Funky Dice: An Exposition

William Gasarch - University of MD

If you roll two standard 6-sided dice then

1. 2: $(1,1)$. ONE way. Prob $\frac{1}{36}$.
2. 3: $(1,2),(2,1)$. TWO ways. Prob $\frac{1}{18}$.
3. 4: $(1,3),(2,2),(3,1)$. THREE ways. Prob $\frac{1}{12}$.
4. 5: $(1,4),(2,3),(3,2),(4,1)$. FOUR ways. Prob $\frac{1}{9}$.
5. 6: $(1,5),(2,4),(3,3),(4,2),(5,1)$ FIVE ways. Prob $\frac{5}{36}$.
6. 7: $(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$ SIX ways. Prob $\frac{1}{6}$.
7. 8: $(2,6),(3,5),(4,4),(5,3),(6,2)$ FIVE ways. Prob $\frac{5}{36}$.
8. 9: $(3,6),(4,5),(5,4),(6,3)$ FOUR ways. Prob $\frac{1}{9}$.
9. 10: $(4,6),(5,5),(6,4)$ THREE ways. Prob $\frac{1}{12}$.
10. 11: $(5,6),(6,5)$ TWO ways. Prob $\frac{1}{18}$.
11. 12: $(6,6)$ ONE way. Prob $\frac{1}{36}$.

Questions about Dice

1. Can we load two 6 -sided dice so that every number from 2 to 12 has the same probability. Called fair sums.

Questions about Dice

1. Can we load two 6 -sided dice so that every number from 2 to 12 has the same probability. Called fair sums.
2. Can you label the dice something other than $\{1, \ldots, 6\}$ and $\{1, \ldots, 6\}$ and get the same probabilities you get with standard dice?

Loaded Dice

William Gasarch - University of MD

Fair Dice Yield Unfair Sums

Fair Die:

$$
\operatorname{Pr}(1)=\operatorname{Pr}(2)=\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)=1 / 6 \sim 0.167
$$

Fair Dice Yield Unfair Sums

Fair Die:

$$
\operatorname{Pr}(1)=\operatorname{Pr}(2)=\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)=1 / 6 \sim 0.167
$$

Roll TWO of them.

Fair Dice Yield Unfair Sums

Fair Die:

$$
\operatorname{Pr}(1)=\operatorname{Pr}(2)=\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)=1 / 6 \sim 0.167
$$

Roll TWO of them.
$\operatorname{Pr}(\mathrm{Sum}=2)=1 / 36($ This is $\operatorname{Min} \operatorname{Pr}(\mathrm{Sum}))$
$\operatorname{Pr}($ Sum $=7)=1 / 6 .($ This is $\operatorname{Max} \operatorname{Pr}($ Sum $))$

Fair Dice Yield Unfair Sums

Fair Die:

$$
\operatorname{Pr}(1)=\operatorname{Pr}(2)=\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)=1 / 6 \sim 0.167
$$

Roll TWO of them.
$\operatorname{Pr}(\mathrm{Sum}=2)=1 / 36($ This is $\operatorname{Min} \operatorname{Pr}(\mathrm{Sum}))$
$\operatorname{Pr}($ Sum $=7)=1 / 6 .($ This is $\operatorname{Max} \operatorname{Pr}($ Sum $))$
Sums are Unfair!

Fair Dice Yield Unfair Sums

Fair Die:

$$
\operatorname{Pr}(1)=\operatorname{Pr}(2)=\operatorname{Pr}(3)=\operatorname{Pr}(4)=\operatorname{Pr}(5)=\operatorname{Pr}(6)=1 / 6 \sim 0.167
$$

Roll TWO of them.
$\operatorname{Pr}(\mathrm{Sum}=2)=1 / 36($ This is $\operatorname{Min} \operatorname{Pr}(\mathrm{Sum}))$
$\operatorname{Pr}(\operatorname{Sum}=7)=1 / 6 .($ This is $\operatorname{Max} \operatorname{Pr}($ Sum $))$
Sums are Unfair!
How Unfair?: $1 / 6-1 / 36 \sim 0.139$ unfair.

What Are Loaded Dice?

Definition: A Die is a 6 -tuple $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ such that $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{6} p_{i}=1$.

What Are Loaded Dice?

Definition: A Die is a 6-tuple $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ such that $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{6} p_{i}=1$.

Our Questions:

1. Does there exist a pair of loaded dice such that the sums all have equal probability $1 / 11$?

What Are Loaded Dice?

Definition: A Die is a 6-tuple $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ such that $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{6} p_{i}=1$.

Our Questions:

1. Does there exist a pair of loaded dice such that the sums all have equal probability $1 / 11$?
2. VOTE: YES or NO or UNKNOWN TO SCIENCE.

What Are Loaded Dice?

Definition: A Die is a 6-tuple $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ such that $0 \leq p_{i} \leq 1$ and $\sum_{i=1}^{6} p_{i}=1$.

Our Questions:

1. Does there exist a pair of loaded dice such that the sums all have equal probability $1 / 11$?
2. VOTE: YES or NO or UNKNOWN TO SCIENCE.
3. NO, no such dice can exist! (We prove on next few slides.)

Polynomials are our Friends!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.

