. VDW’s conjecture (now a theorem) states
that the permanent of an n × n doubly stochastic matrix is never less than n!/nn, which implies the matrix
where all entries are equal to 1/n gives the minimum permanent for this class of matrices. The proof is
given from only elementary principles, with the exception of a single, simple fact from analysis in the proof
of one lemma, for which Knuth spends a little extra time giving intuition.

Having examined the permanent, Knuth turns to exploring the Pfaffian of an array of numbers in Chapter
7. Let A = (ai, j) be a 2n × 2n skew-symmetric matrix. The Pfaffian of A is defined as

pf(A) =
1

2nn!

∑
σ∈S 2n

sign(σ)
n∏

i=1

aσ(2i−1),σ(2i)

where S 2n is the symmetric group; that is, the set of all permutations on 2n elements (whose group operation
is permutation composition). For the curious reader: Knuth argues that the Pfaffian is “more fundamental”
than the determinant. To quote him, “a determinant is just the bipartite special case of a Pfaffian.” In any
case, Chapter 7 gives an identity for the product of pf(A) · pf(B) where B is a submatrix of A.

Chapter 8 discusses the Sandwich Theorem. It is NP-complete to compute ω(G), the size of the largest
clique in a graph G, and it is NP-complete to compute χ(G), the minimum number of colors needed to color
the vertices of G. But in polynomial time, it is nonetheless possible to compute a real number — the Lovász
number ϑ(G)— that is “sandwiched” in between these two:

ω(G) ≤ ϑ(G) ≤ χ(G).

The chapter is nearly 50 pages long, and written in an expository format, building up numerous aspects of
the theory surrounding the Sandwich Theorem and Lovász’s function.

Chapters 9 through 14 explore various relationships between matrices, graphs, and trees. In Chapter
13, we consider the following problem: Given a set of vertices v that each been assigned a color cv ∈ [m]
with n j vertices of color j ∈ [m], how many oriented trees on these vertices with designated root exist,
subject to constraints of the form “no edge connects vertices colored i and j?” While the general statement
requires introducing prohibitively much notation for this review, here is an exact statement for a simple case:
Suppose we have |A| vertices of color a, which have directed edges only onto vertices of color b and c, and
|B| vertices of color b, which have directed edges only onto vertices of color a and c, and |C| vertices of color
c, which have directed edges only onto vertices of color c and the root. How many oriented trees of this type
exist? Exactly

(|B| + |C|)|A|−1(|A| + |C|)|B|−1(|C| + |1|)|C|−1(|A||C| + |B||C| + |C|2).

Chapters 15 and 16 discuss properties of polynomials. The first considers families of convolution poly-
nomials that arise as coefficients when a power series is raised to the power x. These are families of polyno-
mials F0(x), F1(x), ... where Fn(x) has degree ≤ n and

Fn(x + y) = Fn(x)F0(y) + Fn−1(x)F1(y) + · · · + F0(x)Fn(y)

5

hods for all x and y and for all n ≥ 0. For example, setting Fn(x) = xn/n! yields the binomial theorem for
integer exponents.

Chapters 17 and 18 are fairly light. Chapter 17 constructs an equidistributed sequence of real num-
bers, and Chapter 18 presents a construction (from Knuth’s college days) of a base-2i number system and
implements addition and multiplication.

Chapters 19 through 21 cover finite fields and semifields. Chapters 22 and 23 go further into topics in
algebra. An interesting twist here is Knuth’s construction of Huffman’s algorithm (for finding minimum
redundancy codes) from abstract algebra. In particular, he defines a Huffman algebra (A, <, ◦), which is
a linearly ordered set A with a binary operator ◦. Huffman’s algorithm, in this context, is given as input
elements a1, ..., an of A and builds an expression (over the algebra) out of the elements by repeatedly applying
◦ to the smallest and second-smallest elements until only a single expression remains. The expression yields
the corresponding Huffman code.

Chapters 24 and 25 discuss how graphs are constructable from various components. An example the-
orem is that the complement of a transitive closure of the complement of a transitive relation is, itself,
transitive.

Chapters 26 and 27 explore the theory of matroids. The first of these, in particular, gives pseudocode
from one of Knuth’s attempts to generate random matroids for experimental analysis. This is also the only
piece of mathematical writing that I’ve seen use the phrase “homomorphic image of a free erection” with a
serious face.

If x1, x2, ..., xn are real numbers whose sum is zero, then we can always find some permutation p(1)p(2)...p(n)
such that each of the partial sums xp(1) + · · · + xp(j) is nonnegative, for 1 ≤ j ≤ n. Daniel Kleitman conjec-
tured that the number of such permutations is always at most 2n!/(n + 2), if the x’s are nonzero. Chapter 28
presents a proof of Kleitman’s conjecture, but strengthened to be parameterized by the number of positive
and negative xi.

Chapter 29 presents an efficient construction of a balanced code that optimizes serial encoding and
decoding. The scheme is extended to optimizations for parallel encoding and decoding.

Chapters 30 through 36 present numerous results on partitions. Here are a few examples:
In Chapter 30, the following problem (known as the Knowlton-Graham partition problem) is considered:

Two parties want to communicate over a long cable containing n indistinguishable wires. They want to label
the wires consistently so that both ends of each wire receive the same label, perhaps by locally re-wiring
connections. How can they do this? (Using a special partition!)

A plane partition of n is a two-dimensional array of nonnegative integers {ni, j} for i, j ≥ 1, for which∑
i, j ni, j = n and the rows and columns are in nonincreasing order:

ni, j ≥ n(i+1), j and ni, j ≥ ni,(j+1).

Chapter 32 gives generating functions for various classes of plane partitions.
Chapter 34 obtains a generalization of Jacobi’s triple product identity, by analogy to a similar general-

ization for Euler’s partition identity, which can written

∞∏
j=1

(1 − q2 j−1z)(1 − q2 j−1z−1)(1 − q2 j) =
∞∑

k=−∞

(−1)kqk2
zk.

Chapter 36 studies coefficients that arise in the preceding study of partitions. Interestingly (at least to
me), there are connections to cyclotomic polynomials and determinants of semi-lattices from geometry of
numbers.

6

Chapters 37, 38, and 39 discuss recurrence relations. For example, Chapter 38 investigates solutions of
the general recurrence

M(0) = g(0), M(n + 1) = g(n + 1) + min
0≤k≤n

(αM(k) + βM(n − k)) ,

for various choices of α, β, and g(n). In many cases, M(n) is shown to be a convex function (and thus much
more efficiently computable).

Finally, there are the mammoth chapters – 40 and 41 – on evolving graphs. Nothing I say in a few
sentences can quite do two hundred pages of work justice, but here is the general idea: Begin with n discon-
nected points. Now add edges between the points at random. Then...

How long is the expected length of the first cycle that appears? Asymptotically, what is the average
length of the kth cycle that appears? What is the probability that the graph has a component with more
than one cycle at the point that the number of edges passes n/2? When such a graph has approximately n/2
edges, what is the probability that the graph consists entirely of trees, unicyclic components, and bicyclic
components as n→ ∞?

Knuth (and co-authors) obtain numerous high-quality estimates in a uniform manner, and obtain closed-
form expressions of multiple constants of interest.

3 Opinion

As with all of Knuth’s books, this book is written authoritatively and eloquently. Knuth’s presentation is a
testament to clean, formal writing; his standard format is to begin with a few paragraphs describing the topic,
and then present a list clear lemmas and their proofs, followed by a main theorem and a proof connecting
each of the lemmas together. Interspersed between each of the lemmas are a few paragraphs describing the
purpose of each subsequent lemma. The notation and typography are beautiful and succinct. As mentioned
above, some of the chapters even explicitly focus on which notation is the most clear and useful. I found it
a delight to read.

7

Review of 3

Selected Papers on Design of Algorithms
by Donald E. Knuth

Center for the Study of Language and Information (CSLI), 2010

453 pages, Softcover – New, $31.11, Amazon Prime
453 pages, Hardcover – New/Used, ∼$150.00, Amazon

453 pages, Cloth – New, $75.00, University of Chicago Press

Reviewed by Daniel Apon, Dept. of CS, Univ. of MD
dapon@cs.umd.edu

1 Introduction

Selected Papers on Design of Algorithms is a compilation of twenty-seven of Knuth’s technical papers
focusing on the design of new algorithms. This is the seventh entry in a nine-volume series archiving
Knuth’s published papers. The full series in order is: (i) Literate Programming, (ii) Selected Papers on
Computer Science, (iii) Digital Typography, (iv) Selected Papers on Analysis of Algorithms, (v) Selected
Papers on Computer Languages, (vi) Selected Papers on Discrete Mathematics, (vii) the current book, (viii)
Selected Papers on Fun and Games, and (ix) Companion to the Papers of Donald Knuth.

The papers are revised for errors, and cover a range of algorithmic topics – from combinatorics and
optimization, to algebra and theorem proving, to managing error in numerical computations. To quote from
the back cover of the book:

“Nearly thirty of Knuth’s classic papers on the subject are collected in this book, brought up
to date with extensive revisions and notes on subsequent developments. Many of these algo-
rithms have seen wide use — for example, Knuth’s algorithm for optimum search trees, the
Faller–Gallager–Knuth algorithm for adaptive Huffman coding, the Knuth–Morris–Pratt algo-
rithm for pattern matching, the Dijkstra–Knuth algorithm for optimum expressions, and the
Knuth–Bendix algorithm for deducing the consequences of axioms. Others are pedagogically
important, helping students to learn how to design new algorithms for new tasks. One or two
are significant historically, as they show how things were done in computing’s early days. All
are found here, together with more than 40 newly created illustrations.”

The book is primarily an “archival” work. That is, the majority of the book proper is a sequence of
(significant) papers, though on disparate topics. It is not particularly intended to be read from cover-to-
cover: An effort was made to group papers into loosely related themes, but the book lacks a “coherent
narrative” when read in order. As a consequence, not everyone will like every paper, but on the other hand,
most people will find something to enjoy in the 27 papers. Summaries of some of the chapters I enjoyed the
most appear below.

