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Credit Where Credit is Due

This Work Grew Out of a Project In the UMCP SPIRAL (Summer
Program in Research and Learning) Program for College Math
Majors at HBCU’s.

One of the students, Brett Jefferson has his own paper on this
subject.

ALSO: Multidim version has been worked on by Cooper, Fenner,
Purewal (submitted)
ALSO: Zarankiewics [7] asked similar questions.



Square Theorem:

Theorem
For all c, there exists G such that
for every c-coloring of G ×G there exists a monochromatic square.
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· · · R · · · R · · ·

· · ·
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· · · R · · · R · · ·
· · · · · · · · · · · · · · ·



Proving the Square Theorem and Bounding G (c)

How to prove Square Theorem?

1. Corollary of Hales-Jewitt Theorem [1]. Bounds on G HUGE!

2. Corollary of Gallai’s theorem [3,4,6]. Bounds on G HUGE!

3. From VDW directly (folklore). Bounds on G HUGE!

4. Directly (folklore?). Bounds on G HUGE!

5. Graham and Solymosi [2]. G ≤ 22
81
. Better but still HUGE.

Best known upper and lower bounds:

1. G (2) ≤ 22
81
.

2. Ω(c4/3) ≤ G (c). (Upper bound not writable-downable.)



What If We Only Care About Rectangles?

Definition
Gn,m is the grid [n]× [m].

1. Gn,m is c-colorable if there is a c-colorings of Gn,m such that
no rectangle has all four corners the same color.

2. χ(Gn,m) is the least c such that Gn,m is c-colorable.



Our Main Question

Fix c
Exactly which Gn,m are c-colorable?



Two Motivations!

1. Relaxed version of Square Theorem- hope for better bounds.

2. Coloring Gn,m without rectangles is equivalent to coloring
edges of Kn,m without getting monochromatic K2,2.

Our results yield Bipartite Ramsey Numbers!



Obstruction Sets

Definition
Gn,m contains Ga,b if a ≤ n and b ≤ m.

Theorem
For all c there exists a unique finite set of grids OBSc such that

Gn,m is c-colorable iff
Gn,m does not contain any element of OBSc .

1. Can prove using well-quasi-orderings. No bound on |OBSc |.
2. Our tools yield alternative proof and show

2
√
c(1− o(1)) ≤ |OBSc | ≤ 2c2.



Rephrase Main Question

Fix c
What is OBSc



Rectangle Free Sets and Density

Definition
Gn,m is the grid [n]× [m].

1. X ⊆ Gn,m is Rectangle Free if there are NOT four vertices in
X that form a rectangle.

2. rfree(Gn,m) is the size of the largest Rect Free subset of Gn,m.



Rectangle Free subset of G21,12 of size 63 =
⌈
21·12
4

⌉
01 02 03 04 05 06 07 08 09 10 11 12

1 • •
2 • •
3 • •
4 • • •
5 • • •
6 • • •
7 • • •
8 • • •
9 • • •
10 • • •
11 • • •
12 • • •
13 • • • •
14 • • •
15 • • •
16 • • •
17 • • • •
18 • • •
19 • • •
20 • • •
21 • • • •



Colorings Imply Rectangle Free Sets

Lemma
Let n,m, c ∈ N. If χ(Gn,m) ≤ c then rfree(Gn,m) ≥ ⌈mn/c⌉.
Note: We use to get non-col results as density results!!



Zarankiewics’s Problem

Definition
Za,b(m, n) is the largest subset of Gn,m that has no [a]× [b]
submatrix.

Zarankiewics [7] asked for exact values for Za,b(m, n).
We care about Z2,2(m, n).



PART I: 2-COLORABILITY

We will EXACTLY Characterize which Gn,m are 2-colorable!



G5,5 IS NOT 2-Colorable!

Theorem
G5,5 is not 2-Colorable.

Proof:

χ(G5,5) = 2 =⇒ rfree(G5,5) ≥ ⌈25/2⌉ = 13
=⇒ there exists a column with ≥ ⌈13/5⌉ = 3 R’s



Case 1: There is a column with 5 R ’s

Case 1: There is a column with 5 R’s.

R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦

Remaining columns have ≤ 1 R so

Number of R’s ≤ 5 + 1 + 1 + 1 + 1 = 9 < 13.