Polynomials are our Friends!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Form polynomials based on the dice.

Polynomials are our Friends!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Form polynomials based on the dice.
$\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)$ and $\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)$.

Polynomials are our Friends!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Form polynomials based on the dice.
$\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)$ and $\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)$. Key

$$
\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)
$$

Polynomials are our Friends!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Form polynomials based on the dice.
$\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)$ and $\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)$. Key

$$
\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)
$$

The coefficient of x^{5} is

$$
p_{1} q_{4}+p_{2} q_{3}+p_{3} q_{2}+p_{4} q_{1} .
$$

Polynomials are our Friends!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Form polynomials based on the dice.
$\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)$ and $\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)$. Key

$$
\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)
$$

The coefficient of x^{5} is

$$
p_{1} q_{4}+p_{2} q_{3}+p_{3} q_{2}+p_{4} q_{1}
$$

But note that

$$
p_{1} q_{4}+p_{2} q_{3}+p_{3} q_{2}+p_{4} q_{1}=\operatorname{Prob}(\operatorname{sum}=5)
$$

Polynomials are our Friends!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Form polynomials based on the dice.
$\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)$ and $\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)$. Key

$$
\left(p_{6} x^{6}+p_{5} x^{5}+\cdots+p_{1} x^{1}\right)\left(q_{6} x^{6}+q_{5} x^{5}+\cdots+q_{1} x^{1}\right)
$$

The coefficient of x^{5} is

$$
p_{1} q_{4}+p_{2} q_{3}+p_{3} q_{2}+p_{4} q_{1}
$$

But note that

$$
p_{1} q_{4}+p_{2} q_{3}+p_{3} q_{2}+p_{4} q_{1}=\operatorname{Prob}(\text { sum }=5)
$$

The coefficient of x^{i} is $\operatorname{Prob}(s u m=i)$

No Dice!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Assume they yield fair sums, all sums have prob $1 / 11$. Then

No Dice!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Assume they yield fair sums, all sums have prob $1 / 11$. Then

$$
\left(p_{6} x^{6}+\cdots+p_{1} x^{1}\right)\left(q_{6} x^{6}+\cdots+q_{1} x^{1}\right)=\frac{1}{11}\left(x^{12}+x^{11}+\cdots+x^{2}\right)
$$

No Dice!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Assume they yield fair sums, all sums have prob $1 / 11$. Then

$$
\left(p_{6} x^{6}+\cdots+p_{1} x^{1}\right)\left(q_{6} x^{6}+\cdots+q_{1} x^{1}\right)=\frac{1}{11}\left(x^{12}+x^{11}+\cdots+x^{2}\right)
$$

So

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+x^{9}+\cdots+x+1\right)
$$

No Dice!

Let $\left(p_{1}, \ldots, p_{6}\right)$ and $\left(q_{1}, \ldots, q_{6}\right)$ be dice.
Assume they yield fair sums, all sums have prob $1 / 11$. Then

$$
\left(p_{6} x^{6}+\cdots+p_{1} x^{1}\right)\left(q_{6} x^{6}+\cdots+q_{1} x^{1}\right)=\frac{1}{11}\left(x^{12}+x^{11}+\cdots+x^{2}\right)
$$

So

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+x^{9}+\cdots+x+1\right)
$$

Continued on Next Slide.

No Dice (cont)

From last slide: If there are two loaded dice that give fair sums then there exist reals $\left(p_{1}, \ldots, p_{6}\right),\left(q_{1}, \ldots, q_{6}\right)$ such that

No Dice (cont)

From last slide: If there are two loaded dice that give fair sums then there exist reals $\left(p_{1}, \ldots, p_{6}\right),\left(q_{1}, \ldots, q_{6}\right)$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

No Dice (cont)

From last slide: If there are two loaded dice that give fair sums then there exist reals $\left(p_{1}, \ldots, p_{6}\right),\left(q_{1}, \ldots, q_{6}\right)$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

1. $p_{6} x^{5}+\cdots+p_{1}$: odd-degree poly, so has ≥ 1 real root.

No Dice (cont)

From last slide: If there are two loaded dice that give fair sums then there exist reals $\left(p_{1}, \ldots, p_{6}\right),\left(q_{1}, \ldots, q_{6}\right)$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

1. $p_{6} x^{5}+\cdots+p_{1}$: odd-degree poly, so has ≥ 1 real root.
2. $q_{6} x^{5}+\cdots+q_{1}$: odd-degree poly, so has ≥ 1 real root.

No Dice (cont)

From last slide: If there are two loaded dice that give fair sums then there exist reals $\left(p_{1}, \ldots, p_{6}\right),\left(q_{1}, \ldots, q_{6}\right)$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

1. $p_{6} x^{5}+\cdots+p_{1}$: odd-degree poly, so has ≥ 1 real root.
2. $q_{6} x^{5}+\cdots+q_{1}$: odd-degree poly, so has ≥ 1 real root.

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?

Real Roots of. . .

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?

Real Roots of. . .

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?
Lets factor to find out!

Real Roots of. . .

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?
Lets factor to find out!
bad idea!

Real Roots of. . .

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?
Lets factor to find out!
bad idea!
Better Idea: Lets anti-factor!