3 c©2014, Daniel Apon

8

2 Summary

The first chapter of the book is distinct; it is not about an algorithm, but rather about the life and work of
Knuth’s long-time colleague and co-author, Robert W Floyd (1936-2001). If this name doesn’t ring a bell,
recall at least the Floyd-Warshall algorithm for All-Pairs-Shortest-Path from your undergraduate Algorithms
course! This opening chapter chronicles the professional and personal relationship between Knuth and
Floyd, originating through correspondence by mail in 1962 (mail – not email!), and developing further after
Knuth and Floyd both joined Stanford’s computer science department in 1967 and 1968, respectively.

Chapter 5 is on dynamic Huffman coding. A Huffman tree implements a minimal-weight prefix code,
which can be used as the core of a one-pass algorithm for file compression. For a letter a j in a file, a j’s
weight w j is the number of occurrences of a j. Huffman coding uses this weight to optimize the construction
of the underlying tree. But what if the file is streamed? Each time a new character a j of the file is seen, the
corresponding weight w j is incremented. This necessitates efficiently updating the structure of the underly-
ing tree each time a new character arrives. This is accomplished by a clever swapping of sub-trees after each
update so that the optimality of the tree’s weights are maintained.

Chapter 9 covers the well-known Knuth-Morris-Pratt algorithm for fast pattern matching in strings.
Here, we have a text file of n characters and a string of m < n characters. The goal is to find the string within
the text file, if it exists. Naı̈vely, this takes O(mn) time, but the KMP algorithm does it in O(m + n) using
clever preprocessing.

Chapter 10 gives algorithms for addition machines – that is, machines that can read/write/copy numbers
to and from registers as well as evaluate ≥, +, and -. The chapter begins with a simple O(log2(x/y)) time
algorithm for computing x mod y. Surprisingly, this can be improved to O(log(x/y)) by using the (unique!)
representation of numbers as sums of Fibonacci numbers with pairwise difference ≥ 2, instead of their binary
representations. The Fibonacci-based techniques are extended to efficient algorithms for multiplication,
division, computing gcd(x, y), implementing stacks, sorting, and computing xy mod z.

Chapter 11, entitled “A simple program who’s proof isn’t,” is about the subroutine for converting be-
tween decimal fractions and fixed-point binary in TEX. This is an interesting example of a general principle
arising from careful examination of a finite problem. Internally, TEX represents numbers as integer multiples
of 2−16, and it must frequently convert a given decimal fraction with k digits of precision, written .d1d2...dk,
into this format while rounding correctly. The straightforward procedure is to compute

N = 10k

216
k∑

j=1

d j/10 j + 1/2

then letting the output be bN/10kc. Unfortunately, since k may be arbitrarily large, the values N and 10k may
be too large for the computer’s hardware to support. Digging into the details of the computation, however,
reveals a procedure for the task that only requires TEX to maintain an array of 17 digits for the input and
computes intermediate values no larger than 1, 310, 720 � 10k. A generalization to arbitrary combinations
of precision is discussed at the end.

Chapter 23 is “Evading the drift in floating point addition” and begins by considering the following
simple form of rounding after floating-point arithmetic: Suppose we are storing numbers to three significant
digits and that rounding is performed by adding 5 to the fourth significant digit, then truncating to three
significant digits. This is rounding to the nearest number, and breaking ties by rounding up. If x = 400
and y = 3.5, then x + y = 404, (x + y) − y = 401, ((x + y) − y) + y = 405, and so on. This drift towards
+∞ is due to the bias of always rounding up in the case of ties. Ideally we would like to always have

9

((· · · ((x+ y)− y) · · ·+ y)− y) = x, regardless of how many times we add-then-subtract the same number. The
solution is to analyze a list of 30+ different cases covering the possible, arithmetic relationships between
the numbers being added or subtracted. Sometimes we round ties up, sometimes we round ties down. On
the plus side, the resulting nested depth of if-else’s in code is only 5 or 6, so the more complicated rounding
scheme can be implemented to run efficiently and avoid the drift.

3 Opinion

Selected Papers on Design of Algorithms bears Knuth’s usual eloquence in writing. The algorithms and
proofs in each chapter are presented cleanly, and pseudocode for implementing them accompanies most
of the algorithms. Part of the real charm of this collection comes from the historical notes interspersed
throughout the book. These take the form of either additional commentary attached to the end of a paper
explaining how the technical topic has progressed since the writing of the paper (explaining which open
problems have been solved, which haven’t, and how the newer results were obtained), or a story of how the
original result was obtained.

A particularly nice example from the book is the sequence of events leading up to the Knuth-Morris-
Pratt algorithms for fast pattern matching in strings. One of the authors, J. H. Morris, originally invented
the method while implementing a text editor for the CDC 6400 computer during the summer of 1969. His
code, however, was rather complicated, and after several months other implementers of the system had
“fixed” his routine into a complete mess. Independently a year later, Knuth and Pratt developed a string
matching algorithm, working from a theorem of Cook that showed any language recognizable by a two-way
deterministic pushdown automata in any amount of time, can be recognized on a RAM in O(n) time. Later,
Pratt described the algorithm to Morris, who recognized it as the same as his own – and the Knuth-Morris-
Pratt algorithm was born.

Gems like these are probably the best reason to own the book. On the other hand, I would not recommend
this book as a tool for research or as the primary text for a classroom. It could be used as supplemental
material for an algorithms course – but in these cases, it is simpler (and cheaper) to find the specific paper
you want students to read, and distribute that by itself. Alternatively, it could find some use for self-study
– particularly in illuminating not just technical material (some of which is dated at this point), but how the
human beings who developed the technical material came up with it in the first place. And of course, this
book is another must-have for any Knuth-ophile who loves their copy of The Art of Computer Programming.

10

Review 4 of
Selected Papers on Fun & Games

by Donald E. Knuth
Center for the Study of Language and Information

742 pages, SOFTCOVER, $37.00, 2011
Review by William Gasarch gasarch@cs.umd.edu

1 Introduction

Recently Donald Knuth had his publisher send me five books of his Selected papers to review for my column.
Knuth said that this book, Selected Papers on Fun&Games, was his favorite. After reading every word of its
700+ pages I can see why. The book format and the topic allows him to put in whatever he finds interesting.
By contrast his book Selected Papers on Discrete Math has to have all papers on . . . Discrete Math.

In the preface he says I’ve never been able to see the boundary between scientific research and game
playing. This book also blurs the distinction between recreational and serious research, between math and
computer science, and between light and heavy reading. By the latter I mean that many of the chapters are
easy to read— if you skip details.

Many of the topics in the book come from things either he noticed or people told him leading to a math
or CS problem of interest. Hence he is in many of the chapters as a character. I will do the same: here is a
story that happened to ME but it’s the KIND OF THING that happens to him quite often.

I was having dinner with my darling and two other couples. We were sitting at a rectangular table and I
noticed that I sat across from my darling while the other two couples sat next to each other. I then thought:
If there are n couples sitting down to eat at a rectangular table how many ways can they do it if everyone
sits next to or across from their darling. I solved it and I invite my readers to do the same.

There are 72 = 49 papers in this book. Its hard to find a theme that ties them together except Stuff that
Donald Knuth thinks is fun and hopefully you will too!. That makes the book hard to summarize. Hence I
will just comment on some of the chapters. I try to pick a representative sample.

One of the best features: many of the chapters have addenda that were added just recently. This is
excellent since an old article needs some commentary about what happened next?.

2 Summary

Chapter 1 is a reprint of Donald Knuth’s first publication. Was it in American Math Monthly? Mathematics
Magazine? Fibonacci Quarterly? No. It was in MAD magazine! Its a satirical (or is it?) way of doing
weights and measures. Chapter 2,3,4, and 5 do not contain any real math or computer science. Chapter 6,
The Complexity of Writing Songs is borderline since it uses O-notation.

Chapter 7, TPK in INTERCAL is about a rather odd challenge— writing programs in the language IN-
TERCAL. This language has very few operators and what it does have is not the usual arithmetic operation.
In this chapter he discusses writing a particular program in it. Challenging!

Chapter 8, Math Ace: The Plot Thickens considers the following. We all know how to graph such
equations as x = y2. But what about |x + y| ≤ 1? This would not be a curve but a region in the plane. Which
regions of the plane can you achieve this way? He has some rather complicated equations that yield very
interesting shapes.

4 c©2014, William Gasarch

11

Chapter 12, The Gamov-Stern Elevator Problem takes a real world problem and solves it. Essentially,
Gamov and Stern both thought that when they were waiting for an elevator to go down they would always
have the next elevator going up, and vice versa. Let

p =
distance from our floor to the bottom floor

distance from top floor to bottom floor

Assuming that the elevators start at a random position and cycle up and down continuously what is the
probability (in terms of p) that the next elevator that gets to your floor will be going down? Knuth first
solves this using hard math (Integral signs! Lots of them!). He notes that the answer is simple and writes . . .
our formula is so simple it suggests that there must be a much simpler way to derive it. He then does indeed
present a much more elegant solution.

Chapters 13,14, and 15 are on Fibonacci Numbers; however, I suspect they contain much material you do
not know (they contained much material I did not know). Here is a tidbit: (1) Every number can be written
as a sum of Fibonacci numbers, (2) If you do not allow the use of two consecutive Fibonacci numbers then
this representation is unique.

Chapter 17 is titled Mathematical Vanity Plates but it has much information on vanity plates in general
(it’s 40 pages long!). His interest in vanity plates was sparked by seeing the license plate H65 537 and
wondering if the driver knew that his plate was the fourth Fermat Prime. This chapter is very indicative of
Knuth’s style: something in the real world inspires him and then he learns everything about it.

Chapter 23, Basketball’s Electronic Coach is about a program he wrote as an undergraduate that helped
rate how good the basketball players were and hence gave some idea of who to play when. This is impressive
since (1) it was 1956-1960, way before Bill James and the Moneyball revolution, and (2) basketball would
seem to be much harder than baseball to analyze this way. The article quotes various news sources about
what he did, including Walter Cronkite. Knuth himself is skeptical that it really worked, though the team
did improve quite a bit. We also learn that Knuth himself is 6 feet 5 inches, which makes me wonder if he
would have done even more good by being on the court. Perhaps his program told him otherwise.