Case 2: There is a column with 4 R ’s

Case 2: There is a column with 4 R’s.

R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

Remaining columns have ≤ 2 R’s

Number of R’s ≤ 4 + 2 + 2 + 2 + 2 ≤ 12 < 13



Case 3: Max in a column is 3 R ’s

Case 3: Max in a column is 3 R’s.
Case 3a: There are ≤ 2 columns with 3 R’s.

Number of R’s ≤ 3 + 3 + 2 + 2 + 2 ≤ 12 < 13.

Case 3b: There are ≥ 3 columns with 3 R ′s.

R ◦ ◦ ◦ ◦
R ◦ ◦ ◦ ◦
R R ◦ ◦ ◦
◦ R ◦ ◦ ◦
◦ R ◦ ◦ ◦

Can’t put in a third column with 3 R’s!



Case 4: Max in a column is ≤ 2R ’s

Case 4: Max in a column is ≤ 2R’s.

Number of R’s ≤ 2 + 2 + 2 + 2 + 2 ≤ 10 < 13.

No more cases. We are Done! Q.E.D.



G4,6 IS 2-Colorable

Theorem
G4,6 is 2-Colorable.

Proof.

R R R B B B
R B B R R B
B R B R B R
B B R B R R



G3,7 IS NOT 2-Colorable

Theorem
G3,7 is not 2-Colorable.

Proof.

χ(G3,7) = 2 =⇒ rfree(G3,7) ≥ (⌈21/2⌉ = 11
=⇒ there is a row with ≥ ⌈11/3⌉ = 4 R’s

Proof similar to G5,5— lots of cases.



Complete Char of 2-Colorability

Theorem

OBS2 = {G3,7,G5,5,G7,3}.

Proof.
Follows from results G5,5,G7,3 not 2-colorable and G4,6 is
2-colorable.



PART II: TOOLS TO SHOW Gn,m NOT c-COLORABLE

We show that if A is a Rectangle Free subset of Gn,m then
there is a relation between |A| and n and m.



Bound on Size of Rectangle Free Sets

Theorem
Let n,m ∈ N. If there exists rectangle-free A ⊆ Gn,m then

|A| ≤
m +

√
m2 + 4m(n2 − n)

2

Note: Proved by Reiman [5] while working on Zarankiewicz’s
problem.



Proof of Theorem

A ⊆ Gn,m, rectangle free.
xi is number of points in i th column.

1 · · · m

1 · · ·
...

...

n · · ·
x1 points · · · xm points(x1

2

)
pairs of points · · ·

(xm
2

)
pairs of points

m∑
i=1

(
xi
2

)
≤

(
n

2

)
.
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n · · ·
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.



Proof of Theorem (cont)

m∑
i=1

(
xi
2

)
≤

(
n

2

)
.

Sum minimized when x1 = · · · = xm = x

m

(
x

2

)
≤

(
n

2

)
.

x ≤
m +

√
m2 + 4m(n2 − n)

2m

|A| ≤ xm ≤
m +

√
m2 + 4m(n2 − n)

2



Bound on Size of Rectangle Free Sets (new)

Theorem
Let a, n,m ∈ N. Let q, r be such that a = qn + r with 0 ≤ r ≤ n.
Assume that there exists A ⊆ Gm,n such that |A| = a and A is
rectangle-free.

1. If q ≥ 2 then

n ≤
⌊
m(m − 1)− 2rq

q(q − 1)

⌋
.

2. If q = 1 then

r ≤ m(m − 1)

2
.

Refined ideas from proof above.



PART III: TOOLS TO SHOW Gn,m IS c-COLORABLE

We define and use Strong c-Colorings to get c-Colorings



Strong c-Colorings

Definition
Let c , n,m ∈ N. χ : Gn,m → [c]. χ is a strong c-coloring if the
following holds: CANNOT have a rectangle with the two right
most corners are same color and the two left most corners the
same color.

Example: A strong 3-coloring of G4,6.

R R G R G G

B G R G R G

G B B G G R

G G G B B B



Strong Coloring Lemma

Let c , n,m ∈ N. If Gn,m is strongly c-colorable then Gn,cm is
c-colorable.

Example:

R R G R G G B B R B R R G G B G B B

B G R G R G G R B R B R R B G B G B

G B B G G R R G G R R B B R R B B G

G G G B B B R R R G G G B B B R R R



Combinatorial Coloring Theorem

Let c ≥ 2.