Real Roots of. . .

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?
Lets factor to find out!
bad idea!
Better Idea: Lets anti-factor!

$$
x^{11}-1=(x-1)\left(x^{10}+\cdots+x+1\right)
$$

Real Roots of. . .

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?
Lets factor to find out!
bad idea!
Better Idea: Lets anti-factor!

$$
x^{11}-1=(x-1)\left(x^{10}+\cdots+x+1\right)
$$

1. r root of $x^{10}+\cdots+x+1 \Longrightarrow r$ root of $x^{11}-1 \& r \neq 1$.
2. r root of $x^{11}-1 \& r \neq 1 \Longrightarrow r$ root of $x^{10}+\cdots+x+1$.

Real Roots of. . .

Does $x^{10}+x^{9}+\cdots+x+1$ have any real roots?
Lets factor to find out!
bad idea!
Better Idea: Lets anti-factor!

$$
x^{11}-1=(x-1)\left(x^{10}+\cdots+x+1\right)
$$

1. r root of $x^{10}+\cdots+x+1 \Longrightarrow r$ root of $x^{11}-1 \& r \neq 1$.
2. r root of $x^{11}-1 \& r \neq 1 \Longrightarrow r$ root of $x^{10}+\cdots+x+1$.

The roots of $x^{11}-1$ are on the complex unit circle. See Next Slide.

The 11th Roots of Unity: Only Real one is 1

1 is only real 11 th root of unity.

The 11th Roots of Unity: Only Real one is 1

1 is only real 11 th root of unity. $x^{10}+\cdots+1=0$: no real roots.

No Dice (cont)

Recap

If there exists two 6 -sided dice that give fair sums then there exists reals $p_{1}, \ldots, p_{6}, q_{1}, \ldots, q_{6}$ such that

No Dice (cont)

Recap

If there exists two 6 -sided dice that give fair sums then there exists reals $p_{1}, \ldots, p_{6}, q_{1}, \ldots, q_{6}$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

No Dice (cont)

Recap

If there exists two 6 -sided dice that give fair sums then there exists reals $p_{1}, \ldots, p_{6}, q_{1}, \ldots, q_{6}$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

The Left Hand Side has ≥ 2 real roots.

No Dice (cont)

Recap

If there exists two 6 -sided dice that give fair sums then there exists reals $p_{1}, \ldots, p_{6}, q_{1}, \ldots, q_{6}$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

The Left Hand Side has ≥ 2 real roots.
The Right Hand Side has 0 real roots.

No Dice (cont)

Recap

If there exists two 6 -sided dice that give fair sums then there exists reals $p_{1}, \ldots, p_{6}, q_{1}, \ldots, q_{6}$ such that

$$
\left(p_{6} x^{5}+\cdots+p_{1}\right)\left(q_{6} x^{5}+\cdots+q_{1}\right)=\frac{1}{11}\left(x^{10}+\cdots+1\right)
$$

The Left Hand Side has ≥ 2 real roots.
The Right Hand Side has 0 real roots.
Contradiction

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

1. No d.

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

1. No d.
2. All odd d.

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

1. No d.
2. All odd d.
3. All prime d.

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

1. No d.
2. All odd d.
3. All prime d.
4. UNKNOWN TO SCIENCE!

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

1. No d.
2. All odd d.
3. All prime d.
4. UNKNOWN TO SCIENCE!

Answer No d.

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

1. No d.
2. All odd d.
3. All prime d.
4. UNKNOWN TO SCIENCE!

Answer No d.

1. The proof that for even d you cannot load two d-sided dice to get fair sums is similar to what we did for two 6 -sided dice.

What About Two d-Sided Dice?

For which $d \geq 2$ can you load two d-sided dice to get fair sums? VOTE:

1. No d.
2. All odd d.
3. All prime d.
4. UNKNOWN TO SCIENCE!

Answer No d.

1. The proof that for even d you cannot load two d-sided dice to get fair sums is similar to what we did for two 6 -sided dice.
2. The proof that for odd d you cannot load two d-sided dice to get fair sums requires new techniques.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.
YES.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.
YES.
a 2-sided die and a 3-sided die can be loaded to get fair sums:

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.
YES.
a 2 -sided die and a 3 -sided die can be loaded to get fair sums:
2 sided die: $\left(\frac{1}{2}, \frac{1}{2}\right)$.
3 sided die: $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.
YES.
a 2 -sided die and a 3 -sided die can be loaded to get fair sums:
2 sided die: $\left(\frac{1}{2}, \frac{1}{2}\right)$.
3 sided die: $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.
Prob of a 2 is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.
YES.
a 2 -sided die and a 3 -sided die can be loaded to get fair sums:
2 sided die: $\left(\frac{1}{2}, \frac{1}{2}\right)$.
3 sided die: $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.
Prob of a 2 is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
Prob of a 3 is $\frac{1}{2} \times 0+\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.
YES.
a 2 -sided die and a 3 -sided die can be loaded to get fair sums:
2 sided die: $\left(\frac{1}{2}, \frac{1}{2}\right)$.
3 sided die: $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.
Prob of a 2 is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
Prob of a 3 is $\frac{1}{2} \times 0+\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
Prob of a 4 is $\frac{1}{2} \times 0+\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_{1}, d_{2} \geq 2$ such that there are d_{1}-sided and d_{2}-sided dice that give fair sums?
VOTE: YES or NO or UNKNOWN TO SCIENCE.
YES.
a 2 -sided die and a 3 -sided die can be loaded to get fair sums:
2 sided die: $\left(\frac{1}{2}, \frac{1}{2}\right)$.
3 sided die: $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.
Prob of a 2 is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
Prob of a 3 is $\frac{1}{2} \times 0+\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
Prob of a 4 is $\frac{1}{2} \times 0+\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
Prob of a 5 is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.