Chapters 40,41,42,43 are all on knight tours. On a chessboard (or an a × b grid) a knight’s tour is a way
for a knight to visit every square on the board. What if you insist that the tour not cross itself (Chapter 40)?
What if you insist that the tour makes a beautiful Celtic pattern (a what? Chapter 41)? What if you insist
the knight’s tour be skinny (Chapter 42)? How do you generalize this concept (Chapter 43)?

There are articles on music, math, music&math, word games, other games, a candy bar contest that a
young Donald Knuth entered, and . . . I want to say etc but it’s not clear that I have established a pattern.
This makes it a delight to read but hard to write a coherent review of.

3 Opinion

As noted above, the book is a joy to read. The diversity of topics is overall a good thing, though there may
be a topic you do not care for. As an extreme example he has a chapter that has the code and commentary
on it for the game Adventure. My darling, who is a Software Engineering and has spent (wasted?) many an
hour playing Adventure, is very interested in that. Myself. . . less so.

I predict that

(∀p ∈ P)(∃C ⊆ CH)[|C| ≥ 30 ∧ (∀c ∈ C)[L(p, c)]]

where

12

• P is the set of people who read this column.

• CH is the set of chapters of the book.

• L(p, c) means that person p liked chapter c.

13

Review of 5

Companion to the Papers of Donald Knuth
by Donald E. Knuth

Center for the Study of Language and Information (CSLI), 2010
438 pages

Paperback – New, $30.00
Paperback – Used, $25.00
Hardcover – New $62.00
Hardcover – Used $83.00

Reviewed by William Gasarch, Dept. of CS, Univ. of MD
gasarch@cs.umd.edu

1 Introduction

Companion to the Papers of Donald Knuth is really five books: (1) problems and a few solutions (30 pages),
(2) essays by Donald Knuth on some topics (10 pages), (3) conversations with Donald Knuth from 1996
(157 pages) (4) Donald Knuth’s list of papers and other information about him (100 pages) (5) an index to
this book and to the other books of Selected papers of Donald Knuth (150 pages).

2 Summary

The problems are all problems that he posed in other journals. They vary tremendously in their scope and
difficulty.

The essays are interesting and short so they make their point quickly. The essay that really gets to the
heart of what makes Knuth a great researcher is Theory and Practice and Fun which says in just 2 pages
that we should be driven by our curiosity and a sense of fun.

The conversations I will discuss in the next section of this review.
The list of papers is very nicely annotated. Most papers have brief summaries. There is a list avail-

able online http://www-cs-faculty.stanford.edu/˜knuth/vita.pdf but it does not have the sum-
maries. In this modern electronic age it would be good to have the papers themselves all online at some
website, as has been done for Paul Erdős (http://www.renyi.hu/˜p_erdos/) and Ronald Graham.
(http://www.math.ucsd.edu/˜ronspubs/).

The index is useful if you have all of the other books.

3 The Conversations

Kurt Vonnegut once said (I am paraphrasing) that interviews do not work that well since the interviewer
does not know what questions will lead to interesting responses. Kurt Vonnegut cut this Gordian knot by
interviewing himself. The conversations in Companion are between DEK (Donald E Knuth) and DK, so I

5 c©2014, William Gasarch

14

http://www-cs-faculty.stanford.edu/~knuth/vita.pdf
http://www.renyi.hu/~p_erdos/
http://www.math.ucsd.edu/~ronspubs/

originally wondered if Donald Knuth did the same. No he did not— DK is allegedly Dikran Karagueuzian,
a name so contrived it has to be real. 6

The conversations are fascinating in that they tell much about Donald Knuth and about how computer
science has changed. As I was reading them I noted some interesting tidbits for this review; however, that
soon became impossible since there was at least one on every page. I will just mention a few.

The conversations took place shortly after Knuth won the Kyoto Prize, hence some of it is about the
prize and what he will do with the money. He gave it all to various charities including helping his church
get a new organ. That seems so down-to-earth I find it charming.

I vaguely knew that Donald Knuth was the first person to really apply mathematical analysis to algo-
rithms; however, I didn’t know that Knuth himself originally saw math (his major) and computer science
(his job) as two distinct subjects with no intersection or interplay. The turning point was when he realized
that linear probing should and could be analyzed mathematically.

I knew that Donald Knuth created TEX. I had thought that one of the reasons TEX is so much better than
Troff (an older word processing system) is that TEX was written by ONE person while Troff was written by
a committee. While this may be true it is also important who the one person was. Donald Knuth learned
about every single aspect of typography while working on TEX. He consulted many of the worlds experts
and hence became an expert himself. His knowledge of typesetting— from soup to nuts— is astounding.
Here is a tidbit: typesetting a 4th grade arithmetic primer is harder than typesetting (say) Knuth Volume 3,
since they often have in such primers really big numerals (I don’t mean the numbers are large like 10100, I
mean the numerals are many inches tall).

I had often said (partially in jest) that all great scientists and mathematicians come from awful family
lives. Donald Knuth is a counterexample to this. His childhood and his own life are very happy. He was not
bored in school, he was not an outcast. He earned several varsity letters in sports for being a scorekeeper
(not for playing) and he helped the basketball team at Case (his ugrad school) win by devising a way to tell
how good a player was by using statistics. This was actually reported on by Walter Cronkite. He is still on
his first marriage and has two children John and Jennifer and four grandchildren. John is high school math
teacher and Jennifer is a homemaker. Neither of them have had a CS course for fear of being compared to
their father. All very normal and happy. This is all interesting because it’s not— that is, it’s interesting that
there are no hardships or scandals. In addition he is neither boastful nor falsely modest.

A list of tidbits:

1. The term multiset is relatively new. Knuth saw the need for a term for a set with repeated elements
and he asked Dick de Bruijn about it. De Bruijn suggested multiset which became the term. The only
competitor was bag which is dying out.

2. The Art of Computer Programming was supposed to be a book (yes ONE book) on compiler design.
But his need to get everything rigorous and right made it become what it is now.

3. Say the variable x is 5 and you do x := x + 1, so now x is 6. The fact that it was 5 is gone! This
concept, so natural to us now, was troubling to people early on in the field, including von Neumann.

4. In 1967 computer scientists either did Programming Languages or Numerical Analysis or Artificial
Intelligence. He had to define the very name of his field: Analysis of Algorithms

6Donald Knuth told me that in the hardcover version of the book there is a picture on the back cover of Donald Knuth and
Dikran Karagueuzian together. Amazing what photoshop can do nowadays.

15

5. Code Optimization: The conventional wisdom is that compiled code is only 10% slower than if you
did it in assembly yourself looking for optimizations. This is already an odd statement since it depends
on who YOU are. Donald Knuth states that he’s never seen a program that he couldn’t make 5 to 10
times faster in assembly; however, he doesn’t need that kind of speed.

4 Opinion

I like this book mostly for the conversations. They really give you insight into the Knuth more than a
biography or even an autobiography would. Donald Knuth has been called The father of computer science
and hence his thoughts are worth knowing. The book also tells you how things were in the past which is
interesting and good to know as we ponder the future.

16

Joint Review7

Horizons of Combinatorics
(Conference on Combinatorics)

Edited by Ervin Györi, Gyula Katona, László Lovász
Publisher: Springer, 2008, $129.00, 545 pages

Bolyai Society of Math Studies Volume 17

Building Bridges
(In honor of László Lovász’s 60th birthday-Vol 1)

Edited by Martin Grötschel and Gyula Katona
Publisher: Springer, 2008, $129.00, 545 pages

Bolyai Society of Math Studies Volume 19

Fete of Combinatorics and Computer Science
(In honor of László Lovász’s 60th birthday-Vol 2)

Edited by Gyula Katona, Alexander Schrijver, and Tamás Szoönyi
Publisher: Springer, 2008, $169.00, 365 pages

Bolyai Society of Math Studies Volume 20

Erdős Centennial
(In honor of Paul Erdős’s 100th birthday)

Edited by László Lovász, Imre Ruzsa, Vera Sós
Publisher: Springer, 2013, $149.00, 700 pages

Bolyai Society of Math Studies Volume 25

Reviewer: William Gasarch gasarch@cs.umd.edu

1 Overview

The Janos Bolyai Society has published 25 collections of articles from math conferences and I am sure they
will publish more. Most are in combinatorics. We review four of them and then in the opinion section we
address not only the value of these books but the value of collections like them. The first of the four, Horizons
of Combinatorics is a combinatorics conference without a more detailed theme. The second and third,
Building Bridges and Fete of Combinatorics and Computer Science were Volumes 1 and 2 of a conference
to honor Lázló Lovasz. The papers in them were mostly combinatorics though some have a computer
science flavor or application. The fourth one, Erdős Centennial is largely articles from people who spoke at
the Erdős Centennial which was July 1-5 in 2013 (I was there!). Since Paul Erdős did mathematics across
a wide swath or mathematics (not just combinatorics for which he is best known) the articles are in many
fields.

I will comment on a subset of articles from these collections. The subset is not random. It reflects my
tastes and my conjecture of my readers tastes.

7 c©William Gasarch, 2014

17

2 Horizons of Combinatorics (Volume 17)

Ballot Theorems, Old and New by Addario-Berry and Reed.
The following theorem was proven in 1887. I use modern notation.

Theorem: Assume that Alice and Bob are the only two candidates in an election. There are n + m voters
with n > m. Alice will get n votes and be elected. Bob will get m votes. Voters vote one at a time. The
probability that Alice is always ahead of Bob (except when nobody has voted) is (n − m)/(n + m).

The proof of this theorem is not hard and is given in this chapter. This lead to many variants of the
theorem: (1) what if we want Alice to always have at least k times what Bob has? (2) if n = m then what is
the probability that Alice is never behind? They also look at gambling versions and continuous versions of
these types of problems. Many proofs are given.

Erdős-Hajnal-Type Results on Intersection Patterns of Geometric Objects by Jacob Fox and Janos
Pach.

By Ramsey’s Theorem if G is any graph on n vertices then there is either a clique or ind. set of size
Ω(log n). What if G is of a certain type? Let H be a graph. Let F (H) be the set of all graphs G that do not
have H as an induced subgraph. Then there exists a constant c (which depends only on H) so that every G
in F (H) on n vertices has a clique or independent set of size ec

√
log n. Note that log n � ec

√
log n � nε .