1. There is a strong c-coloring of Gc+1,(c+1
2 )

.

2. There is a c-coloring of Gc+1,m where m = c
(c+1

2

)
.

Example: Strong 5-coloring of G6,15.

O O O O O R R R R R R R R R R

O R R R R O O O O B B B B B B

R O B B B O B B B O O O G G G

B B O G G B O G G O G G O O P

G G G O P G G O P G O P O P O

P P P P O P P P O P P O P O O



Coloring Using Primes!

Theorem
Let p be a prime.

1. There is a strong p-coloring of Gp2,p+1.

2. There is a p-coloring of Gp2,p2+p.

Proof.
Uses geometry over finite fields.

Note: Have more general theorem.



Generalization of of Strong Colorings

Definition
Let c , c ′, n,m ∈ N. χ : Gn,m → [c]. χ is a strongly (c , c ′)-coloring
if the following holds: If have rectangles where two right most
corners same and two left most corners same, then diff colors, and
both colors in [c ′].

Strong (4, 2)-coloring of G6,15. (R = 1, B = 2)

R R R R R G G G B G G B B B B

R B B B B R R R R P P G G G B

B R G G B R B B B R R R P P G

B B R P G B R P G R B B R R P

G G B R P B B R P B R P R B R

P P P B R P P B R B B R B R R



Generalization of of Strong Colorings

Definition
Let c , c ′, n,m ∈ N. χ : Gn,m → [c]. χ is a strongly (c , c ′)-coloring
if the following holds: If have rectangles where two right most
corners same and two left most corners same, then diff colors, and
both colors in [c ′].

Strong (4, 2)-coloring of G6,15. (R = 1, B = 2)

R R R R R G G G B G G B B B B

R B B B B R R R R P P G G G B

B R G G B R B B B R R R P P G

B B R P G B R P G R B B R R P

G G B R P B B R P B R P R B R

P P P B R P P B R B B R B R R



Lemma: Generalized Strong Colorings Yield Colorings

Lemma
Let c , c ′, n,m ∈ N. Let x = ⌊c/c ′⌋. If Gn,m is strongly
(c , c ′)-colorable then Gn,xm is c-colorable.

Proof is similar to proof of strong coloring Lemma.



Using a Generalization of Strong Coloring

Theorem
Let c ≥ 2.

1. There is a c-coloring of Gc+2,m′ where m′ = ⌊c/2⌋
(c+2

2

)
.

2. There is a c-coloring of G2c,2c2−c .



Another Combinatorial Coloring Theorem

Theorem
Let c ≥ 2.

1. There is a strong (c , 2)-coloring of Gc+2,m where m =
(c+2

2

)
.

2. There is a c-coloring of Gc+2,m′ where m′ = ⌊c/2⌋
(c+2

2

)
.

Similar to proof of Combinatorical Coloring Theorem.



Another Combinatorial Coloring Theorem

Theorem
Let c ≥ 2.

1. There is a strong (c , 2)-coloring of Gc+2,m where m =
(c+2

2

)
.

2. There is a c-coloring of Gc+2,m′ where m′ = ⌊c/2⌋
(c+2

2

)
.

Similar to proof of Combinatorical Coloring Theorem.



Tournament Graph Coloring Theorem

Let c ≥ 2.

1. There is a strong c-coloring of G2c,2c−1.

2. There is a c-coloring of G2c,2c2−c .

Proof.
Uses tourament graphs.



PART IV: 3-COLORABILITY

We will EXACTLY Characterize which Gn,m are 3-colorable!



Easy 3-Colorable Results

Theorem

1. The following grids are not 3-colorable.
G4,19, G19,4, G5,16, G16,5, G7,13, G13,7, G10,12, G12,10, G11,11.

2. The following grids are 3-colorable.
G3,19, G19,3, G4,18, G18,4, G6,15, G15,6, G9,12, G12,9.

Proof.
Follows from tools.



G10,10 is 3-colorable

Theorem
G10,10 is 3-colorable.

Proof.
UGLY! TOOLS DID NOT HELP AT ALL!!