Can We Get Fair Sums Without Using 0 Prob?

Some people have told me that using 0 as a probability is cheating!

Can We Get Fair Sums Without Using 0 Prob?

Some people have told me that using 0 as a probability is cheating!

Rather than ponder the moral implications, lets ask a math question:

Can We Get Fair Sums Without Using 0 Prob?

Some people have told me that using 0 as a probability is cheating!

Rather than ponder the moral implications, lets ask a math question:

Is there a $d_{1}, d_{2} \geq 2$ such that d_{1}-sided and d_{2}-sided dice that give fair sums, with all the probs on the dice >0 ?
VOTE: YES or NO or UNKNOWN TO SCIENCE!

Can We Get Fair Sums Without Using 0 Prob?

Some people have told me that using 0 as a probability is cheating!

Rather than ponder the moral implications, lets ask a math question:

Is there a $d_{1}, d_{2} \geq 2$ such that d_{1}-sided and d_{2}-sided dice that give fair sums, with all the probs on the dice >0 ?
VOTE: YES or NO or UNKNOWN TO SCIENCE! NO.

When Can you? When Can't You?

Exactly which sets of dice can be loaded to get fair sums? Gasarch and Kruskal
https://www.cs.umd.edu/~gasarch/papers/dice.pdf proved the following

When Can you? When Can't You?

Exactly which sets of dice can be loaded to get fair sums? Gasarch and Kruskal
https://www.cs.umd.edu/~gasarch/papers/dice.pdf proved the following
Definition A die $\left(p_{1}, \ldots, p_{n}\right)$ is nice if it is symmetric and, for all $i, p_{i}=0$ or $p_{i}=p_{1}$.

When Can you? When Can't You?

Exactly which sets of dice can be loaded to get fair sums? Gasarch and Kruskal
https://www.cs.umd.edu/~gasarch/papers/dice.pdf proved the following
Definition A die $\left(p_{1}, \ldots, p_{n}\right)$ is nice if it is symmetric and, for all $i, p_{i}=0$ or $p_{i}=p_{1}$.

Theorem Dice D_{1}, \ldots, D_{m} have fair sums iff (1) each D_{i} is nice, and (2) every sum can be rolled in exactly one way.

When Can you? When Can't You?

Exactly which sets of dice can be loaded to get fair sums? Gasarch and Kruskal
https://www.cs.umd.edu/~gasarch/papers/dice.pdf proved the following Definition A die $\left(p_{1}, \ldots, p_{n}\right)$ is nice if it is symmetric and, for all $i, p_{i}=0$ or $p_{i}=p_{1}$.

Theorem Dice D_{1}, \ldots, D_{m} have fair sums iff (1) each D_{i} is nice, and (2) every sum can be rolled in exactly one way.
Note The Theorem can be used to determine, given m_{1}, \ldots, m_{L}, is there a set of dice, one m_{1}-sided, one m_{2}-sided, ..., one m_{L}-sided that gives fair sums.

When Can you? When Can't You?

Exactly which sets of dice can be loaded to get fair sums? Gasarch and Kruskal
https://www.cs.umd.edu/~gasarch/papers/dice.pdf proved the following Definition A die $\left(p_{1}, \ldots, p_{n}\right)$ is nice if it is symmetric and, for all $i, p_{i}=0$ or $p_{i}=p_{1}$.
Theorem Dice D_{1}, \ldots, D_{m} have fair sums iff (1) each D_{i} is nice, and (2) every sum can be rolled in exactly one way.
Note The Theorem can be used to determine, given m_{1}, \ldots, m_{L}, is there a set of dice, one m_{1}-sided, one m_{2}-sided, ..., one m_{L}-sided that gives fair sums.

Fame! One paper refers to The Gasarch-Kruskal Theorem.

How Close To Uniform Can You Get?

Asgarli, Hartclass, Ostrov, Walden showed the following: https://arxiv.org/pdf/2304.08501.pdf

How Close To Uniform Can You Get?

Asgarli, Hartclass, Ostrov, Walden showed the following: https://arxiv.org/pdf/2304.08501.pdf

Definition Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two prob dist. The distance between them is $\sum_{i}\left(p_{i}-q_{i}\right)^{2}$. A pair of loaded n-sided dice is optimal if the distance between its prob of sums and $\left(\frac{1}{2 n-1}, \ldots, \frac{1}{2 n-1}\right)$ is minimum over all pairs of loaded dice.

How Close To Uniform Can You Get?