This paper is concerned with families of graphs F where one can obtain a lower bound of nc for some
c. We state one of their theorems: Let S be a family of vertically convex sets in the plane8 Let a1, . . . , an be
n elements of S. We phrase the conclusion in two ways

1. There are either n1/5 ai’s that are pairwise disjoint or there are n1/5 ai’s that all intersect.

2. Consider the graph obtained by connecting i, j iff ai ∩ a j , ∅. This graph has either a clique or
independent set of size n1/5.

This chapter states many interesting results but has no proofs.

3 Building Bridges Between Mathematics and Computer Science (Volume
19)

On the Power of Linear Dependency by Imre Barany.
Easy Theorem: If V = {v1, . . . , vn} ⊆ [−1, 1] is such that

∑n
i=0 vi = 0 then there exists a reordering

{u1, . . . , un} of V such that (∀k)[|
∑k

i=1 ui| ≤ 1].
What happens if instead of reals you have points in R2? In Rd? We state two results:

Steinitz’s Lemma: Let d ∈ N, Bd be the unit ball in Rd. If V = {v1, . . . , vn} ⊆ B is such that
∑n

i=0 vi = 0 then
there exists a reordering {u1, . . . , un of V such that (∀k)[|

∑k
i=1 ui| ≤ d].

The paper proves this nicely by induction and also proves a weaker result which ends ≤
√

(4d − 1)/3
but with a different (and I think nicer) proof. I worked through the proof for d = 2 and will present it in
seminar— this is the highest praise I can give to an article.

The article also discusses lower bounds and generalizations. Many proofs are given.

8A set is vertically convex if every vertical line intersects it in an interval.

18

These questions and answers look like they are surely from pure math. But wait! There are applications
of this sort of thing! And I don’t mean applications to other parts of pure math! I don’t even mean applica-
tions to complexity theory! There are applications to algorithms! Here are three references to applications
from Imre Barany’s article Only one was online (alas).

1. A vector sum theorem and its application to improving flow shop guarantees. By I. Barany. Math.
Oper. Res. Volume 6, 1981, 445-452. http://www.jstor.org/stable/i288433 or if it goes away
or does not work then http://www.cs.umd.edu/˜gasarch/BLOGPAPERS/appsteinitz.pdf

2. On approximate solutions of a scheduling problem. by S.V. Sevastyanov. Metody Diskr. Analiza.
Volume 32, 1978, 66-75. (In Russian).

3. On some geometric methods in scheduling theory: a survey, Discrete Applied Math, Volume 55, 1994,
59-82.

The article is very nice but the title is a bit off since its mostly on Steinitz’s lemma. Linear dependencies
are used in many proofs, but that does not seem to be the theme.

Surplus of Graphs and the Lovasz Local Lemma by Josef Beck.
We first look at a very concrete case: The Maker-Breaker Game on an n × n board. In this game the

players alternate coloring squares of the n × n grid. Player I, the Maker, RED, is trying to get some row
or column with LOTS of RED squares. Player II, the Breaker, BLUE, is trying to just prevent Maker from
doing this. Clearly the Maker can get a row or column with n/2 RED squares. Informally, the surplus is
how much MORE than that the Maker can get if he plays optimally. This article shows that the surplus is
between Ω(

√
n) and O(

√
n(log n)2).

Let G be a graph. The Maker-Breaker Game on G is as follows. In this game the players alternate
coloring edges of G. Player I, the Maker, RED, is trying to get some vertex of high RED degree. Player II,
the Breaker, BLUE, is trying to just prevent Maker from doing this. Note that if d is the largest degree of
the graph then Maker can clearly get d/2. The Surplus of G is roughly how much more than d/2 can Maker
get.

This article proves many theorems about the Surplus of a graph, and about other games. Some of the
proves use the Lovasz Local Lemma. Many of the results appear here for the first time.

4 Fete of Combinatorics and Computer Science (Volume 20)

Iterated Triangle Problems by Butler and Graham.
Take a triangle T . Take its incenter p (the intersection of the angle bisectors). Draw lines from each

vertex to p. This divides the triangle into three triangles. Repeat this process on all three triangles. Iterate.
After n iterations there will be 3n triangles. What can you say about an nth iteration triangle? The answer
has to do with the Sierpinski triangle.

What about other ways to do this (e.g., take the centroid of a triangle)? This paper has very few theo-
rems; however, it does have lots of data and information about this problem. The answers depend on the
triangle involved and on their angles (e.g., are they rational multiples of π). The data suggests there may be
connections of some of these problems to the Farey numbers.

This paper is one that starts research on a problem. Will there be more? Hopefully yes and before the
Lovasz Centennial.

19

http://www.jstor.org/stable/i288433
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/appsteinitz.pdf

Solution of Peter Winkler’s Pizza Problem by Cibulka, Kyncl, Meszaros, Stolar, Valtr.
Peter Winkler posed the following problem: Alice and Bob are going to split a round Pizza. Bob cuts it

into (not necc. equal) slices. Then Alice takes a slice. After that they alternate taking slices; however, they
must take a slice adjacent to a slice already taken.

Clearly Bob can guarantee himself 1/2 of the pie. Winkler showed that Bob has a strategy that guarantees
5/9. He asked Does Alice have a strategy that guarantees 4/9?. This paper shows that yes, she does.

This paper blurs the line between “recreational” and “real” mathematics. Winklers result of 5/9 is
recreational in that it is clever and can be described to a laymen. The 4/9 result is very clever but likely too
long to be called recreational. The problem itself sounds recreational but that’s not really a criteria since
many deep branches of math have their start in recreational problems (notably probability).

5 Erdős Centennial (Volume 25)

Paul Erdős and Probabilistic Reasoning by Alon.
As my readers surely know, the Prob. Method is often used to prove results that do not mention proba-

bility. We mention two that are presented in this article in the hope that the probability that my readers do
not already know them is nonzero.

Theorem: (Erdős and Füredi, 1983). For every d ≥ 1 there is a set of at least
⌊

1
2 (2√

3
)d
⌋

points in Rd such
that all angles formed by three of them are strictly less than π/2.
Theorem: (Erdős 1965). If A is a set of n integers then there is a subset of size at least n/3 that has no x, y, z
such that x + y = z.

This theorems proof is so short and elegant that I sketch it: Let x ∈ [0, 1]. Let Bx = {x ∈ A | ax
(mod 1) ∈ (1/3, 2/3)}. One can show easily show that (1) Bx is sum free, and (2) if x is chosen uniformly in
[0, 1] then the expected value of the |Bx| is n/3. Hence for some x it IS n/3.
The Phase Transition in the Erdős-Rényi Random Graph Process by Bollobas and Riordan.

Let n be large. Take a random graph with cn edges. What is the expected size of its largest component?
This depends on c. For c < 1/2 the max component has expected size O(log n). If c > 1/2 then the max
component has expected size Ω(n). What happens at c = 1/2? We need to be more precise. If the number of
edges is n/2 −ω(n)n2/3 then there are many large components of about equal size. They are mostly trees. If
the number of edges is n/2 + ω(n)n2/3 then . . . the situation is complicated (though known). If the number
of edges is n/2 + n2/3 then there is one giant component that is much bigger than all fo the others.
The History of Degenerate (Bipartite) Extremal Graph Problems by Füredi and Simonovits

What is the max number of edges for a graph on n vertices? We all know its
(
n
2

)
. What if we only look

at graphs that do not have a certain subgraphs? Let ex(n,H) be the max number of edges in a graph on N
vertices that does not have H as a subgraph.

1. ex(n,C2k) ≤ 100kn1+(1/k).

2. ex(n,C4) ≤ 1
2 q(q + 1)2 where n = q2 + q + 1.

3. If n is a power of a prime then ex(n,C4) = 1
2 q(q + 1)2 where n = q2 + q + 1.

Erdős and Arithmetic Progressions by Timothy Gowers
Erdős and Turan made the following conjecture: if A is a set and

∑
a∈A

1
a = ∞ then A has arbitrarily

long arithmetic sequences. There has not been much progress on this conjecture. This is roughly equivalent

20

to saying that if a set has density 1
log n then it has arbitrarily long arithmetic sequences. This seems hard

to prove: it is not even know if there is a 3-AP. The best known result is by Sanders: If a set has density
Ω((log log n)5/ log n) then it has a 3-AP.

A 3-AP can be restated as a triple (x, y, z) such that x + z = 2y. Schoen and Shkredov showed that for
another equation a very nice result can be proven: If A is a set of density exp(−c(log n)1/(6−ε)) then there
exists x1, x2, x3, x4, x5, y ∈ A such that x1 + x2 + x3 + x4 + x5 = 5y.
Erdős’s Work on Infinite Graphs by Komjath

Let G be any graph that has K6 as a subgraph By (easy) Ramsey Theory, no matter how you 2-color
the edges of G there is a mono K3. What if G does not have K6 as a subgraph? More precisely, Erdős and
Hajnal asked (in 1967): is there a graph G that does not have K6 as a subgraph such that no matter how you
2-color the edges of G there is a mono K3? Such a graph was quickly found by both Cherlin, Graham, van
Lint, and Posa. Posa’s graph also had no K5.

Is there a graph G that does not have K4 as a subgraph such that No matter how you 2-color the edges
of G there is a mono K3? We will return to this question a bit later.

What about the infinite case? Is there an uncountable graph G that does not have K4 as a subgraph such
that no matter how you ω-color the edges of G there is a mono K3? Shelah showed using forcing that there
is a model of set theory where such a graph exists. Let M be the model and G be the graph.

The following much weaker statement is true: no matter how you 2-color the edges of G there is a mono
K3. By compactness there must exist (in the model M) a finite graph G′ with no K4 subgraph, such that no
matter how you 2-color the edges of G′ there is a mono K3. But Forcing cannot add finite graphs! Hence
there exists (in any model of set theory) a (finite) graph G′ with no K4 subgraph such that no matter how
you 2-color the edges of G′ there is a monochromatic K3.

This has got to be (informally) the most nonconstructive proof I have ever seen!
However, and perhaps unfortunately, earlier than that there already was such a finite graph. Folkman had

a gigantic example (1010... with 7 stacks of 10’s). Over time smaller and smaller graphs were found and now
the smallest such graph has 786 vertices (see www.cs.rit.edu/˜arl9577/is/folkman/paper/fe334_
mc.pdf).