R R R R B B G G B G

R B B G R R R G G B

G R B G R B B R R G

G B R B B R G R G R

R B G G G B G B R R

G R B B G G R B B R

B G R B G B R G R B

B B G R R G B G B R

G G G R B R B B R B

B G B R B G R R G G



G10,11 is not 3-colorable

Theorem
G10,11 is not 3-colorable.

Proof.
You don’t want to see this. UGLY case hacking.



Complete Char of 3-colorability

Theorem
OBS3 =

{G4,19,G5,16,G7,13,G10,11,G11,10,G13,7,G16,5,G19,4}.

Proof.
Follows from above results on grids being or not being
3-colorable.



PART V: 4-COLORABILITY

We will MAKE PROGRESS ON Characterizing which Gn,m

are 4-colorable.



Easy NOT 4-Colorable Results

Theorem
The following grids are NOT 4-colorable:

1. G5,41 and G41,5

2. G6,31 and G31,6

3. G7,29 and G29,7

4. G9,25 and G25,9

5. G10,23 and G23,10

6. G11,22 and G22,11

7. G13,21 and G21,13

8. G17,20 and G20,17

9. G18,19 and G19,18

Follows from tools for proving grids are NOT colorable.



Easy IS 4-Colorable Results

Theorem
The following grids are 4-colorable:

1. G4,41 and G41,4.

2. G5,40 and G40,5.

3. G6,30 and G30,6.

4. G8,28 and G28,8.

5. G16,20 and G20,16.

Follows from tools for proving grids are colorable.



Theorems with UGLY Proofs

Theorem

1. G17,19 is NOT 4-colorable: Used some tools.

2. G24,9 is 4-colorable: Used strong coloring of G9,6.

P R R P R R

P B B R P B

P G G B B P

R P G P G B

B P R B P G

G P B G R P

G B P P B G

R G P G P R

B R P R G P



Theorems with UGLY Proofs

Theorem

1. G17,19 is NOT 4-colorable: Used some tools.

2. G24,9 is 4-colorable: Used strong coloring of G9,6.

P R R P R R

P B B R P B

P G G B B P

R P G P G B

B P R B P G

G P B G R P

G B P P B G

R G P G P R

B R P R G P



4-coloring of G21,11 Due to Brad Loren

1 2 3 4 5 6 7 8 9 10 11

1 G B B G R P R G P B P
2 B G G P B G P R R B R
3 R R B P B P B P G G R
4 P R P G B B R P R G B
5 R P G B B P P B R G G
6 B R P R G P B R G P B
7 P G B R G B R G P P R
8 P P G B R B G R G B P
9 R B R B G G R P P G B
10 R P P R G R B B P B G
11 B P R R P B G G R P G
12 R B P P P B B R G R G
13 G G B B R R P P R P G
14 G B R P B G G R B P P
15 G P G P G R R R B B B
16 B B R G P G P B P R G
17 P G B G P P R B G R B
18 B P B G G R G P B R R
19 P G R P R B G B B G R
20 B R P B R G P G G R P
21 G R R B P R B P B G P



4-coloring of G22,10 Due to Brad Loren

1 2 3 4 5 6 7 8 9 10

1 P G R R G G P P B B
2 G P B G B B P R P R
3 B G B R P P G R P B
4 P P G G R R B B G P
5 P B P P G R R G G R
6 P B R B R P G R G G
7 G P G P B P R B R G
8 P R R B P B G G B R
9 P B B R R G R G P G
10 R R B B P G R B G P
11 R G G P R B B G P R
12 R B R G G P P B B G
13 B R G B G R B R P P
14 G G P B B P R R G B
15 R G P R B R B P P G
16 B B P G P B P G R R
17 G P B R P G B P B R
18 R B G P B G P R R P
19 G B R P P R B G R B
20 B R P G R G G B R P
21 B R G R B P G P B P
22 G P P R G B G B R B



Absolute Results

Theorem

1. The following grids are in OBS4: G5,41, G6,31, G7,29, G9,25,
G10,23, G11,22, G22,11, G23,10, G25,9, G29,7, G31,6, G41,5.

2. For each of the following grids it is not known if it is
4-colorable. These are the only such. G17,17, G17,18, G18,17,
G18,18. G21,12, G12,21.

3. Exactly one of these is in OBS4: G21,12, G21,13.

4. Exactly one of these is in OBS4: G17,19, G17,18, G17,17.



Rectangle Free Conjecture

Recall the following lemma:

Lemma
Let n,m, c ∈ N. If χ(Gn,m) ≤ c then rfree(Gn,m) ≥ ⌈nm/c⌉.