Asgarli, Hartclass, Ostrov, Walden showed the following: https://arxiv.org/pdf/2304.08501.pdf
Definition Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two prob dist. The distance between them is $\sum_{i}\left(p_{i}-q_{i}\right)^{2}$. A pair of loaded n-sided dice is optimal if the distance between its prob of sums and $\left(\frac{1}{2 n-1}, \ldots, \frac{1}{2 n-1}\right)$ is minimum over all pairs of loaded dice.
How far are normal dice from uniform?

$$
\begin{gathered}
2(1 / 11-1 / 36)^{2}+2(1 / 11-1 / 18)^{2}+2(1 / 11-1 / 12)^{2}+2(1 / 9-1 / 11)^{2}+ \\
\left.2(5 / 36-1 / 11)^{2}\right)+(1 / 6-1 / 11)^{2} \sim 0.0217
\end{gathered}
$$

How Close To Uniform Can You Get? (cont)

Theorem The optimal pair of 6 -sided dice is $\left(\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8}\right)$.

How Close To Uniform Can You Get? (cont)

Theorem The optimal pair of 6 -sided dice is $\left(\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8}\right)$.
$\operatorname{Prob}(2)=\frac{1}{16}$

How Close To Uniform Can You Get? (cont)

Theorem The optimal pair of 6 -sided dice is
$\left(\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8}\right)$.
$\operatorname{Prob}(2)=\frac{1}{16}$
$\operatorname{Prob}(3)=\operatorname{Prob}(4)=\operatorname{Prob}(5)=\operatorname{Prob}(6)=\frac{3}{32}$

How Close To Uniform Can You Get? (cont)

Theorem The optimal pair of 6 -sided dice is
$\left(\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8}\right)$.
$\operatorname{Prob}(2)=\frac{1}{16}$
$\operatorname{Prob}(3)=\operatorname{Prob}(4)=\operatorname{Prob}(5)=\operatorname{Prob}(6)=\frac{3}{32}$
$\operatorname{Prob}(7)=\frac{1}{8}$

How Close To Uniform Can You Get? (cont)

Theorem The optimal pair of 6 -sided dice is
$\left(\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8}\right)$.
$\operatorname{Prob}(2)=\frac{1}{16}$
$\operatorname{Prob}(3)=\operatorname{Prob}(4)=\operatorname{Prob}(5)=\operatorname{Prob}(6)=\frac{3}{32}$
Prob $(7)=\frac{1}{8}$
$\operatorname{Prob}(8)=\operatorname{Prob}(9)=\operatorname{Prob}(10)=\operatorname{Prob}(11)=\frac{3}{32}$

How Close To Uniform Can You Get? (cont)

Theorem The optimal pair of 6 -sided dice is
$\left(\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8}\right)$.
$\operatorname{Prob}(2)=\frac{1}{16}$
$\operatorname{Prob}(3)=\operatorname{Prob}(4)=\operatorname{Prob}(5)=\operatorname{Prob}(6)=\frac{3}{32}$
Prob $(7)=\frac{1}{8}$
$\operatorname{Prob}(8)=\operatorname{Prob}(9)=\operatorname{Prob}(10)=\operatorname{Prob}(11)=\frac{3}{32}$
$\operatorname{Prob}(12)=\frac{1}{16}$

How Close To Uniform Can You Get? (cont)

Theorem The optimal pair of 6 -sided dice is
$\left(\frac{1}{2}, 0,0,0,0, \frac{1}{2}\right)$ and $\left(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8}\right)$.
$\operatorname{Prob}(2)=\frac{1}{16}$
$\operatorname{Prob}(3)=\operatorname{Prob}(4)=\operatorname{Prob}(5)=\operatorname{Prob}(6)=\frac{3}{32}$
$\operatorname{Prob}(7)=\frac{1}{8}$
$\operatorname{Prob}(8)=\stackrel{8}{\operatorname{Prob}}(9)=\operatorname{Prob}(10)=\operatorname{Prob}(11)=\frac{3}{32}$
$\operatorname{Prob}(12)=\frac{1}{16}$
Distance from Uniform is $\frac{1}{352} \sim 0.0028$.

Measuring Unfairness

One measure is distance from uniform which is what Asgarli, Hartclass, Ostrov, Walden used.

Measuring Unfairness

One measure is distance from uniform which is what Asgarli, Hartclass, Ostrov, Walden used.

1. Normal Dice 0.0217 away from uniform

Measuring Unfairness

One measure is distance from uniform which is what Asgarli, Hartclass, Ostrov, Walden used.

1. Normal Dice 0.0217 away from uniform
2. Optimal Dice 0.0028 away from uniform.

Measuring Unfairness

One measure is distance from uniform which is what Asgarli, Hartclass, Ostrov, Walden used.

1. Normal Dice 0.0217 away from uniform
2. Optimal Dice 0.0028 away from uniform.

Another measure is the distance between the max prob of a sum and the min prob of a sum.

Measuring Unfairness

One measure is distance from uniform which is what Asgarli, Hartclass, Ostrov, Walden used.

1. Normal Dice 0.0217 away from uniform
2. Optimal Dice 0.0028 away from uniform.

Another measure is the distance between the max prob of a sum and the min prob of a sum.