6 Opinion

The papers in these volumes are not Journal papers. This frees the authors to write whatever types of paper
they want: serious math, recreational math (though it may be hard to tell the difference), surveys, original
results, include proofs, do not include proofs, starting a topic, ending a topic, giving data but no proofs. Not
including proofs of known results is not a problem in the internet age if there is a pointer to a free online
manuscript that has a proof. The variety of types of papers in these volumes is a strength. These volumes
make me question the value of journal articles which have to be of a certain form (original research).

Another issue is how interesting are the articles. This is more a function of the reader; however, I will
say that personally about 1/2 of the articles interested me enough to want to read them. Another 1/4 were
interesting enough so I wanted to know the result.

Should YOU buy this series of books? This is a hard and more profound question than it may appear.
20 years ago I would say that you should certainly get your library to buy this series so that students and
profs could goto the library, check out the books, and/or photocopy articles from them (you can ask your
grandfather what a library is, what checking a book out means, and what a photocopy is). In the internet age
where everything is online (many of these articles are online) it is less clear. I admit that having an actual

21

www.cs.rit.edu/~arl9577/is/folkman/paper/fe334_mc.pdf
www.cs.rit.edu/~arl9577/is/folkman/paper/fe334_mc.pdf

BOOK on my desk motivates me in a way that just knowing there are articles on the web does not. But
books are expensive to buy (and likely expensive to produce). And I suspect that my great nephew will say:
There goes Uncle Bill babbling about those old fashion things called books! You can’t do a search on them,
you can’t make the font size go up up and down, I don’t know what the old coot sees in them. Then again, my
own grand-daughter doesn’t understand why I like old fashion 2-D TV, and not her darn 3-D contraptions
that I can never get to work.

You could just goto the Bolyai Society Math Studies website and look at tables of contents and find the
articles on the web. But will you? The rather innocent question of Should your have your school library
buy this (or any) series of books? leads to profound questions about how the book world, and the world in
general, is changing.

22

Review of9

Bayesian Reasoning and Machine Learning
by David Barber

Cambridge University Press, 2012
697 pages, Hardcover, US$ 90

Review by
Matthias Gallé, matthias.galle@xrce.xerox.com

Xerox Research Centre Europe

1 Introduction

Yet another book about machine learning? you may be thinking if you are not working in this area and
are getting tired of the hype in newspaper, companies and conferences. I would like to add two caveats
to such a potential exclamation: first, there are not that many textbooks on the area as one would imagine
(David Barber lists 10 in his introduction, and I had a hard time to bring this number up to 15). And,
second, strictly speaking, this book is not only about machine learning. It is definitively not an applied
toolbox of algorithms and recipes on how to process any data you get. Bayesian Reasoning and Machine
Learning (BRML) tries to present a unified view of Machine Learning , using as much as possible a Bayesian
approach. It is therefore fitting that BRML uses graphical models as underlying general representation
throughout the book. In a nutshell, graphical models permit one to represent random variables (nodes)
and their dependencies (edges), and generic algorithms exists for inference and learning. By stating all the
dependencies, it suits a Bayesian treatment and at the same time it is general enough so that many algorithms
and approaches can be represented as graphical models.

2 Summary

BRML consists of 28 chapters, divided into 5 parts.
Chapter 1 starts gently, explaining – using several examples – notions around probability (conditional

probability, independence, Bayes theorem, etc). Chapter 2 gives the necessary background in graphs and
matrix representation showing how several complex functions can be cast as matrix operations. Chapter 3
and 4 are about the most important notions of the book, the one of graphical model and belief networks.
Here too the author gives several examples and tries to only give the math that is needed. Towards the
end of the chapters the explanations become deeper and more technical. Chapter 5 follows this trend with
some exhaustive explanations of several algorithms using graphical models, and the entire Chapter 6 is
dedicated to the Junction Tree Algorithm. To finish this first part, Chapter 7 englobes other important
concepts connected to graphical models (decision trees, Expectation-Maximization (EM) algorithm, etc).

Part 2 gives more background on notions related to learning. It starts with tons of definition (the different
probability distributions to be used later on) in Chapter 8 and Chapter 9 considers how to learn the parameter
for this distributions and how they relate to the graphical models studied in Part 1. Chapter 10 is a nice wrap-
up, using Naı̈ve Bayes as an example to review the concepts seen so far. Chapter 11 is devoted to the concept
of hidden (latent) variables and the general two families to learn them (EM and Variational Bayes). No book

9 c©2014, Matthias Gallé

23

mailto:matthias.galle@xrce.xerox.com

on learning can be complete without mentioning Occam’s’ Razor: this is done in Chapter 12 around model
selection.

Part 3 starts like a classical book on machine learning: Chapter 13 describes the high-level differences
between supervised vs unsupervised learning, Bayes vs frequentist and generative vs discriminative models.
The short Chapter 14 talks about the Nearest-Neighbor algorithm and is a nice example of an ongoing pattern
in the book: every time a general machine learning algorithm is described, the author then tries to explain
it in Bayesian terms clarifying the differences and highlighting advantages and drawbacks. Chapter 15 is
all around the most important acronyms in Machine Learning: Principal Component Analysis (PCA), Sin-
gular Value Decomposition (SVD), Probabilistic Latent Semantic Analysis (PLSA), Non-negative Matrix
Factorization (NMF) and Canonical Correlation Analysis (CCA). Chapter 16 then deep-dives into super-
vised linear dimensional reduction techniques, notably Fishers’ Linear Discriminant Analysis. Chapter 17
explains some of the most well known classification algorithms (logistic regression, perceptron, Supervised
Vector Machines (SVM)) as parts of the larger family of linear models. Chapter 18 then puts on the Bayesian
lenses and explains Bayesian formalizations of such linear models. Chapter 19 is devoted to non-parametric
Bayesian: this is a growing trend in machine learning, and the book explains the basic building block here,
namely Gaussian Processes. Chapter 20 is about mixture models and it showcases important examples:
Gaussian Mixture Models, k-means and Latent Dirichlet Allocation. The short Chapter 21 just explains
probabilistic PCA and this part finishes with a case-study on measuring the ability of players (Chapter 22).

Part 4 finally shows powerful usages of graphical models by the means of Dynamical Models. Chapter
23 is about general Markov models (discrete time), and Chapter 24 about linear dynamic system (continuous
time). Chapter 25 is much more technical than the others and shows different ways of combining both
previous models by using a discrete number of linear dynamic systems. Chapter 26 is called distributed
computing and is about neural networks, which is arguably the most popular topic in machine learning these
days.

The last Part of the book deals with approximate inference. Chapter 27 treats the two big approaches for
sampling (Gibbs sampling and Markov-Chain Monte-Carlo methods) and Chapter 28 is about deterministic
approximate inference (the variational approach).

The Appendix contains basic notions of linear algebra and calculus. Additionally, the author chose to
explain here the most common used optimization techniques, so that a reader not familiar with them should
maybe look them up before entering the more technical chapters.

3 Opinion

The book promises to “convey the basic computational reasoning and more advanced techniques [..] for
students without a firm background in statistics, calculus or linear algebra”. Specially in the first chapters,
I felt a certain tension between not going too much into mathematical details, but at the same time being
formally correct and not hand-waving explanations away. As such BRML is clearly not deep enough for a
graduate student or researcher who wants to know everything about a specific technique. At the same time,
it is far from being a toolbox description for machine learning application, or a gentle introduction to the
field. For both cases (although more so for the latter) there are several books and online courses out there.

Trying to convey more than an overall intuition of machine learning algorithms without assuming a
strong mathematical background is not an easy task. The author takes up this challenge by providing regu-
larly lots of examples. If a reader really wants to understand a concept these will certainly help, while they
can be ignored if one just wants to get a general idea.

24

Putting graphical models in the beginning makes for a hard start, but this gets payed back afterwards
when several other algorithms derive easily making reference to these initial chapters. I enjoyed the expla-
nation of several topics, like the presentations of Markov models (Chapter 23) and Gibbs sampling (Chapter
27).

So, who should read this book? The author targeted it towards “final year undergraduates and graduates
without significant experience in mathematics”. I think he achieved his goal, although the book certainly is
formal (specially in the latter chapters), many formulas are completely derived and the occasional curious
student who just wants know what machine learning is about or how to use it may get disappointed.

In my opinion the readership who would benefit the most of BRML would mainly be two groups:
on one hand graduate students or researches in a scientific field (notably physics, engineering or biology)
who are not afraid of a bit of math and want to use and understand methods of machine learning. While
understanding the whole book will probably not give you enough background to start doing a contribution
to hard-core machine learning, it will for sure be more than enough to get a good notion of computational
reasoning and let you easily participate at a machine learning cocktail party. The second group which I
encourage to have a look at this book are lecturers. Upon contact, the author provides access to a set of
slides (604 slides last time I checked) in LATEX(Beamer package). This is in addition to the public Matlab
toolbox to which the book refers to constantly10, and the whole design of the books (use of examples, large
lists of exercises, detailed derivation of important formulas) is very well suited for a course. Those parts
that are harder to digest will be eased with a good explanation, while giving enough background to check
the necessary details.

10http://www.cs.ucl.ac.uk/staff/d.barber/brml/

25

http://www.cs.ucl.ac.uk/staff/d.barber/brml/

Review of11

Integrated Methods for Optimization
Second Edition, 2012

by John Hooker
Vol. 170, International Series in Operations Research and Management Science, Springer

Hardcover

Review by
S.V.Nagaraj svnagaraj@acm.org

RMK Engg. College, India

1 Introduction

This review concerns the second edition of a book on Integrated Methods for Optimization. The book
integrates key concepts from mathematical programming and constraint programming. It has been published
as Vol. 170 of the International Series in Operations Research and Management Science by Springer. The
first edition of the book was published as Vol. 100 of the same series. The book is available in both
hardcover (ISBN 978-1-4614-1899-3, price US $119) and eBook (ISBN 978-1-4614-1900-6, price US $
89.95) formats. A solution manual for instructors is available. The book has been authored by John Hooker
well-known for his contributions to mathematical optimization. The author has been a strong votary for the
advocacy of integrated methods for optimization.