Rectangle-Free Conjecture (RFC) is the converse:

Let n,m, c ≥ 2. If rfree(Gn,m) ≥ ⌈nm/c⌉ then Gn,m is c-colorable.



Rectangle Free Conjecture

Recall the following lemma:

Lemma
Let n,m, c ∈ N. If χ(Gn,m) ≤ c then rfree(Gn,m) ≥ ⌈nm/c⌉.

Rectangle-Free Conjecture (RFC) is the converse:

Let n,m, c ≥ 2. If rfree(Gn,m) ≥ ⌈nm/c⌉ then Gn,m is c-colorable.



Rectangle Free Subset of G22,10 of Size of size 55 =
⌈
22·10
4

⌉
01 02 03 04 05 06 07 08 09 10

1 • •
2 • •
3 • •
4 • •
5 • •
6 • •
7 • • •
8 • • •
9 • • •
10 • • •
11 • • •
12 • • •
13 • • •
14 • • •
15 • • •
16 • •
17 • •
18 • •
19 • •
20 • •
21 • •
22 • • • •

If RFC is true then G22,10 is 4-colorable.



Rectangle Free subset of G21,12 of size 63 =
⌈
21·12
4

⌉
01 02 03 04 05 06 07 08 09 10 11 12

1 • •
2 • •
3 • •
4 • • •
5 • • •
6 • • •
7 • • •
8 • • •
9 • • •
10 • • •
11 • • •
12 • • •
13 • • • •
14 • • •
15 • • •
16 • • •
17 • • • •
18 • • •
19 • • •
20 • • •
21 • • • •

If RFC is true then G21,12 is 4-colorable.



Rectangle Free subset of G18,18 of size 81 =
⌈
18·18
4

⌉
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

1 • • • • •
2 • • • • •
3 • • • • •
4 • • • • •
5 • • • •
6 • • • •
7 • • • • •
8 • • • • •
9 • • • • •
10 • • • •
11 • • • •
12 • • • • •
13 • • • • •
14 • • • •
15 • • • •
16 • • • •
17 • • • •
18 • • • •

If RFC is true then G18,18 is 4-colorable. NOTE: If delete 2nd column and 5th Row have 74-sized RFC of G17,17.



Assuming RFC. . .

Theorem
If RFC then

OBS4 = {G41,5,G31,6,G29,7,G25,9,G23,10,G22,11,G21,13,G19,17}
⋃

{G13,21,G11,22,G10,23,G9,25,G7,29,G6,31,G5,41}.

Proof.
Follows from known 4-colorability, non-4-colorability results, and
Rect Free Sets above.



PART VI: BIPARTITE RAMSEY THEORY

Theorem
(Bipartite Ramsey Theorem) For all a, c there exists n = BR(a, c)
such that for all c-colorings of the edges of Kn,n there will be a
monochromatic Ka,a. (See Graham-Rothchild-Spencer [1] for
history and refs.)

Equivalent to:

Theorem
For all a, c there exists n = BR(a, c) so that for all c-colorings of
Gn,n there will be a monochromatic a× a submatrix.
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APPLICATION TO BIPARTITE RAMSEY NUMBERS

Theorem

1. BR(2, 2) = 5. (Already known.)

2. BR(2, 3) = 11.

3. 17 ≤ BR(2, 4) ≤ 19.

4. BR(2, c) ≤ c2 + c .

5. If p is a prime and s ∈ N then BR(2, ps) ≥ p2s .

6. For almost all c , BR(2, c) ≥ c2 − c1.525.



PART VII: OPEN QUESTIONS

1. Is G17,17 4-colorable? We have a Rectangle Free Set of size
⌈(17× 17)/4⌉+ 1 = 74.

2. What is OBS4? OBS5?

3. Prove or disprove Rectangle Free Conjecture.

4. Have Ω(
√
c) ≤ |OBSc | ≤ O(c2). Get better bounds!

5. Refine tools so can prove ugly results cleanly.



CASH PRIZE!

The first person to email me both (1) plaintext, and (2) LaTeX, of
a 4-coloring of the 17× 17 grid that has no monochromatic
rectangles will receive $289.00.
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