1. Normal Dice They were $1 / 6-1 / 36 \sim 0.139$ unfair.

Measuring Unfairness

One measure is distance from uniform which is what Asgarli, Hartclass, Ostrov, Walden used.

1. Normal Dice 0.0217 away from uniform
2. Optimal Dice 0.0028 away from uniform.

Another measure is the distance between the max prob of a sum and the min prob of a sum.

1. Normal Dice They were $1 / 6-1 / 36 \sim 0.139$ unfair.
2. Optimal Dice They are $1 / 8-1 / 16=0.0625$ unfair.

What About n-sided Dice?

What About n-sided Dice?

The optimal pair of n-sided dice is
$\left(\frac{1}{2}, 0, \ldots, 0, \frac{1}{2}\right)$
and
$\left(\frac{2}{3 n-2}, \frac{3}{3 n-2}, \ldots, \frac{3}{3 n-2}, \frac{2}{3 n-2}\right)$.

What About n-sided Dice?

The optimal pair of n-sided dice is
$\left(\frac{1}{2}, 0, \ldots, 0, \frac{1}{2}\right)$
and
$\left(\frac{2}{3 n-2}, \frac{3}{3 n-2}, \ldots, \frac{3}{3 n-2}, \frac{2}{3 n-2}\right)$.
The distance from uniform is $\frac{1}{2(2 n-1)(3 n-2)}$.

Different Labels on Dice

William Gasarch - University of MD

Can You Label Dice To Get Same Probs?

A labeling of a 6 -sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6 . So $(1,2,2,3,5,8)$ would be allowed.

Can You Label Dice To Get Same Probs?

A labeling of a 6 -sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6 . So $(1,2,2,3,5,8)$ would be allowed.

A non-standard labeling is a labeling that is not ($1,2,3,4,5,6$).

Can You Label Dice To Get Same Probs?

A labeling of a 6 -sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6 . So $(1,2,2,3,5,8)$ would be allowed.

A non-standard labeling is a labeling that is not (1, 2, 3, 4, 5, 6). Is there a non-standard labeling of a pair of 6 -sided dice so that the dice yield the SAME probabilities as the standard dice?

Can You Label Dice To Get Same Probs?

A labeling of a 6 -sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6 . So $(1,2,2,3,5,8)$ would be allowed.

A non-standard labeling is a labeling that is not (1, 2, 3, 4, 5, 6).
Is there a non-standard labeling of a pair of 6-sided dice so that the dice yield the SAME probabilities as the standard dice?
VOTE: YES or NO or UNKNOWN TO SCIENCE!

Can You Label Dice To Get Same Probs?

A labeling of a 6 -sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6 . So $(1,2,2,3,5,8)$ would be allowed.

A non-standard labeling is a labeling that is not (1, 2, 3, 4, 5, 6).
Is there a non-standard labeling of a pair of 6 -sided dice so that the dice yield the SAME probabilities as the standard dice?
VOTE: YES or NO or UNKNOWN TO SCIENCE!
YES. We prove this.

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Look at coefficient of x^{6}

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Look at coefficient of x^{6}

$$
x^{1} x^{5}+x^{2} x^{4}+x^{3} x^{3}+x^{4} x^{2}+x^{5} x^{1}=5 x^{6}
$$

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Look at coefficient of x^{6}

$$
\begin{aligned}
x^{1} x^{5} & +x^{2} x^{4}+x^{3} x^{3}+x^{4} x^{2}+x^{5} x^{1}=5 x^{6} \\
& =(\text { Number of ways to get } 6) x^{6}
\end{aligned}
$$

Let Polynomials Do The Work For You!

$$
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)
$$

Look at coefficient of x^{6}

$$
\begin{gathered}
x^{1} x^{5}+x^{2} x^{4}+x^{3} x^{3}+x^{4} x^{2}+x^{5} x^{1}=5 x^{6} \\
=(\text { Number of ways to get } 6) x^{6}
\end{gathered}
$$

Coefficient of x^{n} is number of ways to get n.

Example of Non-Standard Labelings

What if we label the dice $(1,2,2,2,5,5)$ and $(1,3,3,3,3,7)$?

Example of Non-Standard Labelings

What if we label the dice $(1,2,2,2,5,5)$ and $(1,3,3,3,3,7)$?

$$
\left(2 x^{5}+3 x^{2}+x\right)\left(x^{7}+4 x^{3}+x\right)=2 x^{12}+3 x^{9}+9 x^{8}+2 x^{6}+12 x^{5}+4 x^{4}+3 x^{3}+x^{2}
$$

Example of Non-Standard Labelings

What if we label the dice $(1,2,2,2,5,5)$ and $(1,3,3,3,3,7)$?

$$
\left(2 x^{5}+3 x^{2}+x\right)\left(x^{7}+4 x^{3}+x\right)=2 x^{12}+3 x^{9}+9 x^{8}+2 x^{6}+12 x^{5}+4 x^{4}+3 x^{3}+x^{2}
$$

1. 12: TWO ways. Prob $\frac{1}{18}$.
2. 9: THREE ways. Prob $\frac{1}{12}$.
3. 8: NINE ways. Prob $\frac{1}{4}$.
4. 6: TWO ways. Prob $\frac{1}{18}$.
5. 5: TWELVE ways. Prob $\frac{1}{3}$.
6. 4: FOUR ways. Prob $\frac{1}{9}$.
7. 3: THREE ways. Prob $\frac{1}{12}$.
8. 2: ONE ways. Prob $\frac{1}{36}$.