2 Summary

The book has eight chapters.
The first chapter is the introductory chapter. It outlines the framework of the author that integrates

methods for search, inference, and relaxation. The role of duality is mentioned and the advantages of
integrated methods are highlighted. The chapter looks at some applications and software packages for
solving problems by employing integrated methods for optimization.

The second chapter contains many examples of practical problems such as those related to freight trans-
fer, production planning, scheduling employees, product configuration, and planning and scheduling.

The third chapter focuses on the basics of optimization. Linear programming, non-linear programming,
dynamic programming, and network flows are briefly explained. In linear programming, the Simplex method
developed by George Dantzig in 1947 is discussed. This algorithm is known to take exponential time for
some inputs. Polynomial time algorithms such as the ellipsoid algorithm of Khachiyan and the interior
point algorithm of Karmarkar are not described in the book. Non-linear programming is helpful for solving
convex relaxations and reducing variable domains in global optimization problems. Dynamic programming
can be helpful for domain reduction in sequencing problems. The book’s sixth chapter on inference makes
use of dynamic programming. Network flows have a role in filtering methods for several global constraints.
The well-known minimum-cost network flow problem is a special case of linear programming. The chapter
describes the network simplex method for network flows. Well-known algorithms for network flows such as

11 c©2014, S.V.Nagaraj

26

the Ford-Fulkerson algorithm and other newer algorithms are not mentioned in this chapter. The topics in
this chapter are selective and their treatment is not intended to be comprehensive.

The fourth chapter is on duality. Various types of duality are discussed such as inference duality, relax-
ation duality, linear programming duality, surrogate duality, Lagrangian duality, sub-additive duality, and
branching duality. Duality is an important concept that helps to merge optimization techniques. It links
search with inference and relaxation. It is possible to solve a problem by searching for the most beneficial
solution but we may simultaneously search for a solution of the inference dual and/or the relaxation dual.
Many successful optimization methods make use of the concept of duality.

The fifth chapter describes methods for search. Search is the enumeration of problem restrictions. The
chief concern in search is deciding where to look next. Exhaustive search methods often take one of the fol-
lowing two forms: branching search and constraint-directed search. This chapter concentrates on branching
search, constraint-directed search, and also local search. Local search algorithms proceed from solution to
solution in the space of prospective solutions by applying local changes, until a solution viewed as optimal is
found or a time bound is passed. The chapter illustrates the application of search techniques by considering
problems such as airline crew scheduling, satisfiability of propositions, and single-vehicle routing.

The sixth chapter focuses on the concept of inference. Various kinds of inequalities and constraints
are discussed. Inference and relaxation help to make search more intelligent. Inference helps to extract
implicit information about where the solution may reside. This helps to reduce the amount of search needed.
Inference may be considered as a way of learning more about the search space so that time is not spent in
looking at the inappropriate places.

The seventh chapter looks at relaxation methods. It addresses linear inequalities and a diversity of
constraints.

The eighth chapter is essentially a dictionary of various kinds of constraints that are often encountered
in practical problems.

3 Opinion

The second edition is an important and timely update to the first edition. Its release is fully justified given
the numerous developments in the field of integrated methods for optimization since the appearance of the
first edition. The second edition includes three more chapters when compared to the first edition. These
chapters comprise the chapter containing examples, the chapter on optimization basics, and the chapter
on duality. The new edition provides solutions to exercises. It provides useful ideas from mathematical
programming and constraint programming. An integrated approach is helpful as software packages now
tend to use techniques from both the fields. Many books on operations research do not cover constraint
programming but this one does. The detailed treatment of constraint programming in the book is worthy of
praise. It is likely that in the future, integrated methods for optimization will be increasingly emphasized in
books on mathematical optimization.

This book will be useful for students, practitioners, and researchers. Students studying computer sci-
ence will find this book particularly useful as there are not many books for them that give an insight into
mathematical programming or global optimization. The benefits of combining mathematical programming
and constraint programming are significant such as more potential for modeling, faster computation, and
shorter computer programs. It also makes it easier to solve real-life problems with the help of software
packages and computers. The author introduces a useful framework that integrates search, inference, and
relaxation. The book will be very useful for pedagogy as the concepts are explained clearly and there are

27

numerous exercises and bibliographic notes, in addition to a solution manual for instructors. The book is
well organized in spite of the diverse topics covered by it.

Mathematical programming and constraint programming are vast fields, however, this book provides
useful snapshots from both the fields. In the revised edition, the author has added numerous references to
the bibliography. This is very useful for those who wish to know more. The index is quite satisfactory. I
strongly recommend this book for those interested in gaining from integrated methods for optimization.

28

Review of12

Programming with Higher-Order Logic
by Dale Miller, Gopalan Nadathur
Cambridge University Press, 2012

320 pages, HARDCOVER

Review by
Vaishak Belle

vaishak@cs.toronto.edu
University of Toronto, Canada

1 Introduction

Formal models of systems in computer science typically involve specifications over syntactic structures,
such as formulas in a logic, λ-terms, π-calculus expressions, among others. Logic programming is one
way to realize these specifications and studying such models; Prolog, for example, is an important logic
programming language heavily used in declarative frameworks in computer science. This book presents
deep techniques that take the many ideas at the heart of Prolog, and extend its power and expressivity by
elegantly combining these ideas with a simply typed version of higher-order logic. The end result is a rich
programming language, called λProlog, that benefits from the paradigms of higher-order logic and logic
programming.

The technical material in the book is perhaps most readily accessible to readers familiar with Prolog and
aspects of functional programming. That is, the book does not deal with introductory material on either of
these topics. The proof-theoretic framework used to justify the various derivation rules also require readers
to be familiar with logic.

2 Summary and Review

Broadly speaking, this book is about how logic programming can be realized in a higher-order logic set-
ting. There are interesting benefits to such a realization: it provides an extension to the expressivity of a
popular logic programming language, such as Prolog, in allowing for λ-abstractions. Most significantly,
the endeavor behind the book is to take this realization as a full-fledged programming language, supporting
complex data types and other kinds of modularity encountered in conventional programming languages.
However, combining logic programming and higher-order logic in this style raises technical concerns, es-
pecially in providing a semantics to the programming language. To deal satisfactorily with these issues, the
authors appeal to the sequent calculus, among other things, all of which is shown to lead to a computational
methodology over formal objects. The resulting programming language is then demonstrated to be expres-
sive enough to represent many applications, such as π-calculus specifications and functional programming.
Their ideas are actually implemented in a system called Teyjus. However, the book should not be seen as
a manual for this implementation, and indeed, the notions discussed in many chapters of the book are at a
fairly high level of generality.

In the sequel, I will discuss the essentials of the individual chapters in the book.

12 c©2014, Vaishak Belle

29

• Introduction. The authors discuss the nature of the endeavor in this chapter. Roughly speaking, there
are two distinct views on how logic is used in computer science. In the first, logic is viewed as a
mathematical language to encode truths about a system; for example, in dynamic logic, programs are
syntactic structures in a logical language, and logic is used to reason about the system. In the second
view, expressions in the logic, such as terms and formulas, are understood as elements of the computa-
tion. Here, one might then search for a proof for a goal, as done in logic programming, or sometimes,
computation is about reducing goal terms to some normal form, as in functional programming.

This book is about logic programming, and so it clearly falls within the second view. In general
terms, the logic programming paradigm works as follows. Assume a logical language and a particular
signature S , consisting of predicate and function symbols. Using the symbols from S , programs or
rules δmay be specified. The aim then is to obtain a proof for some goal formula φ, denoted S ; δ→ φ.

The second concern the authors clarify in this chapter is the sense in which higher-order logic is un-
derstood in the book. In philosophy, there is often the distinction made between first-order logic and
second-order logic; the latter allows us to capture the standard model of arithmetic, but it is not recur-
sively axiomatizable. Second-order logic is sometimes called higher-order logic in this sense. This is
not what the authors are after. They are more concerned with quantification over λ-expressions, which
allows one to form abstractions over formula expressions and is a powerful programming paradigm.
Putting this together, the book is concerned with logic programming, that is, finding proofs for goal
formulas φ, when programs δ may include both first-order terms and λ-terms.

To get a flavor of the kind of programs that can be expressed in the language, consider the following
example from the book:

rel R :- primrel R.

rel (x\ y\ sigma z\ R x z, S z y) :- primrel R, primrel S.

This encodes “relationships” between individuals. Here, primrel is a predicate for a “primary rela-
tion”, e.g

primrel father & primrel mother & primrel wife & primrel husband.

That is, predicates father, mother, wife, and husband, all of which are binary, are classified as being
primary relationships. From primary relationships, other relationships can be extracted. So the first
line of the program is saying that if R is a primary relationship, it is also a relationship. The second
sentence is saying that if R and S are primary relationships, then λxλy∃z[R(x, z)∧ S (z, y)] embodies a
relationship between x and y. That is, there is an individual z such that R(x, z) and S (z, y) hold, which
would then mean that x and y are related. If the user were to now include that Alice is Bob’s wife, and
Mary is Alice’s mother, the relationship between Bob and Mary would be implicit in this program.

Analogously, (complex) goals can be defined. For example, in one of the more expressive program-
ming fragments considered in the book (cf. discussion on First-Order Hereditary Harrop Formulas
below), we may give goals such as ∀p(p) which simply encodes ⊥, and ∀p((A ⊃ p) ⊃ (B ⊃ p) ⊃ p)
which simply encodes A ∨ B. For a more interesting (and impressive) example query, consider the
Fibonacci numbers. Let us suppose (fibonacci n m) indicates that the nth Fibonacci number is m.
Then the following query can be used to search for all numbers 0 ≤ n ≤ 20 such that the nth Fibonacci
number is n2:

30

fib_memo 20 (fibonacci\ sigma M\ fibonacci N M, M is N * N).

Here, fib memo is used to compute and store an initial part of the fibonacci relation; its definition
appears in the book and will not be reproduced here. Thus, in the above query, we are invoking the
predicate fib memo with an input 20, applied to the expression

λ f∃m[f (n,m) ∧ m = n × n],

with f denoting the Fibonacci relation.

The reader may verify that n = 0 satisfies this query (the 0th Fibonacci number), as does n = 1 (the 1st

Fibonacci number) and n = 144 (the 12th Fibonacci number).