Is there a Non-Standard Labeling That. . .

Question Is there a nonstandard labeling of two 6-sided dice that gives the same probabilities as the standard dice?

Is there a Non-Standard Labeling That. . .

Question Is there a nonstandard labeling of two 6-sided dice that gives the same probabilities as the standard dice?
Question Phrased In Terms of Polynomials Does there exist $a_{1} \geq \cdots \geq a_{6}$ and $b_{1} \geq \cdots \geq b_{6}$ such that

Is there a Non-Standard Labeling That...

Question Is there a nonstandard labeling of two 6-sided dice that gives the same probabilities as the standard dice?
Question Phrased In Terms of Polynomials Does there exist $a_{1} \geq \cdots \geq a_{6}$ and $b_{1} \geq \cdots \geq b_{6}$ such that

$$
\begin{gathered}
\left(x^{a_{1}}+x^{a_{2}}+x^{a_{3}}+x^{a_{4}}+x^{a_{5}}+x^{a_{6}}\right)\left(x^{b_{1}}+x^{b_{2}}+x^{b_{3}}+x^{b_{4}}+x^{b_{5}}+x^{b_{6}}\right)= \\
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)^{2}
\end{gathered}
$$

Is there a Non-Standard Labeling That. . . Cont.

$$
\begin{gathered}
\left(x^{a_{1}}+x^{a_{2}}+x^{a_{3}}+x^{a_{4}}+x^{a_{5}}+x^{a_{6}}\right)\left(x^{b_{1}}+x^{b_{2}}+x^{b_{3}}+x^{b_{4}}+x^{b_{5}}+x^{b_{6}}\right)= \\
\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x\right)^{2}=x^{2}\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)^{2}= \\
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}
\end{gathered}
$$

Need to Factor...

Need to factor

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2} .
$$

into two polynomials, each of which represents a 6 -sided die.

Need to Factor...

Need to factor

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2} .
$$

into two polynomials, each of which represents a 6 -sided die.
Finite Number of cases.

Need to Factor...

Need to factor

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}
$$

into two polynomials, each of which represents a 6 -sided die.
Finite Number of cases.
$x(x+1)\left(x^{2}+x+1\right) * x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)$

Need to Factor...

Need to factor

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2} .
$$

into two polynomials, each of which represents a 6 -sided die.
Finite Number of cases.
$x(x+1)\left(x^{2}+x+1\right) * x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)$
$x(x+1)\left(x^{2}+x+1\right)=x^{4}+2 x^{3}+2 x^{2}+x$.
DIE: $(1,2,2,3,3,4)$

Need to Factor...

Need to factor

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2} .
$$

into two polynomials, each of which represents a 6 -sided die.
Finite Number of cases.
$x(x+1)\left(x^{2}+x+1\right) * x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)$
$x(x+1)\left(x^{2}+x+1\right)=x^{4}+2 x^{3}+2 x^{2}+x$.
DIE: $(1,2,2,3,3,4)$
$x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)=x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x$.
DIE: $(1,3,4,5,6,8)$.

Need to Factor...

Need to factor

$$
x^{2}(x+1)^{2}\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2} .
$$

into two polynomials, each of which represents a 6 -sided die.
Finite Number of cases.
$x(x+1)\left(x^{2}+x+1\right) * x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)$
$x(x+1)\left(x^{2}+x+1\right)=x^{4}+2 x^{3}+2 x^{2}+x$.
DIE: $(1,2,2,3,3,4)$
$x(x+1)\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)=x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x$.
DIE: $(1,3,4,5,6,8)$.
So desired dice are $(1,2,2,3,3,4)$ and $(1,3,4,5,6,8)$.

What About Two d-Sided Dice?

For which $d \geq 2$ are there two non-standard d-sided dice that have the same prob as standard dice? VOTE:

What About Two d-Sided Dice?

For which $d \geq 2$ are there two non-standard d-sided dice that have the same prob as standard dice? VOTE:

1. All even d.

What About Two d-Sided Dice?

For which $d \geq 2$ are there two non-standard d-sided dice that have the same prob as standard dice? VOTE:

1. All even d.
2. All non-prime d

What About Two d-Sided Dice?

For which $d \geq 2$ are there two non-standard d-sided dice that have the same prob as standard dice? VOTE:

1. All even d.
2. All non-prime d
3. Something Else

What About Two d-Sided Dice?

For which $d \geq 2$ are there two non-standard d-sided dice that have the same prob as standard dice? VOTE:

1. All even d.
2. All non-prime d
3. Something Else
4. UNKNOWN TO SCIENCE!

What About Two d-Sided Dice?

For which $d \geq 2$ are there two non-standard d-sided dice that have the same prob as standard dice? VOTE:

1. All even d.
2. All non-prime d
3. Something Else
4. UNKNOWN TO SCIENCE!

Answer All non-prime d.

What About Two d-Sided Dice?

For which $d \geq 2$ are there two non-standard d-sided dice that have the same prob as standard dice? VOTE:

1. All even d.
2. All non-prime d
3. Something Else
4. UNKNOWN TO SCIENCE!

Answer All non-prime d.

1. The proof is similar to what we did, though requires some thought.

What About d_{1}, d_{2}-Sided Dice?

For which $d_{1}, d_{2} \geq 2$ are there non-standard d_{1}-sided die and d_{2}-sided die that have the same prob as standard dice?
VOTE:

What About d_{1}, d_{2}-Sided Dice?

For which $d_{1}, d_{2} \geq 2$ are there non-standard d_{1}-sided die and d_{2}-sided die that have the same prob as standard dice?
VOTE:

1. One of d_{1}, d_{2} has to be non-prime.

What About d_{1}, d_{2}-Sided Dice?

For which $d_{1}, d_{2} \geq 2$ are there non-standard d_{1}-sided die and d_{2}-sided die that have the same prob as standard dice?
VOTE:

1. One of d_{1}, d_{2} has to be non-prime.
2. Both d_{1}, d_{2} have to be non-prime.

What About d_{1}, d_{2}-Sided Dice?

For which $d_{1}, d_{2} \geq 2$ are there non-standard d_{1}-sided die and d_{2}-sided die that have the same prob as standard dice?
VOTE:

1. One of d_{1}, d_{2} has to be non-prime.
2. Both d_{1}, d_{2} have to be non-prime.
3. Something Else

What About d_{1}, d_{2}-Sided Dice?

For which $d_{1}, d_{2} \geq 2$ are there non-standard d_{1}-sided die and d_{2}-sided die that have the same prob as standard dice?
VOTE:

1. One of d_{1}, d_{2} has to be non-prime.
2. Both d_{1}, d_{2} have to be non-prime.
3. Something Else
4. UNKNOWN TO SCIENCE!

What About d_{1}, d_{2}-Sided Dice?

For which $d_{1}, d_{2} \geq 2$ are there non-standard d_{1}-sided die and d_{2}-sided die that have the same prob as standard dice?
VOTE:

1. One of d_{1}, d_{2} has to be non-prime.
2. Both d_{1}, d_{2} have to be non-prime.
3. Something Else
4. UNKNOWN TO SCIENCE!

Answer UNKNOWN TO SCIENCE.

What About d_{1}, d_{2}-Sided Dice?

For which $d_{1}, d_{2} \geq 2$ are there non-standard d_{1}-sided die and d_{2}-sided die that have the same prob as standard dice?
VOTE:

1. One of d_{1}, d_{2} has to be non-prime.
2. Both d_{1}, d_{2} have to be non-prime.
3. Something Else
4. UNKNOWN TO SCIENCE!

Answer UNKNOWN TO SCIENCE.
Will say why on next slide.

More is Known

More is Known

1. George Sicherman first posed the problem and solved it in 1978. The dice produced are sometimes called Sicherman Dice. You can buy these dice on the web!

More is Known

1. George Sicherman first posed the problem and solved it in 1978. The dice produced are sometimes called Sicherman Dice. You can buy these dice on the web!
2. Gasarch has an exposition on this material:
https:
//www.cs.umd.edu/~gasarch/BLOGPAPERS/billdice.pdf

More is Known

1. George Sicherman first posed the problem and solved it in 1978. The dice produced are sometimes called Sicherman Dice. You can buy these dice on the web!
2. Gasarch has an exposition on this material: https:
//www.cs.umd.edu/~gasarch/BLOGPAPERS/billdice.pdf
3. Gallian and Rusin's paper exactly characterizes when this is possible:
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/
nonstandarddice.pdf
The paper only looked at $n d$-sided dice and I do not know of a later paper. Thats why the question of d_{1}, d_{2} is Unknown to Science.

More is Known

1. George Sicherman first posed the problem and solved it in 1978. The dice produced are sometimes called Sicherman Dice. You can buy these dice on the web!
2. Gasarch has an exposition on this material: https:
//www.cs.umd.edu/~gasarch/BLOGPAPERS/billdice.pdf
3. Gallian and Rusin's paper exactly characterizes when this is possible:
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/
nonstandarddice.pdf
The paper only looked at $n d$-sided dice and I do not know of a later paper. Thats why the question of d_{1}, d_{2} is Unknown to Science.
Or maybe just Unknown to Bill.

Parting Thoughts

William Gasarch - University of MD

Parting Thoughts

Parting Thoughts

1. Easy to state problems about dice lead to math of interest.

Parting Thoughts

1. Easy to state problems about dice lead to math of interest.
2. Polynomials are useful for problems with dice since multiplication gives information.

Parting Thoughts

1. Easy to state problems about dice lead to math of interest.
2. Polynomials are useful for problems with dice since multiplication gives information.
3. It is remarkable that a problem about dice lead to looking at complex roots of polynomials!

Parting Thoughts

1. Easy to state problems about dice lead to math of interest.
2. Polynomials are useful for problems with dice since multiplication gives information.
3. It is remarkable that a problem about dice lead to looking at complex roots of polynomials!
4. Congratulations for doing well on the UMCP HS Math Competition!