• First-Order Terms and Data Representation. This chapter sketches the logical language and how
data will be represented, often mixing linguistic and meta-linguistic notions. This has the advantage
that a reader intending to delve into programming would know how to begin immediately. The actual
variant of higher-order logic that is used in the book is Alonzo Church’s Simple Theory of Types.
Therefore, not surprisingly, types and typing constructors play a major role in the presentation. It is
shown, for example, how abstract objects such as binary trees can be represented.

For this logical language, complex formulas are built in the usual way, using logical connectives such
as ¬,∧,⊃. Logical expressions appearing in the book are assumed to be universally quantified from
the outside, following notions from logic programming. They also show how imperative programs,
such as while loops, can be defined as first-order terms. The main concern with a programming
language that uses the expressivity of first-order logic is this: how can we unify over first-order terms
with equality? The authors discuss their strategy here which involves the reduction of complex terms,
the orientation of variables and finally, the elimination of variables.

• First-Order Horn Clauses (FOHC). This chapter presents the first installment of the logic program-
ming methodology in the book, based on Horn logic. Recall that given a program δ written using
symbols from some signature S , the task is to find a proof for a goal formula φ. In this chapter, δ
is built from Horn clauses, and φ is allowed to also mention disjunctions and existential quantifiers;
so this is a reasonably expressive logic programming fragment. The question, then, is how φ is to be
proved and the book introduces the search semantics for this task. A detailed programming exercise is
provided, where the authors encode reachability in a finite state machine. Other aspects of interacting
with the programming system, such as how to check for multiple proofs, are also discussed.

• First-Order Hereditary Harrop Formulas (FOHH). This chapter investigates a more expressive
fragment than the version of first-order Horn logic considered in the previous chapter. Basically,
this fragment allows implications and universal quantifiers in a certain way in the goal formula φ.
An interesting example illustrating hypothetical reasoning is considered for this new fragment. The
authors also provide an illuminating analysis of the symbol-level manipulations, on the one hand,
and the knowledge-level semantical considerations, on the other. For example, it is shown that the
sequents computed for the FOHH fragment is sound and complete for intuitionistic logic, but not
sound for classical logic.

• Typed λ-Terms and Formulas. The two programming models above focused only on first-order
logic. This is the first chapter where the discussion is taken to a higher-order logical setting. More pre-
cisely, as mentioned, using the simply typed λ-calculus the expressivity of the programming language

31

is extended with λ-terms. For example, the extended language allows terms of the form λ fλx(g(f (x))).
For this extended language, the authors then discuss how these abstractions are to be interpreted by
using a kind of formula rewriting. It is then shown that this conversion mechanism is very expressive,
capable of defining functions over natural numbers, such as Church numerals. The chapter concludes
with many illustrations on unification in higher-order logic.

• Using Quantification at Higher-Order Types. This chapter is concerned with the use of predicate
quantification in computations: that is, since predicates essentially correspond to procedures, the
treatment of predicates as variables would form the basis of higher-order programming. There are
number of pragmatic issues to be discussed for doing this, and the authors explore these issues here.

• Structuring Large Programs. This chapter presents ideas on how large programs can be handled
manageably, essentially by conceptualizing a kind of modular programming. That is, by appropri-
ating scoping of variables, a “module” construct is introduced, somewhat analogous to the “class”
abstraction in conventional programming languages. It is worth reiterating here that these constructs
basically macro expand into logical formulas; that is, they are defined entirely within the logic. A
number of examples are also given on how complex data structures can be formalized using these
constructs.

• The next two chapters explicate fully the expressivity obtained from λ-abstractions, how they can be
used to build higher-order terms, and most significantly, how unification can be defined over such
terms.

• The last three chapters discuss applications of the programming language and techniques discussed in
the previous chapters. They show: (a) how proof procedures can be implemented, (b) how functional
programming can be interpreted, and (c) how π-calculus can be encoded in their proposal. The actual
specifications and encoding seems quite natural, perhaps suggesting a general way to analyze these
different computational notions.

3 Opinion

The book studies how logic programming can be extended to express and reason with higher-order fea-
tures, such as λ-abstractions. Of course, then, the book would certainly be of interest to computer scientists
working in the areas of logic programming and functional programming. However, more broadly, I think
the book would also be of interest to computer scientists in other areas, to see how computations can be
defined over logical specifications, how such specifications can be defined in a modular fashion, the sub-
tleties of abstraction, among other notions. While the presentation of the material is fairly involved, a reader
skimming through some of the application-oriented and example-filled chapters might obtain insights on the
richness of such syntactic structures. In my view, the book provides an interesting integration of two major
computational paradigms founded in logic.

32

Review of
People, Problems, and Proofs13

Author: Richard Lipton and Ken Regan
Publisher: Springer, 2014

ISBN 978-3-642-41421-3, $40.00

Reviewer: William Gasarch gasarch@cs.umd.edu

1 Introduction

This is the second book to be written based on the blog Godel’s Lost Letter and P=NP. The first one was
The P=NP Question and Godel’s Lost Letter. I reviewed that one in the December 2010 issue of SIGACT
news.

I write this review in the form of a series of fictional blog posts. If there is a comment by, say, Colbert
Nation, then that does not mean that someone named Colbert Nation actually thinks that. It may mean that
I think that Colbert Nation thinks that.

Do not confuse this with my real blog or theirs.

INTRODUCING LIPTON-REGAN REVIEW BLOG
April 1, 2014

This blog will be dedicated to reviewing the Lipton-Regan book People, Problems and Proofs. The
book is based on their blog Godel’s Lost Letter and P=NP.

I have read the entire book so I will give my general impressions before blogging on particular articles.
When I read their blog I often read it, get interested, but then something comes up so I can’t finish it and

I promise I’ll get back to it tomorrow. Like that song: The blog will get read tomorrow! Bet your bottom
dollar that tomorrow, I will read! Yet having it in book form it seems easier to read. It seems that the
chapters in this book are shorter than the blog. If so that’s a bit odd since one would think the book version
could afford to be longer.

The upshot is positive— I read the entire book (rare for a math book) understood most of it (rarer still)
and am inspired to read more about the topics he introduced, and try to prove things for myself. I’ll prove
the ther-ems tomorrow! Bet your bottom dollar that tomorrow, I will prove.

ARE LIPTON AND REGAN REALLY THAT NICE?
April 15, 2014

Richard Lipton and Ken Regan are nice people. Or their blog-selves are nice people. Most chapters
have as its title a person and a subtitle that is more about the content. The link between the person and the
content varies. His descriptions of the people in the title of the chapters is always quite positive.

In Chapter 34, titled Sam Buss: Bounded Logic, Lipton talks about two courses he had in logic. In one
the professor was often confused. The other course was taught in a unmotivated way. He said they were
both great courses. That’s being too nice.

The chapter itself was also nice. It involved ways to write quantifiers and refers to a result (which I will
look up tomorrow) about inexpressibility.

Chapter 38 is about definitions. The title is Alfonso Bedoya: Definitions, Definitions, and Definitions.
You may be wondering who is Alfonso Bedoya?. If you are under 35 you’ve probably already Googled it on

13 c©William Gasarch, 2014

33

some device you carry around and found out that he was the character Gold Hat in The Treasure of Sierra
Madre who uttered the famous line:

Badges? We ain’t got no badges. We don’t need no badges.
I don’t have to show you any stinking badges!

(Number 36 in the American Film Institutes 100 best movie quotes.)
Their point is that you don’t need definitions— they can always be removed. I thought they would say:

Definitions? We ain’t got no definitions. We don’t need no definitions.
I don’t have to show you any stinking definitions!

But they cleaned it up (I didn’t even know it was dirty!) to

Definitions, definitions, we don’t need no definitions.
I’m surprised they didn’t also remove the double negative, in case children are reading, to obtain

Definitions, definitions, we don’t need any definitions.

The chapter itself was nice. It was about what makes a nice definition, and it had some nice history. It
was material I already knew but nice to have it all laid out.

COMMENTS:

Town Falconer: You forgot to mention the one time they really were nice to a fault. They were nicer to
Deolalikar, the guy who rudely wasted their time with a false proof that P,NP proof.

Glacial Warmish: Gee Town, if we ever turned out blog into a book nobody would accuse you of being
to nice. Anyway, they wisely spend was Chapter One, The Claimant, the readers, and the crowd, not
replicating their blog, but telling the whole story about Deolalikar from start to finish. This is really good
since now that the end is known its good to see how it all began. However, Town, you are right, Lipton and
Regan do not have any unkind words about him at all. Not even a tepid he should at some point make a
formal retraction.

Deolalikar did not quite intend his proof to go public when it did. That gives him more sympathy.

Ken Regan: Too nice! How nice of you to say! However, note that the first paragraph of Section 1.12 of
Chapter One I do note that Deolalikar has not addressed the issues raised. So there!

Sonata Consort: Ken, you call that not-being-nice? You use words like Unfortunate and phrases like we
glean that (the revised version) did not increase appreciably in content. Only nice people write like that. If
I had spend a month pouring over an obviously flawed paper I would have written

REST OF THIS COMMENT DELETED BY THE MODERATOR

One-Cat Tree: The chapter was more about crowd sourcing math than about the proof itself. This is an
interesting topic; however, I think Terry Tao’s polymath problems are a better and more productive example.
And I also think that Lipton-Regan are too nice to say they disagree with me.

H. K. Donnut: Wow, it sounds like Chapter One is awesome. Would you say it’s worth the price of the
book?

Bill G: Well . . . I got my copy for free. However, yes, Chapter 1 was, as the kids say, jawesome!

34

Not Porn: I find your posts very nice. For something even nicer click HERE for what I promise is NOT a
porn site. At least not in most states.

FOURTEEN LIGHT CHAPTERS
April 30, 2014

Not every post can be about an interesting piece of mathematics. It would just be too hard (though Terry
Tao seems to manage it). And in fact Lipton-Regan do not attempt this. Of the 63 chapters in the book, 14
of them are more about math then have hard math in them. Things like how to guess what a result will be,
how to try to prove it, the importance of a good notation, how to write up a result. These chapters were light
reading but still informative.

COMMENTS

Colbert nation: HEY, it can either be light reading OR informative, but it can’t be both. We’re at war here,
pick a side!

Bill G: Here is an example. Chapter 2, titled Kenneth Iverson: Notation and Thinking didn’t have any real
math in it but it did tell me the following:

1. Descartes is the first person to use x4 instead of xxxx.

2. Euler is the first person to use
∑

for summation and also the first one to use the notation f (x) for a
function.

3. There is some debate about whether π was the right number to since 2π come up more often.

Alma Rho-Grand: Hey, YOU blogged on the π thing yourself. So that can’t be news to you.

Bill G: Yeah, but I FORGOT! As I was reading it I thought it was a neat issue to raise before I saw that I
was the one who raised. Awkward! More to the point— this book is good at reminding you of things you
once knew.

FORTY NINE HEAVY CHAPTERS
May 1, 2014

If there are 63 chapters and 14 are light then 49 must be heavy. Actually the world is not quite so binary.
However, there are 49 chapters that have math in them, much of it new and interesting. Since blogs are
themselves summaries if I summarized all of them we may end up with some Quantum effects (Chapter 63
is Charles Bennett: Quantum Protocols). Hence I summarize just a few.

Chapter 37 is titled Thomas Jech: The Axiom of Choice. Recall the usual axiom of choice:

Let I be a set (it could be of any cardinality). Assume that for every i ∈ I there is a set Xi. There exists a
function f (a choice function) from I to

⋃
i∈I Xi such that f (i) ∈ Ai.

Look at the following restrictions of this. Let Cn be the following statement:

Let I be a set (it could be of any cardinality). Assume that for every i ∈ I there is a set Xi such that
|Xi| = n. There exists a function f (a choice function) from I to

⋃
i∈I Xi such that f (i) ∈ Ai.

35

For which n,m does Cn imply Cm? This chapter gives a clear statement of when this is true and gives
some proofs of the easy direction (showing that Cn implies Cm). The hard direction, showing that Cn does
not imply Cm, is really hard— it involves constructing models of set theory where Cn is true but Cm is not.
These proofs are wisely omitted.

Chapter 43 is titled Denis Thérien: Solvable Groups. Recall that the complex numbers are algebraically
closed. Let us put that a different way: If you want to solve a polynomial p(x) = 0 over the rationals then
there will be a large enough field extension of the rationals where it has a root.

What if you are trying to solve a group equation over a group, such as ax = bx over S 5 × S 7 where
a = (1234) and b = (13)(15). (I honestly do not know if that has a solution). If there is no solution then is
there some group that contains S 5 × S 7 as a subgroup where there is a solution? For this equation I do not
know. But more to the point, is there some general theorem that says you can always find a larger group
with a solution? NO. In this chapter they give an example where you cannot find a larger group (and they
prove it works— it’s not that hard) and state some theorems and conjectures about this issue.

Both Chapter 37 and Chapter 43 were excellent since they told me about a problem I had not thought of
but once introduced were very interesting. In both cases they gave me a simple proof that I could follow. I
plan to read more on these topics. Tomorrow.

COMMENTS:

Tim Andrer Grant: Is the math serious or recreational?

Bill G: To understand the statements of the theorems you need to know some math, say that of a sophomore
math major. Even then, some terms would have to be explained to you. So you might say the statements
(not the proofs) are recreational to people who read Martin Gardner’s or Ian Stewart’s columns AND went
on to learn some more math.

Ana Writset: Why are the names of the comments so odd? Even mine!

Bill G: Aside from Bill G, Not Porn, and Colbert Nation all of the names are anagrams. Some of the
anagrams are from the April 1, 2014 post on the Godel’s Lost Letter Blog (Lipton-Regan blog) and some
are from an April 1, 2013 post (more properly, a paper pointed to from that post) of computationalcomplexity
blog (Fortnow-Gasarch blog).
WHO SHOULD BUY THIS BOOK?
May 15, 2014

If you are an undergraduate in math or CS (and like theory) then this book will tell you some tips on
how to get started in research and give you some nice topics to read up on, though some may be hard. As
you go from ugrad to grad student to professional the light chapters will get less interesting and the heavy
chapters will get more interesting. I think Lipton and Regan have calculated the exact

right balance so the book is good for anyone.

36

Review of14

Who’s Bigger? Where Historical Figures Really Rank
by Steven Skiena and Charles B. Ward

Cambridge University Press, 2014
379 pages, Hardcover

Review by
Nicholas Mattei

nicholas.mattei@nicta.com.au
Optimization Research Group

NICTA and UNSW

1 Introduction

Steven Skiena and Charles Ward ask an interesting question: can we say whose historical significance
through purely statistical means using only public data? The answer is this book and its enjoyable answer,
maybe. While at the end of the day this book is more of a playful walk down history the question itself is
intriguing. Extremely data driven at its heart, Who’s Bigger manages to entertain and enlighten throughout.
It is an easy, enjoyable read that anyone who loves history and trivia, along with a fondness for arguing over
ephemeral measures of “importance,” will never want to put down.

2 Summary

The book is divided into two main parts and several appendices. Using Wikipedia (and Google nGrams for
additional analysis) the authors rank order every person that is significant enough to have a Wikipedia page.
This ranking of over 800,000 individuals serves as a jumping off point for the authors to explore a number
of topics related to gravitas, celebrity, and the ways in which we are remembered (or not).

The first several chapters provide an overview of the datasets and ranking methodologies that are used
throughout the rest of the book. There are also several different visualizations that are explained in the
first chapters. These give the reader an understanding of the sheer volume of data that has gone into what
is to follow. From the first chapter, Skiena and Ward jump in front of many of the questions of bias and
sufficiency that hard core academics would have about this undertaking. Skiena and Ward do a nice job
of answering many of these questions and emphasize that the methods employed can, despite the inherent
bias of using the English language Wikipedia to compare the significance of topics as diverse as American
presidents and Chinese artists, shed new light on some interesting questions. The key point being that the
content of the open access Wikipedia does capture an idea of memes or mindshare — the importance that
the users of Wikipedia give to the topics. While a historian or literary critic may question the significant
conclusions that can be drawn from such a study, the results are still informative and entertaining in their
own right.

I found the “Who Belongs in Bonnie’s Textbook?” chapter to be one of the most interesting. The
chapter focuses on a 5th grade history textbook and its list of “250 figures highlighted in the text.” Skiena
and Ward walk through many of the figures in the textbook asking, “why this figure and not that one.”

14 c©2014, Nicholas Mattei

37

This comparison is investigated not only their significance scores, but the required nature of some of these
figures for different state curricula. They identify several important omissions and make some well reasoned,
concrete suggestions for changes to the contents of the history text. This type of analysis, a more objective
and critical look at what our children are learning, is one of the big messages that the book can lay claim
too.

The later chapters of Part I compare the compiled significance rankings to other measures of historical
merit, specifically, the Baseball Hall of Fame and the Hall for Great Americans. As the authors propose these
two institutions as qualified arbiters of historical importance and compare the results of their method (and
hindsight) to the selection processes for the two halls. I found the discussion (repeated in later sections)
of the year over year significance of those included in the respective halls to be of great interest. Seeing
the relative significance drop over a number of years, “to clear the backlog of qualified candidates,” was
interesting and raised a point I hadn’t thought of before. Namely, it’s hard to select a set number of well
qualified individuals for an award that is given annually; awardees may just slip in because someone has
too. The rest of discussion in these sections is lively and informative. There is an interesting analysis of the
ways in which fame decays, which allows the authors to discuss their “decay” model, which allows them
to compare historical figures to more modern ones. These chapters lay the remainder of the foundation for
may of the interesting patterns that are observed in Part II.

Part II of the book is, for me, the most entertaining. The authors take us on a journey through a dizzy-
ing array of domains, ranking figures in each, with chapters on American political figures, world leaders,
science, religion, sports, and the arts. Each section contains a breakdown of the significance scores of key
figures in the respective area along with a conversation of why they are significant, and some interesting
comparisons to other measures of significance, such as Nobel prizes and Oscars. This section is where the
book really shines, I can imagine (and experienced) the book facilitating a number of heated discussions
about who was left out of the rankings and why. Some of the most interesting points raised in these sections
concern the unique perspective of combining the Wikipedia and Google nGrams data sets. By examining
when certain figures were active versus when they were written about, it is possible to visually understand
how success can emerge (and be maintained or decline) posthumously. These mixed graphs were among the
most interesting for me throughout the book.

The more technical details of the ranking methodologies are saved for the first appendix. There is enough
detail here for the curious to understand the general methodologies used and agree or disagree with them.
The other appendices included are more playful in nature and contain the most famous people to live or die
on a particular date, information about the “Whose Bigger” game and webpage, and brief biographies of the
100 most significant figures in the book.

3 Opinion

This is a well written book that I enjoyed reading. While not technically deep it kept me engaged and reading
throughout. Skiena and Ward approach the subject with a mix of humor and rigor that is unique and fun.
The book can serve as a springboard for anyone interested in rating and ranking. In addition to being a fun
popular science book I could see sections of it being successfully integrated into a statistics or data analytics
course.

I can’t help but feel that there was an opportunity with this type of analysis that was missed. I would have
liked to see a longer version of the text, including a historian, or other domain expert author, to comment
on the chapters. Mixing these viewpoints to compare and contrast the rankings would have taken the book
from good to great. It would have allowed a dialog to form within the text. The authors attempt to facilitate

38

such a dialogues in the book but I feel the addition of a real counterpoint perspective would have made this
book truly phenomenal.

However, this criticism does not stop the book from being fantastic for what is there. I highly rec-
ommending the book for anyone interested in history, sports, or getting into good arguments about what’s
important for being remembered.

39

	Introduction
	Summary
	Opinion
	Introduction
	Summary
	Opinion
	Introduction
	Summary
	Opinion
	Introduction
	Summary
	The Conversations
	Opinion
	Overview
	Horizons of Combinatorics (Volume 17)
	Building Bridges Between Mathematics and Computer Science (Volume 19)
	Fete of Combinatorics and Computer Science (Volume 20)
	Erdos Centennial (Volume 25)
	Opinion
	Introduction
	Summary
	Opinion
	Introduction
	Summary
	Opinion
	Introduction
	Summary and Review
	Opinion
	Introduction
	Introduction
	Summary
	Opinion

